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INTRODUCTION 

 

Inflammation plays a key role in producing and regulat-

ing pro-inflammatory cytokines like nitric oxide, prosta-

glandins, and TNF-α in macrophages. Nitric oxide 

(NO•), an inflammatory mediator, is produced by nitric 

oxide synthases (NOS), with inducible NOS (iNOS) 

promoting inflammation by generating NO• in macro-

phages, which can lead to tissue injury, genetic altera-

tions, and nerve damage (Pradhan et al., 2024; Gupta 

et al., 2024). Cyclooxygenase-2 (COX-2) further pro-

motes prostaglandin synthesis and NO• production. 

While inflammation is a natural defense mechanism, 

persistent or chronic inflammation can contribute to 

diseases such as rheumatoid arthritis, arteriosclerosis, 

gastritis, and asthma (Gupta et al., 2024; Hou et al., 

2016; Baito et al., 2023). Drugs such as non-

steroidal anti-inflammatory drugs (NSAIDs) and cortico-

steroids are commonly employed to manage inflamma-

tion, while NSAIDs alleviate pain, fever, and inflamma-

tion, making them useful for treating various inflamma-

tory conditions (Kaur et al., 2022). NSAIDs are a class 

of drugs that inhibit COX enzymes, which typically acti-

vate several processes that lead to pain, fever, and 

inflammation. By blocking these enzymes, NSAIDs 

reduce pain and inflammation (Kaur et al., 2022). How-

ever, these drugs have side effects and in some cases, 

they are irreversible. Plants can be used in their raw 

extract form to address inflammatory diseases or spe-

cific anti-inflammatory compounds can be extracted 

and used to treat inflammation (Kaur et al., 2022).   

Gynostemma pentaphyllum (Thunb.) Makino has been 

widely used in traditional herbal medicine in Asian 

countries and exhibits a variety of pharmacological 

properties, including anti-inflammatory, antioxidative, 

antidiabetic, lipid metabolism regulatory and neuropro-

tective activities (Huang et al., 2021; Nguyen et al., 

2021; Liu et al., 2021; Wang et al., 2019; Weng et al., 

2021). This herb is also widely used as a health sup-

plement in beverages, biscuits, noodles, face washes 

and bath oils (Huang et al., 2021; Nguyen et al., 2021; 

Liu et al., 2021; Wang et al., 2019; Weng et al., 2021). 

Abstract 

Hydrogen-rich Gynostemma pentaphyllum Makino distillate (HRGD) is produced by distilling G. pentaphyllum Makino, with the 

addition of hydrogen gas. This study sought to explore the pharmacological and biological impacts of HRGD on the generation 

of pro-inflammatory cytokines and mediators in macrophages. The cells were treated with various concentrations of HRGD (2, 4 

and 8 μg/mL) in the absence or presence of lipopolysaccharide (LPS) (1 μg/mL) for 24 h. The results indicated that HRGD is an 

effective inhibitor of LPS-induced nitric oxide (NO•) production in RAW 264.7 cells: The NO• concentration was reduced dramati-

cally after treatment with 8 μg/m98L HRGD (11.8 μM) compared to the LPS-induced group (28.4 μM). These inhibitory effects of 

HRGD included a dose-dependent decrease in the expression of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) pro-

teins. To evaluate the inhibitory effects of HRGD on other cytokines, we also measured cytokines tumor necrosis factor-α (TNF-

α) level in the cell supernatants of LPS-stimulated RAW 264.7 macrophages by enzyme-linked immunosorbent assay. In this 

assay, HRGD significantly decreased the expression of TNF-α in a dose-dependent manner (p < 0.05). The study also per-

formed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on macrophages. HRGD did not display any 

cytotoxicity in this assay. The findings demonstrated that HRGD could modulate macrophage-mediated inflammatory functions 

such as the overproduction of cytokines, NO• and PGE2 without any cytotoxic. 
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Extracting medicinal plants involves isolating bioactive 

compounds or secondary metabolites. The method cho-

sen for extraction depends on factors such as the type 

of plant material, solvent properties, pH, temperature, 

and solvent-to-sample ratio, as well as the intended use 

of the final extract (Liu et al., 2021). Steam distillation is 

a commonly employed method for extracting natural 

products from plant materials (Gil et al., 2023). It is an 

effective technique that consumes less energy, pre-

serves the quantity and quality of bioactive compounds, 

and allows for easy absorption by the skin and mucous 

membranes of the body (Gil et al., 2023; Russo et al., 

2023). 

