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INTRODUCTION 

 

Due to growing worries about global climate change, 

above-ground biomass (AGB) assessment has gar-

nered more attention recently, particularly in tropical 

forests. A crucial factor in determining how well a forest 

stores carbon is biomass, which serves as a substitute 

for potential carbon emissions from deforestation or 

conversion to non-forest land use/cover (Mora et al., 

2013). According to Ahern et al. (1998), data from re-

mote sensing is the most effective means of estimating 

biomass over a wide area with the help of small-scale 

field measurements. It has also been demonstrated that 

it is an important method for monitoring international 

carbon emissions protocols, such as the Kyoto Proto-

col. However, spatial AGB has been estimated using 

satellite remote sensing techniques except for the high-

est levels of biomass (over 400 t ha-1), which is difficult 

to quantify due to the saturation of remote sensing sig-

nals at both optical and microwave sensors.  Previous 

research work has indicated that the intermediate bio-

mass levels (about 250 t ha-1) have been studied effec-

tively using remote sensing data (Madugundu et al., 

2008; Thumaty et al., 2015). FAO conducted a bench-

mark study on forest mapping to estimate biomass and 

forest change in Tropical forests (Brown, 1997), which 

was later extended to study biomass in three conti-

nents by Saatchi et al. (2011). Forest biomass has also 

been estimated using airborne SAR tomography 

(Ramachandran et al., 2023). LiDAR – Light Detection 

and Ranging system has demonstrated an effective 

way of extracting forest height as it works on the princi-

ple of active remote sensing and relies upon a laser 

scanning approach (Lefsky and Harding et al., 1999; 

Lefsky et al., 2005; Lefsky and Harding et al., 2005; 

Chen and Wang et al., 2023; Lu and Jiang, 2024). Ac-

curate estimations of forest biomass across many bi-

omes have been made possible by this system while 
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exploiting the comprehensive knowledge of the vertical 

structure of forest vegetation (Nelson et al., 2009). The 

first spaceborne LiDAR sensor intended for continuous 

worldwide Earth observation was the Geoscience Laser 

Altimeter System (GLAS), which was installed on the 

Ice, Cloud, and Land Elevation Satellite (ICESat) 

(Zwally et al., 2002). This full waveform spaceborne 

LiDAR system offers a large footprint for adequate in-

formation to determine forest height. The large-scale 

mapping of forest heights has been made possible by 

the comparatively large footprint and spatial coverage 

of the GLAS data (Lefsky and Harding et al., 2005). The 

system used a 1064 nm laser wavelength and collected 

full-waveform altimetry data between 2003 and 2009. 

The LiDAR footprints stretch out along the track by 172 

meters and have an estimated diameter of 70 meters 

(Schutz et al., 2005). Several characteristics related to 

forest properties have been retrieved from full wave-

form GLAS data to measure forest height and AGB. 

Lefsky et al. (2005) presented a technique to calculate 

the maximum canopy height using the terrain index—

which is obtained from an extra data set—and wave-

form extent, which refers to the interval between signal 

start and signal wrap-up. This approach was further 

enhanced with a leading-trailing edge technique to elim-

inate the need for an extra data set (Lefsky et al., 2007, 

Lefsky, 2009 and 2010). To estimate forest biomass, 

spectral information from optical and microwave remote 

sensing pictures and vertical forest structures from 

GLAS data have recently been integrated (Fararoda et 

al., 2021; Chen and Sun et al., 2023). In one of the first 

studies using GLAS-LiDAR data, Boudreau et al. (2008) 

estimated AGB for forests across Quebec, Canada. 

