
 

  

Effect of antibiotics on the expression of pyocyanin synthetic genes in 

Pseudomonas aeruginosa isolated from different clinical sources of a 

few hospitals in Mosul, Iraq 

Rafal Mhaide Younis  

University of Mosul, College of Education for Girls, Department of Biology, Mosul- Iraq 

Rayan Mazin Faisal* 

University of Mosul, College of Science, Department of Biology, Mosul- Iraq 

*Corresponding author. E-mail : rayanmazin@uomosul.edu.iq  

Article Info 

https://doi.org/10.31018/

jans.v16i2.5590  
Received: March 28, 2024 

Revised: May 30, 2024 

Accepted: June 05, 2024 

 This work is licensed under Attribution-Non Commercial 4.0 International (CC BY-NC 4.0). © : Author (s). Publishing rights @ ANSF.    

812 - 819 
ISSN : 0974-9411 (Print), 2231-5209 (Online) 

             journals.ansfoundation.org   

Research Article 

INTRODUCTION 

Pseudomonas aeruginosa is a widespread microorgan-

ism isolated from various environments, including wa-

ter, soil, plants, animals and humans (Batrich et al., 

2019; Mesquita et al., 2016). This is a well-known caus-

ative agent of multiple nosocomial and life-threatening 

infections such as cystic fibrosis, burn and wound infec-

tions, urinary tract infections (UTIs), and pulmonary 

infections. Infection sources are usually from medical 

equipment, such as inhalers, dialysis equipment, respi-

rators, anesthesiology equipment, vaporizers, and toi-

lets and sinks (Azam and Khan, 2019). It is considered 

a crucial clinical agent, as this bacterium is an oppor-

tunistic pathogen that can trigger a wide range of acute 

and chronic human injuries and diseases (Weiner et al., 

2016). P. aeruginosa has many virulence factors that 

aid in causing both acute and chronic disorders that 

lead to inflammation, particularly when they are trans-

mitted from the external environment into the host body 

or from one location to another in the same host 

(Shaan and Robert, 2013). These factors could be as-

sociated with cells such as flagella, pili, and lipopoly-

saccharide (LPS). The secretion factors found in P. 

aeruginosa are responsible for secreting a number of 

extra-cellular enzymes and some cellular toxins which 

play a role in tissue damage, resistance to phagocyto-

sis and the production of many pigments such as pyo-

cyanin (Laxmi and Sarita, 2014). Pyocyanin is a redox-

active phenazine blue pigment that is excreted by 90–

95% of P. aeruginosa strains (Saleem et al.,2021). 

Phenazines provide a large group of nitrogen-

containing heterocyclic compounds, regarded as elec-

tron shuttles to substitute terminal acceptors and revise 
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redox states in bacterial cells (Al-Shamary, 2018). 

Phenazines react with molecular oxygen to produce 

reactive oxygen species (ROS), such as superoxide 

(O2-1), hydrogen peroxide (H2O2), and hydroxyl radical 

(HO∙) (Montelongo‐Martínez et al., 2022). Pyocyanin 

has a valuable implication on biofilm formation and iron 

uptake in low oxygen conditions and governs the genes 

involved in efflux pumps, which raise the metal’s re-

sistance, especially silver (Abdelaziz et al., 2023). Pyo-

cyanin is made by two surplus operons, phzA1-G1 

(phzA1) and phzA2-G2 (phzA2), which are similar to 

98% in their sequence of nucleotide, along with the 

genes phzH, phzM (phenazine-specific methyl transfer-

ase) and phzS (flavin-dependent monooxygenase) 

(Hirakawa et al., 2021). Both phzM and phzS genes 

shroud the phzA1 operon, as the phzA2 operon is 

shrouded by qscR, which encodes for the transcription 

factor of orphan quorum-sensing and gene coding to 

hypothetical protein (Cui et al., 2016).  

Chorismic acid, which is synthesized from shikimic acid 

via the aro pathway, is the precursor molecule in the 

biosynthetic pathway of pyocyanin (Hirakawa et al., 

2021). Chorismic acid is converted to phenazine-1-

carboxylic acid by the PhzA-G proteins and then to 5-

methyl phenazine1-carboxylic acid betaine (MPCBA) 

via PhzM. Subsequently, MPCBA is converted to pyo-

cyanin through hydroxylation catalyzed by PhzS (Dong 

et al., 2020; Abdelaziz et al., 2023). The three quorum‐

sensing systems (Las, Rhl, and Pqs) are in charge of 

the positive regulation of pyocyanin biosynthesis at the 

transcriptional level (Mukherjee et al., 2017; Montelon-

go-Martínez et al., 2022). On another note, RsaL, 

RpoS, and MvaU regulatory proteins are negatively 

regulated in pyocyanin synthesis. The expression of 

phzA1 operon is regulated negatively by RsaL regulato-

ry protein, which binds directly to promoter region of the 

phzA1, while causes activation of the phzA2 operon 

indirectly (He et al., 2019; Fang et al., 2021). The antibi-

otic suitability profile of pathogenic bacteria equips high

-value information to prescribe the most effective antibi-

otic therapy (Hata et al., 2019; Mojsoska et al., 2021). 