Hydrogen has emerged as a novel antioxidant material 

that can mitigate cellular damage by selectively scav-

enging strong oxidants such as hydroxyl radicals. Drink-

ing hydrogen-rich water has been shown to have posi-

tive effects in the treatment of several conditions, in-

cluding metabolic syndrome, rheumatoid arthritis, 

chronic hepatitis B, Parkinson's disease, and cancer 

(Asgharzadeh et al., 2022; Ichihara et al., 2021; Song 

et al., 2022). The US Food and Drug Administration has 

recently recognized hydrogen gas as a safe food addi-

tive when used in drinking water or beverages (bulut et 

al., 2023). Despite the increasing evidence supporting 

the benefits of hydrogen, limited studies have been 

conducted on its effects. Furthermore, the systemic 

effect of Gynostemma pentaphyllum (Thunb.) Makino 

manufactured through steam distillation remains un-

clear. Therefore, this study aimed to examine the anti-

inflammatory capacity of hydrogen-rich G. pentaphyllum 

(Thunb.) Makino distillate (HRGD). 

 

MATERIALS AND METHODS 

 

Preparation of hydrogen-rich G. pentaphyllum 

(Thunb.) Makino distillate (HRGD) 

The HRGD sample was obtained from Youngmul Com-

pany (Jeju, Korea), washed thoroughly with water, and 

then dried overnight. The dried G. pentaphyllum 

(Thunb.) Makino was immersed in water and subjected 

to low-temperature vacuum extraction during distillation 

(Altieri et al., 2022). The first distillate was filtered to 

eliminate precipitates, infused with hydrogen gas (400 

ppb), and then concentrated using a rotary evaporator 

(Buchi Rotavapor R-200, New Castle, DE, US). After-

wards, the extracts were freeze-dried by lyophilization 

and dissolved in dimethylsulfoxide (DMSO) at a con-

centration of 500 mg/mL until they were used for experi-

mentation (Kim and Kim, 2023).  

 

Cell culture  

Cells were cultured in Dulbecco’s modified Eagle’s me-

dium (DMEM) containing L-glutamine, supplemented 

with 100 units/mL penicillin, 100 μg/mL streptomycin, 

and 10% heat-inactivated fetal calf serum (Cambrex, 

Walkersville, MD). Cell cultures were maintained in a 

5% CO2 incubator with 70% humidity at 37 °C. Upon 

confluence, the medium and nonadherent cells were 

discarded and replaced with fresh culture medium. Af-

ter another 24 hours, cells were harvested by gently 

scraping with a rubber scraper, washed three times, 

counted for viability, and reseeded into culture plates. 

They incubated for at least 2 h to allow them to adhere 

to the plates. After washing three times with medium, 

LPS (Sigma) at a concentration of 1 µg/mL was added 

and the cells were cultured for the indicated times (Mo 

et al., 2022). 

 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) cell viability assay  

Cytotoxicity in RAW 264.7 murine macrophages was 

measured using MTT assay in 96-well plates. Cellular 

toxicity of various inhibitors was evaluated using the 

MTT assay, based on the conversion of MTT to forma-

zan by mitochondrial dehydrogenases (Mosmann et al., 

1983). RAW 264.7 cells were seeded at 5×10³ cells per 

well in 100 μL of medium in 96-well plates. After 24 

hours, the cells were treated with HRGD at concentra-

tions ranging from 0 to 8 μg/mL. The cells were then 

incubated with 10 μL of MTT (5 mg/mL) at 37 ºC in the 

dark for 4 hours. The resulting formazan crystals were 

dissolved by adding 100 μL of DMSO to each well, and 

the absorbance was measured at 540 nm after over-

night incubation at 37 ºC using a Spectra MR micro-

plate reader. Cell viability was expressed as a percent-

age of the control value. Non-toxic HRGD concentra-

tions, which did not significantly affect the viability of 

RAW 264.7 cells (greater than 90% viability), were se-

lected to assess anti-inflammatory effects (Lee and 

Park, 2016). 