The study exploits an innovative approach to integrate 

spaceborne LiDAR, Landsat ETM+ land cover, SRTM 

digital elevation model (DEM), and ground inventory 

plots. Using a regression tree-based model and obser-

vations from MODIS imagery and GLAS points, Baccini 

et al. (2008) created the very first map of AGB in tropi-

cal Africa region, in which approximately 82% of the 

variance in AGB was explained by the model with an 

RMSE of 50.5 tons per hectare. They also generated 

carbon dioxide emissions and density maps for tropical 

deforestation (Baccini, et al., 2012). Another study by 

Simard et al. (2011) also estimated worldwide forest 

height at 1km spatial resolution grid. The study used 

waveform parameters from GLAS data in combination 

with climate parameters, SRTM-DEM data, and MODIS 

tree cover. It demonstrated adequate scopes for future 

research by using a regression tree model and obtained 

a mean RMSE of 4.4m. Sun et al. (2011) used a syner-

gy of radar imagery and waveform LiDAR to estimate 

forest biomass accurately. Michard et al. (2012) studied 

AGB over densely forested landscapes and showed 

that the AGB can be precisely and rather accurately 

estimated using a combination of GLAS LiDAR data, 

terrain-corrected L-band radar data, and field measure-

ments. Although attempts have been made to collect 

vertical details of structures from GLAS data to create 

global forest height and AGB maps, their regional valid-

ity is still debatable. In particular, validation sampling 

across the nation was haphazard, which is very true in 

the case of Indian forests (Simard et al., 2011; Go-

paraju et al., 2021). Studies on Indian forests include 

Reddy & Jha et al. (2015), Reddy & Rajashekar et al. 

(2015), Reddy et al. (2016), Yadav et al. (2021), Pasha 

et al. (2023) and others. 

The present study focused on the spatial assessment 

of AGB by creating a forest height map using a region-

alized model, which also combines optical and micro-

wave GLAS data with field observations of climatic and 

elevation data. The objective was to estimate the spa-

tial biomass above ground utilizing height information 

derived from GLAS data and a random forest approach 

based on K-Nearest Neighbours (Tomppo et al., 2004). 

The main goals were : (1) estimate canopy height using 

a multi-linear regression model with field-based meas-

urements and GLAS-derived parameters; (2) establish 

the relationship to derive canopy heights for all GLAS-

covered areas; (3) application of RF-based k-NN impu-

tation to derive a spatial estimate of canopy height over 

Madhya Pradesh, while considering other parameters 

derived by using remote sensing data (climate varia-

bles, optical, and microwave data); and (4) validate the 

results by using field-derived relationships and finally 

obtain the spatial height map to above-ground biomass. 

 

MATERIALS AND METHODS 

 

Study area 

One of India's states, Madhya Pradesh,  is the second-

biggest Indian state by area, covering 308245 km² or 

9.38% of the country's total land area. It is the sixth 

most populous state, with more than 72 million people. 

The state is located between latitudes 21° 17'N and 26° 

52'N, and longitudes 74° 08'E and 82° 49'E. The annu-

al rainfall decreases from southeast and east to north-

west and west, ranging from 800 mm to around 1800 

mm. The average annual temperature ranges between 

22.5°C and 25°C. It borders the states of Rajasthan in 

the northwest, Maharashtra in the south, Gujarat in the 

west, Uttar Pradesh in the northeast, and Chhattisgarh 

in the east (Fig. 1). The 17th cycle of forest cover map-

ping assessed all lands exceeding 1 hectare in the area 

with a tree canopy density greater than 10 percent. 

This comprehensive evaluation included traditional for-

ests, trees in orchards, bamboo groves, palm stands, 

and other similar vegetation types located on recorded 

forests and other government lands, as well as private, 

community, or institutional properties. According to the 

assessment, out of the total forest cover of approxi-

mately 77,493 km² (constituting 25.14 percent of the 
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state's total land area), 6,665 km² was classified as 

dense forest, 34,209 km² as moderately dense forest, 

and 36,619 km² as open forest cover (ISFR, 2021). 

