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INTRODUCTION 

 

Emulsions play a crucial role in developing products 

with desirable textures, flavors, and nutritional profiles 

in food and its allied industries. Traditional emulsions, 

such as oil-in-water (O/W) and water-in-oil (W/O), have 

been extensively used due to their ability to encapsu-

late bioactive compounds and improve the sensory 

properties of food products. These emulsions are stabi-

lized by surfactants or emulsifiers, which help maintain 
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their stability and prevent phase separation (Espinoza-

Leandro et al., 2023). However, they face challenges 

related to oxidative stability and the need for synthetic 

emulsifiers, which are increasingly being replaced by 

natural alternatives to meet consumer demand for clean

-label products (Ghelichi et al., 2023). 

Water-in-water (W/W) emulsions can be a promising 

solution to meet consumer demand for clean-label 

products and have sustainable processing technology. 

W/W emulsions represent a unique class of colloidal 

dispersions where both the dispersed and continuous 

phases are made of the aqueous medium. Unlike tradi-

tional O/W or W/O emulsions, these systems involve 

two immiscible aqueous phases, typically formed by 

mixing hydrophilic macromolecules that are thermody-

namically incompatible (Esquena, 2016). These emul-

sions are characterized by ultralow interfacial tensions 

and biocompatibility, making them suitable for applica-

tions where traditional emulsions might not be ideal 

(Wang et al., 2022).  

The ability of W/W emulsions to preserve the stability of 

bioactive substances without requiring organic solvents 

has drawn attention to their potential applications in 

diverse fields such as food and nutrition, cosmetics, 

and pharmacy (Chen, Guo, et al., 2021a; Hann et al., 

2017; Tea et al., 2020, 2021; Yang et al., 2020). It is 

particularly advantageous for the encapsulation and 

controlled release of nutrients and bioactive com-

pounds, which can be beneficial for creating functional 

foods with enhanced nutritional profiles (Kadi et al., 

2022; Muschiolik & Dickinson, 2017). W/W emulsions 

can be used to create structured food materials, such 

as gelled emulsions, which serve as fat replacers in 

meat products (Aledo, 2015). W/W emulsion formulated 

from xanthan gum and whey protein isolate was identi-

fied for its encapsulation and protection of riboflavin, 

from degradation due to environmental factors such as 

light and pH changes (Pu et al., 2024). 

Even though W/W emulsion stabilization is a challeng-

ing issue, the pickering effect by biopolymer microgels 

(Jordán, 2018), innovative techniques like microchannel 

emulsification and ultrasonic treatment and incorpora-

tion of natural stabilizers such as plant-derived polysac-

charides and protein (Balcão et al., 2015; Schubert et 

al., 2006) are few methods to address the challenges 

with simultaneous improvement in emulsion properties. 

Proteins and Polysaccharides are vital nutrients in the 

human diet, and their deficiency can lead to serious 

health conditions such as kwashiorkor and marasmus 

(Arcieri et al., 2021). Currently, the importance of plant 

protein is increasing, particularly in the context of food 

and nutritional security. Plant proteins are recognized 

for their importance due to health, environmental, and 

ethical considerations. They offer a viable alternative to 

animal proteins with an elevated carbon footprint and 

are linked with diverse health risks (Gueugneau, 2023; 

Singh et al., 2023). Notably, plant proteins can provide 

a complete amino acid profile and are highly digestible, 

making them an excellent option for meeting dietary 

protein needs. Similarly Soluble fibers from polysaccha-

rides have varied functionality and are vital for human 

health and well-being.  

Despite their potential, W/W emulsions face several 

limitations. Their low interfacial tension makes them 

susceptible to coalescence (Chen, Guo et al., 2021b) 

and sedimentation (Yang et al., 2020). These con-

straints underscore the complexity involved in stabiliz-

ing W/W emulsions and highlight the importance of 

understanding the underlying mechanisms to enhance 

their practical applications. To address these challeng-

es, the present research aimed to develop a W/W 

emulsion using a combination of protein and polysac-

charides and characterize the emulsions for its rheolog-

ical properties, and stability. 