 

Measurement of nitric oxide (NO•) production 

The accumulation of nitrite, a stable byproduct of NO•, 

in the culture medium was used as a marker of LPS-

induced NO• production in RAW 264.7 cells (Shih et al., 

2010). NO• production was assessed by measuring 

nitrite in media fractions by the Griess reaction. Sub-

cultured cells were seeded at a density of 15 × 10⁴ cells 

per well in a 48-well plate with DMEM containing 10% 

fetal bovine serum (FBS), then incubated for 24 hours 

in a 5% CO₂, humidified atmosphere at 37 ºC. After 24 

hours, cells were treated with HRGD, with or without 

LPS, at non-toxic concentrations (determined from the 

MTT assay) in phenol red-free DMEM with 10% FBS 

and further incubated. The optical density at 540 nm 

was measured using a Spectra Max 250 ELISA Reader 

(Molecular Devices, USA), and nitrite levels were deter-

mined from a standard curve derived from serial dilu-

tions of NaNO2 (Sigma) in the culture medium. An LPS-
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untreated control was included to verify macrophage 

activation by LPS, while the LPS-treated control was 

compared to the effects of HRGD. 

 

Determination of cyclooxygenase-2 (COX-2), pros-

taglandin E2 (PGE2) and tumor necrosis factor-α 

(TNF-α)  

RAW 264.7 macrophages were seeded into 6-well 

plates and stimulated with lipopolysaccharide (LPS) (1 

µg/mL) in the presence or absence of various concen-

trations of HRGD at concentrations ranging from 2 to 8 

µg/mL for 24 h. The levels of COX-2, PGE2 and TNF-α 

in cell culture supernatant were assayed by a commer-

cially available ELISA kit (Mouse COX-2 ELISA kit, 

abcam; Mouse PGE2 ELISA kit, Abcam; Mouse TNF-α 

ELISA kit, R&D systems, respectively); as per the manu-

facturer's guidelines. All controls and standards were 

performed in triplicate, with optical density readings 

taken using an ELISA reader (Molecular Devices, 

USA). The results were calculated using standard 

curves generated by the standards provided by the 

manufacturer (Mohammadi et al., 2024). 

 

Statistics  analysis 

Results are shown as the mean of three independent 

experiments ± standard deviation (SD). A Mann-

Whitney U test was used to assess statistical signifi-

cance between groups in SPSS version 12.0. A p-value 

of less than 0.05 was considered statistically signifi-

cant, representing 95% confidence. 

 

RESULTS AND DISCUSSION  

 

Cell viability 

A murine RAW264.7 macrophage in vitro model was 

used to evaluate the anti-inflammatory effects of 

HRGD. The MTT assay is commonly employed to 

study cell proliferation and viability in vitro. RAW 264.7 

macrophages treated with HRGD at different concen-

trations (0, 2, 4 and 8 μg/mL) in the absence or pres-

ence of LPS for 24 h. as shown in Fig. 1,  did not show 

toxicity to the cells.  

Additionally, alterations in the morphology of RAW 

264.7 cells were noted in the control, LPS-treated, and 

HRGD-treated groups at various concentrations. LPS 

treatment induced morphological changes, confirming 

the establishment of the inflammation model. In con-

trast, co-treatment with HRGD reduced the irregular 

morphological changes, suggesting its potential to 

modulate cell inflammation. Therefore, HRGD at 2-8 

μg/mL was used in subsequent experiments.  

 

Effects of HRGD on LPS-stimulated NO• production 

in RAW 264.7 macrophages  

Next, the present study measured LPS-induced NO• 

release by employing a Griess reagent. LPS increases 

the levels of pro-inflammatory cytokines such as NO• 

and TNF-α in macrophages (Willeaume et al., 1995; 

Khan et al., 2022). It also induces diverse disease-

related inflammatory responses. LPS-stimulated RAW 

264.7 cells were treated with HRGD, and then NO• pro-

duction was measured in LPS-stimulated RAW 264.7 

macrophages. LPS-induced NO• production was 28.4 ± 

0.14 µM in the LPS-treated group compared to the un-

treated group (Fig. 2).  