Further, The methodology used in the present research 

has also been rigorously validated against new data 

obtained from ICESAT-2 (October 2018 onwards), 

GEDI (March 2019 onwards), and other spaceborne 

LiDAR sensors by numerous researchers globally, in-

cluding Thumaty et al. (2015); Shufan and Chun, 

(2022); Rodda et al., (2023); Mora et al., (2013); Lu and 

Jiang, (2024); Huang et al., (2023); Fararoda et al., 

(2021); Chen and Wang et al., (2024), among others. A 

precise validation detail is available in the supplemen-

tary file (Table ST1 and Fig. SF1). These studies have 

collectively reinforced the robustness and accuracy of 

the methodology, establishing its reliability for diverse 

geospatial and ecological applications. The subsequent 

section provides a detailed, step-by-step explanation of 

the working methodology, offering a comprehensive 

overview of the processes, techniques, and analytical 

approaches employed. This systematic breakdown en-

sures clarity and facilitates a deeper understanding of 

the methodology’s structure, enabling its application 

across various research and practical contexts. 

 

Field sample 

The majority of the forests in the research area (51%) 

were dry and mixed deciduous forests, followed by sal 

forests (9%), teak (30%), and scrub, thorn, and grass-

land (9%) (ISFR, 2019). Across the study region, the 

researcher carried out a comprehensive field inventory 

of individual trees during 2009–2010, involving detailed 

measurements taken at the plot level in the field (Fig. 2; 

Dadhwal et al. 2012).To estimate the spatial AGB for 

the forests in MP, a total of 370 plots in the field were 

selected. At every 0.1 ha plot, the diameter at breast 

height (DBH > 5 cm) was measured. Sixty out of 370 

plots are selected and positioned beneath the GLAS 

footprints to estimate the spatial height map in this 

study. The basal area and tree height were estimated 

at each plot. Lorey's average height was determined by 

applying these two factors (Rajab et al. 2017). The 

mean height of comparable trees weighted by their 

basal area is expressed as Lorey's mean height (Hz) 

(Lorey,1878). 

                                                        Eq. 1 

 

Where H is the height of the matching tree in each plot 

and g is the basal area of each tree in the area of the 

plot. The largest trees in a stand are given more weight 

by the basal area weighting of tree heights, which also 

typically indicates the height of the tallest tree in the 

stand. After determining Lorey's mean height and 

ground AGB for 370 plots, spatial estimation of AGB 

was generated. Using the species-specific allometric 

equation, the AGB was calculated for each tree. 

 

GLAS data 

The data obtained by the Geoscience Laser Altimeter 

System (GLAS) on board ICESat was used to generate 

spaceborne LiDAR top canopy height in Madhya Pra-

desh State. To optimize coverage of ICESat, the GLAS 

mission began operating with a 91-day repeat orbit 

(with one daily sub-cycle) at specific periods of the year 

(Abdalati et al., 2010). Within its ellipsoidal footprints, 

GLAS waveform data at intervals of about 170 meters 

provide information on vegetation cover and land ele-

vation. Ballhorn et al., 2011 successfully demonstrated 

the use of GLAS data in topography and Forest Bio-

mass estimates. There are 15 different level-1 and lev-

el-2 deliverables (GLA01 to GLA15) that contain the 

GLAS products. This study utilized release-33 of GLAS 

  

 

  

 
  
Study area – red dots represent the 
ground sample plots and grey circles 
represents GLAS footprints across 
Madhya Pradesh in four different 
vegetation types. 