 

MATERIALS AND METHODS 

 

Materials 

All the materials (Pea protein isolates (PPI) – 99.0% 

purity, 320 to 380 kDa., Locust Bean Gum (LBG) – 

99.9% purity, 310 kDa., Guar Gum (GG) – 99.9% puri-

ty, 220 kDa., Xanthan Gum (XG) – 99.0% purity, 2000 

kDa.), Fluorescein isothiocyanate (FITC) dye, Rhoda-

mine B dye, were all analytical grade and purchased 

from Merck (Chennai, Tamil Nadu, India), Sigma-

Aldrich Co. (Bengaluru, Karnataka, India), and deion-

ized water was used for this research study. 

 

Bulk solution preparation 

PPI (10%), LBG (1.0%), GG (1.0%), and XG (1.0%) 

were prepared by adding each component (all in pow-

der form) to deionized water at pH 6.5. The mixtures 

were then mixed at specific temperatures: GG and PPI 

at 25 °C, XG at 75 °C (Brunchi et al., 2016), and LBG 

at 85 °C (Duhan et al., 2021). Mixing involved using a 

magnetic stirrer at 600 rpm for 3-4 hours.  

After mixing, the PPI solutions were centrifugated at 

3350 × g (4500 rpm, Rotor - 221.55 V20, Model - Z 326 

K, Hermle Co. centrifuge) at 10 °C for 20 minutes. This 

centrifugation step was performed to separate the sedi-

ments and extract the water-soluble protein fraction. 

The collected water-soluble protein fraction was then 

used to prepare the emulsions further. This aqueous 

protein fraction was further referred to as Aqueous pea 

protein extract. 

 

Emulsion preparation 

Ternary solutions were prepared by mixing specific 

amounts of bulk – Aqueous pea protein extract and 

LBG (PL), Aqueous pea protein extract and GG (PG), 

and Aqueous pea protein extract and XG (PX) solutions 

to obtain the required proportions with slight modifica-
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tions as described (Gonzalez-Jordan et al., 2016). The 

protein and polysaccharide solutions were combined in 

ratios of 10:90, 20:80, 30:70, 40:60, 50:50, 60:40, 

70:30, 80:20, and 90:10 and using a ULTRA-TURRAX 

High-Speed Homogenizer, for the solutions to undergo 

for a homogenization process at 7000 rpm for 3 

minutes (Adetunji et al., 2017) to create each emulsion. 

The formulated emulsions were transferred to screw-

capped glass vials and stored in a refrigerated chamber 

at 4 °C. 

 

Phase diagram 

The phase diagrams (binodal) were established for 

biopolymer systems at pH 6.5 and 20 °C as described 

by (Spyropoulos et al., 2010). These diagrams show 

the regions where the biopolymer mixtures are mixed 

or separated into two phases (Koningsveld et al., 

2001). Nine sets of experiments were performed for 

each phase diagram to obtain binodal points by analyz-

ing the relationship between biopolymer concentrations 

and phase-volume ratios in binary solutions. The phase

-volume ratios were plotted against weight fractions, 

with sufficient phase-separated systems required for a 

confident fit. Two binodal points were obtained from 

each set, providing three data points on the phase dia-

gram – two on the binodal and one on the rectilinear 

diameter (which represented equal volume fractions of 

both phases). Each point in a diagram represented the 

weight/volume concentrations of the two biopolymers 

and the solvent (Polyakov et al., 1985).  

 

Interfacial tension 

The interfacial tension for the emulsions was deter-

mined using pendant drop tensiometry. Pendant drop 

tensiometry involves suspending a droplet of liquid from 

a needle and capturing its silhouette. The balance be-

tween gravitational forces and interfacial tension influ-

ences the shape of the droplet. By analyzing this 

shape, the interfacial tension can be determined (Berry 

et al., 2015). 

 

Emulsion stability study 

The phase separation process of the emulsion was 

studied by measuring the emulsions' absorbance at 

247 nm using a DS-11 model Spectrophotometer from 

DeNovix Inc., USA. The measurements were taken at 

intervals of 4 h, ranging from 0 to 52 h. A 5 mL emul-

sion sample was taken for measurement, and the data 

was fitted in the exponential decay model to explain the 

emulsion stability behaviour.  