However, the amount of NO• after treatment with 

HRGD reduced dramatically in a dose-dependent way 

compared to the LPS-induced group (28.4 ± 0.14 μM). 

The NO• concentrations were 22.7, 19.9 and 11.8 μM. 

NO• is an essential mediator in inflammation, with ex-

cessive NO• production occurring during both acute 

and chronic inflammatory responses. NO• is generated 

from L-arginine by NOS isoenzymes, particularly iNOS, 

which is predominantly expressed in activated macro-

phages (Janeway et al., 2002).  

 

Suppression of HRGD on LPS-activated COX-2, 

PGE2 and TNF-α activation and NO• production in 

RAW 264.7 macrophages  

On the inflammatory mediators COX-2, PGE2 and  

TNF-α, the anti-inflammatory activities of HRGD were 

tested. COX-2 is a well-known enzyme that can  

catalyze the generation of prostanoids such as PGE2. 

PGE2 is involved in many diseases, particularly inflam-

mation-related (Yang et al., 2021). NO• plays a role in 

inflammatory diseases. Specifically, PGE2 production 

is initiated during the pre-inflammatory phase, contrib-

uting to pain, fever, and vasodilation (Yang et al., 

2021). Since COX-2 and PGE2 are the important in-

flammatory mediators (Yan et al., 2021), the effects of 

HRGD on the LPS-induced release of COX-2 and 

PGE2 from RAW264.7 cells were measured by the ELI-

SA kit (Table 1).  

Fig. 1. Effect of HRGD on cell viability of RAW 264.7 mac-

rophages. RAW 264.7 macrophages  treated with HRGD 

(2, 4 and 8 μg/mL) for 24 h, and then the cell viability was 

measured by MTT assay. Data are expressed as the 

Mean ± SD of three independent experiments 
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Treatment with LPS (1 μg/mL) enhanced COX-2 and 

PGE2 secretion levels, and was notably reduced by 

HRGD (2, 4 and 8 μg/mL) in a dose-dependent manner 

in LPS-induced RAW 264.7 macrophages (p < 0.05) 

(Table 1). We treated LPS-stimulated RAW 264.7 mac-

rophage cells with HRGD and observed its inhibitory 

activity on TNF-α production. When LPS-stimulated 

RAW 264.7 cells were treated with HRGD at a concen-

tration of 1 μg/mL, LPS-induced TNF-α production was 

attenuated in a dose-dependent way when cells were 

co-treated with HRGD (p < 0.05) (Table 1). TNF-α is a 

cytokine with diverse effects on different cell types. It is 

a key regulator of inflammatory responses and plays a 

significant role in developing certain inflammatory and 

autoimmune disorders (Jang et al., 2021). 

Gynostemma pentaphyllum (Thunb.) Makino has been 

widely used as an herbal medicine in Asian countries. 

Previous studies have demonstrated that long-term 

treatment with G. pentaphyllum Makino does not in-

duce in vivo toxicity (Wong et al., 2017), and accumu-

lating evidence has suggested the beneficial effects of 

G. pentaphyllum Makino in a wide range of chronic dis-

eases (Attawish et al., 2004; Li et al., 2016). In particu-

lar, the strong reactive oxidative species (ROS) scav-

enging activity of G. pentaphyllum Makino is thought to 

be important for its activity (Megalli et al., 2021). This 

may potentially exhibit anti-inflammatory effects through 

the suppression of inflammatory mediators. The above 

results implied that HRGD can suppress the inflamma-

tory stimulus response by reducing COX-2, PGE2 and 

TNF-α levels. 

 

Conclusion  

 

The primary objective of this study was to explore the 

mechanisms responsible for the anti-inflammatory ef-

fects of HRGD in LPS-induced RAW 264.7 cells. The 

results indicated that HRGD effectively reduced the 

production of NO•, PGE2, and the pro-inflammatory 

cytokine TNF-α, along with the expression of COX-2 

protein in LPS-activated RAW264.7 macrophages. 

These results imply that HRGD should be considered a 

candidate potential for anti-inflammatory agents for 

treating inflammation-related diseases. Further molecu-

lar studies are underway to elucidate the mechanisms 

underlying the anti-inflammatory properties of HRGD. 
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