Fig. 1. Study area – State of Madhya Pradesh 
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laser altimetry data obtained from the National Snow 

and Ice Data Center. It was collected by the satellite 

from March 2009 to October 2009. A total of 1245 

GLAS data (GLA01 and GLA14) footprints have been 

used to cover the representative forest area of Madhya 

Pradesh state. This GLAS level-2 land surface altimetry 

(GLA14) product, which comprises waveform parame-

ters such as the signal starting and echo energy peaks, 

as well as footprint localization (Zwally et al., 2002), is 

considered to be best suitable for the present study, 

while its footprints were assumed a circular diameter of 

approximately 70 meters. Moreover, GLA14 offers the 

footprints' geolocation and depicts the surface charac-

teristics, among others. Record number and shot num-

ber are used to merge these two datasets, and then 

normalization, smoothing, and Gaussian fit to the wave-

forms are applied to extract variables (Harding et al., 

2001; Lefsky et al., 2005; Lefsky et al., 2007; Lee et al., 

2011). Waveform start, waveform end, waveform ex-

tent, number of Gaussian fits, and distance from the 

ground return peak to the waveform centroid i.e., 

Height of Median Energy - HOME, or H25, H50, H75, 

Fig. 2. Measurement of tree girth and height (Field survey) – State of Madhya Pradesh 
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and H100, were the parameters that were extracted 

from the waveform. The height quartiles at each per-

centage point where return energy is focused are 

marked by 25, 50, 75, and 100 numerals. The flowchart 

of the methodology to extract the above parameters is 

given (Fig. 3). 

 

Ancillary satellite data analysis 

Remote sensing 

For the present study, a set of selected satellite instru-

ment data, both active and passive, have been used. 

Landcover data was obtained from the Indian Remote 

Sensing (IRS) – P6 Advance Wide Field Sensor 

(AWiFS) instrument, which can capture image data in 

56 m spatial resolution with 4 multispectral bands. 

From this data, the Normalized Difference Vegetation 

Index (NDVI) and Normalized Difference Moisture In-

dex (NDMI)) were extracted to understand vegetation 

cover in the region. Further, Phased Array type L – 

band Synthetic Aperture Radar data from Advance 

Land Observing Satellite (ALOS PALSAR) was also 

utilized with limited capacity to understand the 

backscatter coefficient, and subsequently vegetation 

information in the study area. From this dataset, a ratio 

between HH/HV, and HV/HH polarization was obtained 

for forest types classification. 

 

Climate data 

To understand the climate regime and cause-and-effect 

relationship in the study region, several climatic param-

eters were studied. Ancillary gridded data for this pur-

pose was obtained from WorldClim – Global Climate 

Data with a spatial resolution of about 1 km2 (Fick and 

Hijmans, 2017). To understand the biological process 

and development stage of forest cover, the monthly 

rainfall and temperature values are used to calculate 

the bioclimatic variables. Both seasonality and yearly 

trends were studied from these variables. Out of 19 

bioclimatic variables, the following seven variables 

were utilized as hereunder (Fig. 4): 

Variable -1: Annual Mean Temperature (⁰C) 

Variable -2: Mean Diurnal Range (⁰C), i.e. (mean of 

monthly (max temp - min temp)) 

Variable -3: Iso-thermality (Variable 2/Variable 7) (*100) 

Variable -4: Temperature Seasonality (standard devia-

tion *100) 

Variable -7: Temperature Annual Range (⁰C) 

Variable -12: Annual Precipitation (mm) 

Variable -15: Precipitation Seasonality (coefficient of 

variation) (mm) 

In a geographic information system environment, all of 

the variables mentioned above were resampled to 56 m 

using the nearest neighbour resampling technique. The 

forest canopy height, which relates to bioclimatic histor-

ical records, spectral bands and vegetation indices, 

elevation, and slope, was extracted by combining all 

ancillary variables along with GLAS data. 

 

Downscaling up to the study area 

The study uses a two-step approach to produce spatial 

AGB estimates across the territory of Madhya Pradesh, 

India. Firstly, it estimates the spatial tree height map, 

and then, in the second step, it converts the spatial tree 

height map into AGB by utilizing a statistical relation-

ship with the samples that were collected from field 

observations. 