The exponential decay model is a mathematical model 

that describes the process of reducing an amount by a 

consistent percentage over a period (Hobbie & Roth, 

2006). Mathematically it is represented as exponential 

decay is- 

 
where A – Initial concentration, y – concentration after 

time ‘t’, k > 0 – decay constant, and t – time.  

 

Confocal Laser Scanning Microscopy (CLSM) 

Confocal Laser Scanning Microscopy (CLSM) meas-

urements were done with a Zeiss LSM 710 CLSM mi-

croscope (Carl Zeiss Microscopy GmbH, Germany) 

utilizing an HC × PL APO 25× objective with slight 

modification (Michaux et al., 2021). A few drops of the 

prepared emulsion were placed on a glass slide, 

mounted with a cover slip, and examined. Fluorescein 

isothiocyanate (FITC) with emission and excitation 

ranges 494 nm and 521 nm, and Rhodamine B dye 

with emission and excitation ranges of 546 nm and 567 

nm used for protein and polysaccharide phases, re-

spectively. 

 

Particle size determination 

All emulsions were measured in triplicates after 4 hours 

of preparation(Igathinathane et al., 2008). The mean 

droplet diameter was reported as volume mean diame-

ter (D43). 

 

Rheological analysis 

Rheological description of the W/W emulsions was 

conducted using MCR 302 (Anton Paar) shear rheome-

ter. The experiment utilized cone-and-plate geometry 

(CP50-2, cone diameter 50 mm, cone angle 2°, 1 mm 

gap) at shear rates ranging from 0.1 to 1000 s− 1 (You 

et al., 2023). 

 

RESULTS AND DISCUSSION 

 

Phase diagram 

A phase diagram, a binodal curve, illustrates the rela-

tionship between the components in a W/W emulsion. 

Fig. 1(A) to 1(C) show the binodal curves of three pro-

tein-polysaccharide combinations: PL, PG, and PX. 

The data point on the curve represents apparent 

weight fractions of protein and polysaccharide compo-

nents. 

Fig. 1 depicts the PL-binodal curve’s proximity to the y-

axis, highlighting the PL emulsion’s superior phase 

stability. Emulsions with larger areas under the binodal 

curve had higher phase separation tendency. Accord-

ing to You et al. (2023), a distinct gap between the bi-

nodal curve and the y-axis indicated the formation of 

two phases. The PL emulsion’s enhanced stability over 

PG and PX was due to PP and LBG interactions, par-

ticularly hydrophobic bonds, which create a stable 

emulsion. Perrechil et al. (2013) explained that LBG, a 

polysaccharide, binds and forms a network, thereby 

stabilizing the emulsion and improving water retention 
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and strength. 

The slope of Tie Line (STL) estimates in Fig. 2., repre-

senting the biphasic region’s phase composition, 

showed that a tie line connects the phases’ equilibrium 

compositions, with its slope indicating their composi-

tional and volume ratio differences. The STL assesses 

phase proportions and emulsion stability (Spyropoulos 

et al., 2010). The line connecting rectilinear points in 

the PL emulsion aligns with the binodal point, signifying 

enhanced stability, unlike PG and PX emulsions. Other 

emulsion property analyses corroborate PL’s superior 

stability. 

 

Interfacial tension 

Table 1 presents the interfacial tension depicting that 

PL emulsions consistently exhibit notably low interfacial 

tension, ranging from 1.78 ± 0.071 to 3.24 ± 0.130 mN/

m. According to Wang et al., (2022), lower interfacial 

tension values indicate stronger interfacial stability, 

which leads to a more durable emulsion. The role of 

interfacial tension is vital in grasping the mechanics of 

phase separation, as it measures the energy needed to 

increase the surface area between non-mixing liquids 

and examine the interface's characteristics (Scholten et 

al., 2006). 