 

Spatial mapping of tree heights – Random forest 

and K-NN algorithms 

To generate the spatial height of trees, a relationship 

was established between GLAS footprints and selected 

60 sampled plots. The flow chart of the methodology is 

given in Fig. 5. With a multiple linear regression model 

(eq.1), Lorey's height, as observed from field samples, 

and GLAS-derived parameters were utilized to get the 

final output of a spatial map for tree height (Alekhya et 

al. 2015). 

Lorey’s height (m) = 1.214 + (-0.204*HOME) + 

(0.117*H25) + (1.018*H75)                                     Eq. 2                                    

Using the K-Nearest Neighbour method, Lorey’s height 

at each GLAS footprint as shown in Fig. 1 was then 

used to train a random forest (RF) model along with all 

ancillary datasets. The procedure to carry out this mod-

eling was done using the rattle package in the R pro-

gram (Fig. 6 a & b). Using random subsampling within 

the provided dataset, the RF data mining technique 

allows the deployment of several decision trees 

(Breiman, 2001; Liaw and Wiener, 2002). Additionally, 

the RF was incorporated into R software (The R Core 

Team, 2015) using the "yaImpute" and rattle package 

(Crookston and Finley, 2008). Following variable as-

signment and processing, the model was then applied 

in a spatial domain using 'yaImpute,' which uses k-

nearest Neighbour imputation. With this approach, the 

best determination of the correlation coefficient was 

obtained along with the estimated tree canopy height 

(m) in each 56 m x 56 m grid in Madhya Pradesh For-

est zones (Fig. 7). 

 

K-fold cross-validation 

To assess the accuracy of machine learning methods 

on a small sample of data, resampling is done using a 

process called cross-validation. Training and test sets 

of data are separated in a model for machine learning, 

and the training set uses the test set to evaluate the 

outcome. An individual data sample's desired number 

of groups to be divided into is indicated by the proce-

dure's sole parameter, k. Using this method, the set of 

observations is divided into k folds, or groups, at ran-

dom that are roughly similar in size. The algorithm fits 

http://www.dlyj.ac.cn/EN/10.11821/yj2008060015
http://www.dlyj.ac.cn/EN/10.11821/yj2008060015
http://www.dlyj.ac.cn/EN/10.11821/yj2008060015
http://www.dlyj.ac.cn/EN/10.11821/yj2008060015
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Fig. 3. Methodology for extracting the GLAS waveform parameters – State of Madhya Pradesh 

Fig. 4. Bio-Climatic variables – State of Madhya Pradesh. Source: Prepared by Authors from WorldClim database (Fick 
and Hijmans, 2017) – Fig. (a) Annual Mean Temperature (⁰C); Figure (b) Mean Diurnal Range (⁰C); Figure (c) Temper-
ature Annual Range (⁰C); and Figure (d) Temperature seasonality 
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the remaining k − 1 folds, using the initial fold as a vali-

dation set. The model's reference may correspond to a 

specific number for k, such as k=10, which becomes a 

10-fold cross-validation, instead of k. When the model 

is used to generate predictions on data that was not 

used for training, it needs a small sample size to esti-

mate how it should perform generally (Lu et al., 2012). 

It is widely used because, when compared to other 

techniques, such as a simple train/test split, it usually 

produces a less biased or optimistic forecast of model 

performance and is simple to comprehend. In the pre-

sent study, the model was validated using the above 

method, and the model's RMSE was computed for the 

observed and predicted tree heights in a K-fold cross-

validation (k=10). RMSE can be written as: 

                            Eq.3 

Where yi is the expected Lorey's height at site "i," and 

xi is the measured Lorey's height at plot "i," and n is the 

number of plots (i=1, 2..., n). Moreover, Fig. 8 shows 

that the distribution, scatter plots, and their respective 

RMSE errors in estimates between observed and 

GLAS-derived AGB (t ha-1) across four forest types, 

i.e., dry deciduous (DD), moist deciduous (DM), Sal 

and Teak in the state of Madhya Pradesh. 

 

Spatial biomass estimation 

Using established relationships between Lorey's pre-

dicted canopy height and field observed biomass, spa-

tial biomass was calculated from spatial measures of 

tree height. Lorey's estimated tree height from GLAS 

and observed AGB were compared using a power re-

gression model over 60 field measurements in 0.1 ha 

for every forest type (Table 1). The equations were 

then utilized to calculate the spatial AGB of forests in 

Madhya Pradesh. Table shows a strong relationship 

exists among the four classified forest types i.e., dry 

deciduous (DD), moist deciduous (DM), Sal, and Teak. 

The coefficient of determination ranges from 0.62 to 

Fig. 5. Flow chart of spatial tree height map preparation – 

State of Madhya Pradesh 

Fig. 6. (a). Relative importance of predictor variables for tree heights estimation using decision tree approach and RF 

algorithm; (b) Correlation coefficient between observed versus predicted tree height using RF algorithm 

A B 
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0.71 with a 95% confidence interval. Moreover, the final 

estimates of AGB derived from GLAS data were pre-

sented in Fig. 9, along with the normalized difference 

vegetation index (NDVI) generated from AWiFS data.   

 

RESULTS AND DISCUSSION 

 

The spatial height of trees was measured using two 

alternative models, i.e., the multiple linear regression 

model and a random forest using k-NN imputation 

(section 2.5.1). Furthermore, the spatial estimation of 

forest cover biomass was estimated based on the cor-

relations between Lorey's predicted height of the cano-

py and field observed biomass. It shows that the R2 

between the measured (Lorey’s height) and observed 

(GLAS derived) height of forest cover was 0.74 with a 

95% confidence interval (Alekhya et al. 2015). Thumaty 

et al. (2015) by using ALOS data showed that the aver-

age AGB for Madhya Pradesh has to be 58 t/ha, while 

the model demonstrated that the observed versus pre-

dicted AGB had a strong correlation (R² = 0.7), indicat-

ing the reliability of the spatial analysis. Further, supple-

mentary datasets and GLAS footprints are trained in a 

random forest model for spatial assessment of tree 

height. It demonstrates that the BIO2 climatic parame-

ter, spectral bands, indices of vegetation, height fac-

tors, and ALOS PALSAR L-band backscatter coefficient 

(HH, HV) have a significant relationship and are ac-

countable for the predictor value (tree height). On the 

other hand, variables also contributed to the predictor 

value in the RF model, as is evident in Fig. 6 (a&b). 

Using these variables, the RF model developed a spa-

tial tree height map with a height ranging from 2.16 m 

to 17.63 m while the RMSE of ± 2.57 m was found in 

the analysis ( Fig. 7). The correlation study was per-

formed between observed Lorey's heights from field 

data and anticipated Lorey's heights from GLAS data, 

with R2=0.7 (Fig. 8). Finally, the predicted tree height 

map at 56 m resolution was compared to the available 

worldwide forest height map at 1 km resolution (Simard 

et al., 2011). The GLAS dataset classifies tree heights 

into three categories: <5m, 5-10m, and >10m. 

Fig. 9 depicts the spatial distribution of AGB including 

60 field survey plots, which are utilized to estimate spa-

tial biomass map alongside an estimated tree height 

map based on GLAS footprints (see section 2.6). Most 

of the AGB plots were observed in dry deciduous forest 

regions followed by teak, moist deciduous, and Sal For-

est areas (Table 1). The plot-level mean AGB of teak, 

dry deciduous, Sal, and moist deciduous forests was 

estimated as 58.52, 43.70, 43.67, and 40.11 ton ha-1 

respectively. Further, the regression model was esti-

Fig. 7. Spatial map of tree height (estimated) derived from GLAS data using RF algorithm – State of Madhya Pradesh 
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mated between Lorey’s height (observed) and AGB 