The interaction between proteins and LBG in PL emul-

sions is believed to strengthen intermolecular bonds 

and fully coat the interface. Introducing XG or GG into 

pea protein mixtures tends to dampen electrostatic forc-

es and hydrogen bonds, creating a structure that im-

proves water retention. When LBG levels are low, the 

overall negative charge decreases, leading to lower 

solubility and viscosity. On the other hand, higher LBG 

levels increase water uptake and viscosity due to more 

intense intermolecular hydrogen bonding, exceeding 

expected levels (Sánchez et al., 1995). 

 

Emulsion stability study 

To assess emulsion stability and phase separation 

time, emulsions were observed for 48 hours at 25 °C. 

Absorbance was measured and analyzed with the Ex-

ponential decay model, producing ‘A’ and ‘k’ values 

indicating initial concentration and separation rates or 

decay rates. From table 2, PL Emulsion showed greater 

stability (lower ‘k’) than others, indicating slower phase 

separation. PX Emulsions had higher initial absorbance 

(‘A’), suggesting initial stability but faster separation due 

to a higher decay constant. 

PX’s quick phase separation, unlike PL and PG, was 

due to XG’s net negative charge, contrasting LBG and 

GG’s weaker charges (Chen, Beatson, et al., 2021) and 

GG is non-ionic (Grządka, 2013). This separation is 

caused by Segregative phase separation, where elec-

trostatic repulsion or steric exclusion from biopolymer 

interactions lead to biopolymer phase separation (Jha 

et al., 2014). 

Sl. No. Composition PL (mN/m) PG (mN/m) PX (mN/m) 

1. 10:90 2.52 ± 0.101 2.69 ± 0.188 2.81 ± 0.196 

2. 20:80 2.39 ± 0.096 2.41 ± 0.169 2.72 ± 0.190 

3. 30:70 2.13 ± 0.085 2.33 ± 0.163 2.75 ± 0.193 

4. 40:60 2.06 ± 0.082 2.16 ± 0.151 2.58 ± 0.181 

5. 50:50 1.97 ± 0.079 2.01 ± 0.140 2.48 ± 0.174 

6. 60:40 1.78 ± 0.071 2.12 ± 0.148 2.29 ± 0.160 

7. 70:30 2.55 ± 0.102 2.45 ± 0.171 2.42 ± 0.169 

8. 80:20 2.86 ± 0.115 2.96 ± 0.207 2.89 ± 0.202 

9. 90:10 3.24 ± 0.130 3.16 ± 0.221 3.34 ± 0.235 

Table 1. Interfacial tension data of the emulsions (mN/m) 

Fig. 1. Determination of Combined Phase Diagram of PL 

(Emulsion with phase component Pea protein and Locust 

bean gum), PG (Emulsion with phase component Pea 

protein and Guar gum), and PX (Emulsion with phase 

component Pea protein and Xanthan gum) 

PL – Emulsion with phase component Pea protein and Locust bean gum; PG – Emulsion with phase component Pea protein and Guar 

gum; PX – Emulsion with phase component Pea protein and Xanthan gum 
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Emulsion stability is affected by the polysaccharides 

used. LBG, a non-ionic galactomannan with a 1:4 ga-

lactose to mannose ratio, creates higher viscosity liq-

uids than GG when dissolved, explaining LBG’s stabi-

lizing effect in emulsions. The pea protein and LBG 

blended significantly enhanced emulsion stability, espe-

cially at a 60:40 ratio. These insights are crucial for 

developing stable emulsions in food and other indus-

tries. 

 

Particle size determination 

From Table 3 the volume mean diameter (Dv) data of 

emulsions shows that PL emulsions consistently exhib-

ited smaller particle sizes compared to PG or PX. It is 

well known that particle size significantly influences 

emulsion stability. PL-6 had the smallest particle size 

(0.1891 ± 0.0113 μm) attributed to its droplets' en-

hanced interfacial area-to-volume ratio. This ratio am-

plifies steric hindrance and prevents droplets from com-

bining. Moreover, these smaller droplets' increased 

surface charge density promotes electrostatic repul-

sion, further discouraging droplet clustering. (Hossain 

et al., 2021).  

To summarize, PL emulsions possess more favorable 

particle size distributions, which suggests improved 

emulsion stability. These results underscore the critical 

influence of phase composition on particle size and 

emulsions' stability. 