(estimated) on various vegetation types for all 60 plots 

(Table 1). The analysis shows that Sal woods had the 

highest association between GLAS-derived Lorey's tree 

height and AGB with R2 = 0.71 and p<0.01, which is 

followed by moist deciduous forests with R2 = 0.68 and 

p<0.01, Teak Forest with R2 = 0.65 and p<0.01, and 

dry deciduous forests with R2 = 0.62 and p<0.01, re-

spectively. The geographical estimates of AGB from 

the GLAS datasets using the equations (Table 1) 

ranged from 8.56 to 252.04 tons per hectare across 

different vegetation types (Fig. 9). The plot level AGB 

estimated for the research area's forest types ranged 

from 3.17 to 198.41 tons per hectare, while GLAS data 

estimated AGB ranged from 8.56 to 252.04 tons per 

hectare. The average estimated AGB from GLAS for 

four vegetation types has to be 57.10 tons per hectare 

with RMSE ±14.65 tons per hectare for Sal Forest, 

42.73 tons per hectare with RMSE ±24.46 tons per 

hectare for Teak, 41.56 tons per hectare with RMSE 

±18.06 tons per hectare for moist deciduous, and 35.17 

tons per hectare with RMSE ±19.73 tons per hectare 

for dry deciduous, respectively. Additionally, the esti-

mated AGB based on GLAS data together with ancil-

lary variables and the estimated field biomass for differ-

ent forest types across the study region are fairly simi-

lar to each other and based on the F test (F=1.42 and p

-value = 0.68), were not statistically different. Using a 

decision-tree-based technique and an RF algorithm, 

the study region's total AGB stock was assessed to be 

315.77 metric tons, with a RMSE of ± 19.22 tons per 

hectare, while it ranged from 238.88 to 392.66 metric 

tons. One notable study on the region found 367.4 met-

ric tons of AGB for Madhya Pradesh's deciduous 

woods using ALOS-PALSAR L-band data from 2010 

(Thumaty et al., 2015). Chaturvedi et al. (2011) estimat-

ed that the carbon stock in India's tropical dry forest 

ranged between 15.6 and 151 tons per hectare. 

Salunkhe et al. (2014) investigated above-ground bio-

mass estimation exclusively in selected plots or districts 

in Madhya Pradesh. The average above-ground bio-

mass of dry deciduous and mixed deciduous forests 

across all locations was 31.8 and 20.7 tons per hec-

tare, respectively. Huang et al. (2023) compared six 

models using machine learning technique in Yunnan–

Guizhou Plateau in southwest China. The result of this 

study shows that the estimate for coniferous was better 

than that of mixed forest. For coniferous forests, the R² 

value was 0.63 with an RMSE of 43.23 Mg/ha, while for 

mixed forests, the R² was 0.56 with an RMSE of 47.79 

Mg/ha, reflecting moderate predictive accuracy for both 

forest types. In a recent study, Nandy et al. (2021) 

adopted a similar approach to estimate AGB in Doon 

valley, Uttarakhand by using ICESat -2 data. The study 

revealed a strong correlation between field-measured 

canopy height and ICESat-2 data (R² = 0.89, RMSE = 

1.11 m). Predicted canopy heights ranged from 15.32 

to 31.02 m. The Random Forest model demonstrated 

Fig. 8. Distribution and Scatter plots between observed and GLAS derived AGB (t ha-1) across four vegetation types (Dry 

Deciduous (DD), Moist Deciduous (MD), Sal, Teak and their respective RMSE – State of Madhya Pradesh 

Vegetation type No. of plots Equation R2 RMSE p-value 

Dry Deciduous 27 Y = 3.6192x1.231 0.62 19.73 <0.01 

Moist Deciduous 13 Y = 3.6018x1.2791 0.68 18.06 <0.01 

Sal 3 Y = 2.1135x1.6677 0.71 14.65 <0.01 

Teak 17 Y = 2.0786x1.5783 0.65 24.46 <0.01 

Table 1. Regression model estimates between Lorey’s height (observed) and AGB (estimated) on various vegetation 
types 
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high accuracy (R² = 0.84, RMSE = 1.15 m). The forest 

AGB model, integrating canopy height and spectral 

data, achieved an R² of 0.83 and an RMSE of 19.98 

Mg/ha, with AGB predictions ranging from 234.91 to 

547.56 Mg/ha and a mean of 426.41 Mg/ha. Nonethe-

less, the estimated above-ground biomass from GLAS 

data in the present study was 57.10 tons per hectare 

(R² = 0.62, RMSE = ±19.73) for the dry deciduous for-

est of MP. This study integrates ICESat-1-derived for-

est canopy height with spectral variables to enhance 

AGB predictions, aligning with the primary science ob-

jective of the ICESat mission to estimate vegetation 

canopy height for biomass assessment. Previous and 

current research, such as Rodda et al. (2023), Mora et 

al. (2013), Huang et al. (2023), Fararoda et al. (2021), 

Li et al. (2021), Urbazaev et al. (2018), Nandy et al., 

(2021), and among others, supports the effectiveness 

of multi-sensor integration with machine learning algo-

rithms in improving forest biomass estimates, particu-

larly forest structure, with higher accuracy than tradi-

tional field inventory approaches. 

 

Conclusion 

 

In this present study, the effective measurement of for-

est canopy height and the estimation of above-ground 

biomass (AGB) were achieved by utilising spaceborne 

LiDAR, specifically the Geoscience Laser Altimeter 

System (GLAS). The study focused on the vast ex-

panse of the State of Madhya Pradesh, situated in the 

Central Indian Forests region. The integration of data 

from various sources, including LIDAR (ICESat/GLAS), 

Radar (ALOS-PALSAR), Optical (IRS-P6 AWIFS), and 

digital elevation model (SRTM), along with ancillary 

climate variables and field-based forest inventory, facili-

tated a comprehensive analysis. The Lorey’s height 

method, employed in this research, established a rela-

tionship with GLAS-derived AGB, further combined with 

climatic factors, elevations, and land cover to map the 

spatial extent of forest areas in the studied region. The 

development of a spatial height map through a K-

Nearest Neighbour-based random forest approach 

demonstrated variability in estimated forest canopy 

height, ranging from 2.16 m to 17.63 m, with a root 

mean square error (RMSE) of ± 2.57 m. Additionally, 

spatial AGB was estimated using height-biomass mod-

els for different forest types. The findings revealed that 

the total AGB over forests in Madhya Pradesh was esti-

mated to be 315.77 Mt with an RMSE of ±19.22 t ha-1. 

The relative error across different forest types ranged 

from 33% to 45%. The study highlighted the signifi-

cance of accurate AGB assessment, especially in the 

context of global climate change concerns. Forest bio-

mass, a key factor in carbon storage, is crucial in miti-

gating potential carbon emissions from deforestation or 

land-use changes. The methodology employed in this 

research, integrating spaceborne LiDAR with ancillary 

data from various sensors, proved effective in estimat-

ing forest canopy height and AGB over a large and di-

verse landscape. The accuracy of the estimates was 

further validated through the establishment of height-

biomass models and cross-validation techniques. The 

research contributes to the broader understanding of 

the applicability of spaceborne LiDAR in assessing for-

est structure and biomass, with implications for global 

efforts in carbon monitoring and sustainable forest 

management. The spatially explicit maps generated 

through this study provide valuable information for poli-

cymakers, conservationists, and researchers involved 

in forestry and environmental management. Therefore, 

future research should include a comparative analysis 

using forest biomass and canopy cover estimates.  

Fig. 9. Estimated spatial map of above ground biomass (AGB) and NDVI derived from GLAS and AWIFS data respective 

– State of Madhya Pradesh 
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