 

Rheological analysis 

Across all three emulsions, a clear shear-thinning be-

haviour was observed, with PL displaying the highest 

viscosity, followed by PG and PX. As shear strain in-

creased, there was a consistent decrease in both stor-

age and loss modulus for all emulsions. A high shear 

modulus indicates resistance to deformation, while a 

high loss modulus suggests more energy dissipation 

during deformation. The PL combination demonstrated 

enhanced viscosity, storage modulus, and loss modu-

lus, showing superior rheological properties. These 

findings align with similar results reported by Xiao et al. 

(2023), who studied soy protein isolate and guar gum 

hydrogel, further supporting the role of protein-

polysaccharide interactions in enhancing emulsion sta-

bility and rheology.. Compared to PG and PX, the PL 

combination notably improves apparent viscosity, form-

ing denser protein networks and coacervates. The 

strong interaction between PP and LBG in the PL for-

mulation leads to better shear viscosities and micro-

structure, surpassing PX or PG combinations in rheo-

logical properties (Agarwal et al., 2023). 

From Fig. 3 (B) and (C), it is evident that as the shear 

Sl. No. Sample A K (s-1) R2 

1 PL-1 2.583 22.320 0.89 

2 PL-2 2.589 21.240 0.88 

3 PL-3 2.613 20.520 0.89 

4 PL-4 2.628 18.000 0.90 

5 PL-5 2.659 18.360 0.92 

6 PL-6 2.730 17.640 0.92 

7 PL-7 2.730 19.440 0.91 

8 PL-8 2.737 19.080 0.91 

9 PL-9 2.776 18.720 0.94 

10 PG-1 2.509 30.960 0.80 

11 PG-2 2.517 25.560 0.76 

12 PG-3 2.544 25.200 0.78 

13 PG-4 2.541 25.560 0.76 

14 PG-5 2.570 25.200 0.76 

15 PG-6 2.596 21.240 0.75 

16 PG-7 2.630 25.560 0.79 

17 PG-8 2.627 24.480 0.80 

18 PG-9 2.662 24.840 0.83 

19 PX-1 2.901 23.040 0.85 

20 PX-2 2.912 18.720 0.82 

21 PX-3 2.936 20.160 0.89 

22 PX-4 2.925 20.160 0.87 

23 PX-5 2.981 18.720 0.87 

24 PX-6 2.953 18.720 0.87 

25 PX-7 3.047 19.080 0.89 

26 PX-8 3.068 19.440 0.90 

27 PX-9 3.079 17.650 0.90 

Table 2. Exponential decay model parameters for each 

formulated emulsion 

PL – Emulsion with phase component Pea protein and Locust 

bean gum; PG – Emulsion with phase component Pea protein 

and Guar gum; PX – Emulsion with phase component Pea protein 

and Xanthan gum; A and K are model parameters – initial con-

centration and decay constant, R2 –Coefficient of determination 

Fig. 2. Individual Phase Diagram of PL (Emulsion with 

phase component Pea protein and Locust bean gum), PG 

(Emulsion with phase component Pea protein and Guar 

gum), and PX (Emulsion with phase component Pea pro-

tein and Xanthan gum)  
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strain increased, the storage modulus decreased, re-

flecting reduced elastic energy conservation during 

deformation. The loss modulus followed a similar trend, 

decreasing with escalating shear strain, indicating low-

er energy dissipation as heat. The combination of LBG 

with PP shows superior storage and loss moduli en-

hancement, resulting in significantly improved viscoe-

lastic properties compared to XG or GG. Further rheo-

logical studies confirm the advantageous behaviour of 

PP/LBG mixtures with increased storage and loss mod-

uli. This can be attributed to the multifunctional proper-

ties of LBG, which include acting as binders, viscosity 

enhancers, stabilizers, and drug release modifiers (Dev 

Prakash & Rishi Kumar, 2023), thereby reinforcing the 

structural integrity and viscoelastic properties of the 

emulsion. 

As in Fig. 3 (B) & (C), the PL emulsion exhibited lower 

storage and loss modulus than PG and PX, suggesting 

(A) (B) 

(C) 

Fig. 3. Viscosity (A), Storage Modulus (B), and Loss Modulus (C) of PL-6 (Emulsion with phase component Pea pro-

tein and Locust bean gum), PG-6 (Emulsion with phase component Pea protein and Guar gum), and PX-6 (Emulsion 

with phase component Pea protein and Xanthan gum) as functions of shear strain 

SL. No. Composition PL (μm) PG (μm) PX (μm) 

1 10:90 0.2038 ± 0.0122 0.2975 ± 0.0178 0.3439 ± 0.0207 

2 20:80 0.2052 ± 0.0123 0.2996 ± 0.0180 0.3464 ± 0.0208 

3 30:70 0.2077 ± 0.0125 0.3033 ± 0.0182 0.3506 ± 0.0209 

4 40:60 0.2021 ± 0.0121 0.295 ± 0.0177 0.341 ± 0.0205 

5 50:50 0.1923 ± 0.0115 0.2807 ± 0.0162 0.3245 ± 0.0197 

6 60:40 0.1891 ± 0.0113 0.2761 ± 0.0157 0.3191 ± 0.0191 

7 70:30 0.2053 ± 0.0123 0.2997 ± 0.0180 0.3465 ± 0.0208 

8 80:20 0.2111 ± 0.0127 0.3082 ± 0.0185 0.3563 ± 0.0214 

9 90:10 0.2127 ± 0.0128 0.3105 ± 0.0186 0.3589 ± 0.0215 

Table 3. Particle size data (μm) of the emulsions 

PL – Emulsion with phase component Pea protein and Locust bean gum; PG – Emulsion with phase component Pea protein and Guar 

gum; PX – Emulsion with phase component Pea protein and Xanthan gum 



 

84 

Tangirala, A. D. S. et al. / J. Appl. & Nat. Sci. 17(1), 78 - 86 (2025) 

less resistance to deformation and easier handling dur-

ing processing. This emulsion requires less energy for 

deformation and may offer better stability during fluid 

processing, with lower chances of phase separation 

compared to other emulsions. These findings could 

have important implications for industries utilizing such 

emulsions. 

 

Confocal Laser Scanning Microscopy (CLSM) 

CLSM analysis of PL-6 W/W emulsions revealed tiny, 

spherical droplets within a continuous phase. 

The green FITC-labelled protein solution constituted 

the continuous phase, while the red Rhodamine-B-

labelled LBG solution formed the dispersed phase, 

with yellowish interfaces indicating protein-LBG interac-

tions. In Fig. 4(A), a protein-polysaccharide complex is 

highlighted and enlarged in Fig. 4(B), showing dis-

tinct green, yellow, and red areas. PL emulsions dis-

played a heterogeneous microstructure with varied pro-

tein-polysaccharide concentrations and an extensive 

protein network. The dispersed phase's varying shapes 

and sizes and attractive and repulsive forces between 

proteins contribute to the emulsion’s stability, influ-

enced by protein’s higher molecular weight and lower 

solubility (Nunes et al., 2006). 

 

Conclusion 

 

The phase diagram analysis, interfacial tension data, 

and rheological behaviour collectively indicated that PL 

emulsions exhibited superior stability to PG and PX 

variants. The PL-binodal curve’s proximity to the y-axis 

and the Slope of Tie Line (STL) estimates suggest a 

robust phase composition with less tendency for phase 

separation. The low interfacial tension in PL emulsions 

and the strong interactions between pea protein (PP) 

and locust bean gum (LBG) resulted in a stable emul-

sion structure. This stability was further supported by 

the smaller particle sizes and favourable rheological 

properties of PL emulsions, which demonstrate less 

resistance to deformation and enhanced viscoelasticity. 

These findings highlight the importance of component 

interactions and phase behaviour in developing stable 

emulsions, with significant implications for the food in-

dustry and other applications requiring reliable emul-

sion formulations.  Furthermore, the use of pea protein 

in these emulsions supports the concept of nutritional 

security, offering a sustainable, high-quality protein 

source that aligns with global dietary needs. This study 

represents a significant advancement in plant-based 

nutrition and food technology, providing a foundation 

for healthier, more sustainable products, including 

ready-to-serve beverages and beyond. 
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