Currently, the most effective antibiotics used in the 

treatment of P. aeruginosa infections belong to fluoro-

quinolones, beta-lactams, and the aminoglycosides, 

with polymyxins being used as a late choice for treat-

ment. Studies have noticed that these antibiotics could 

affect the production of several agents that have an 

essential role in establishing pathogenicity in the early 

stages of infection (Su et al., 2010). One of these stud-

ies revealed that sub-inhibitory concentrations of ciprof-

loxacin, meropenem, and tobramycin-induced pyocya-

nin secretion from P. aeruginosa (Alatraktchi et al., 

2020; Mojsoska et al., 2021). 

 Another study confirmed that subinhibitory cefotaxime 

and levofloxacin concentrations promoted pyocyanin 

production in P. aeruginosa, even on plates containing 

higher concentrations of such antibiotics (Zhao et al., 

2022). In contrast, Kumar et al. 2021demonstrated that 

pyocyanin production was inhibited in P. aeruginosa 

treated with cephalosporins: cefepime, ceftazidime, and 

ceftriaxone. Studies performed using microarray, prote-

omic and promoter-reporter fusion library technologies 

demonstrated that subinhibitory concertation of antibiot-

ics can transcriptionally modulate a large number of 

genes (Davies et al., 2006; Skindersoe et al., 2008). 

However, no previous work has shown how these anti-

biotics affect the expression levels of the genes in-

volved in the biosynthetic pathway of pyocyanin, there-

by this study aimed to detect the impacts of different 

antibiotics on the expression of five genes located on 

three different operons that contribute in pyocyanin 

production using qPCR.   

MATERIALS AND METHODS 

Bacterial collection and growth media 

Three hundred and twenty-five clinical specimens were 

collected from different infections and age groups pa-

tients were referred to Ibn-Sinna Hospital, Al-jamhori 

Hospital, Mosul General Hospital, Al-salam Teaching 

Hospital, and Al-Mosul Center for Burns and Plastic 

Surgery from January to May 2023. All specimens were 

cultured in MacConkey agar and incubated at 37˚C for 

24 h. Morphological features of Pseudomonas aeru-

ginosa were observed and pale colonies were trans-

ferred to cetrimide agar. Gram stain was used to deter-

mine the type and arrangement of bacteria. Biochemi-

cal tests (oxidase, catalase and citrate) and API20E 

were used to confirm identification (Winn et al., 2006; 

Reiner, 2010). The isolate that was used in estimating 

the effects of different antibiotics on the expression 

levels of pyocyanin production was identified by 16S 

rRNA sequencing (Khaleel et al., 2023; Abdulrazzaq 

and Faisal, 2022). 

Effect of antibiotics on pyocyanin production  

To study the effect of antibiotics on pyocyanin produc-

tion, four P. aeruginosa isolates (PA1, PA2, PA3 and 

PA4) were inoculated in Luria Bertani broth (LB) at 

37˚C till the optical density reached 0.4-0.6 at 600 nm 

(Aleanizy et al., 2021). After that, 0.1 mL of bacterial 

culture was used to inoculate nine reagent bottles con-

taining 10 mL of LB broth. Each bottle was supplied 

with a different antibiotic at a non-lethal concentration 

as follows: ampicillin (AM 25 µg/mL), chloramphenicol 

(C 30 µg/mL), tetracycline (TE 30 µg/mL), kanamycin 

(K 30 µg/mL), ceftazidime (CAZ 30 µg/mL), ceftriaxone 

(CRO 30 µg/mL), cefotaxime (CTX 30 µg/mL), amox-

iclav (AMC 30 µg/mL), and one as control without anti-

biotic (inoculated with bacteria only). After that, they 

were incubated at 37˚C for (18-20) h under continuous 

shaking (180rpm). The supernatants were collected to 
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with patients' verbal and analytical approval before the 

sample was taken. The study protocol, subject infor-

mation, and consent form were reviewed and approved 

by a local ethics committee according to document 

number 15945 ( 9/1/2023). 

 

Statistical analysis 

All statistical analysis was conducted using the 

GraphPad prism virsion10.  

RESULTS AND DISCUSSION 

Isolation and identification of Psuedomonas  

aeruginosa 

The percentage for isolation of P. aeruginosa on Mac-

Conkey agar and cetrimide agar from all clinical speci-

mens collected was 33.8% (110/325). This ratio was 

distributed as follows: 41.8% (46/110) burns, 37.3% 

(41/110) urine and 20.9 % (23/110) swab and pus. The  

P. aeruginosa colonies on MacConkey agar were small 

and pale due to their disability to ferment lactose. When 

grown on cetrimide agar colonies, yellow-greenish mu-

coid colonies with flat edges and a fruity odor appeared. 

When stained with Gram stain, P. aeruginosa appeared 

as pink single rods. All P. aeruginosa isolates were pos-

itive to (oxidase, catalase, and citrate). API 20E test 

was used to identify P. aeruginosa with (95-99) % iden-

tity. The identification of the PA2 isolate used to study 

pyocyanin gene expression was confirmed by 16S 

rRNA sequencing, then submitted to the National Cen-

ter for Biotechnology Information (NCBI) and was given 

the accession number (PP329816). 

Quantification of pyocyanin production 

Pyocyanin production was quantified in 4 isolates of P. 

aeruginosa treated with antibiotics. Production varied 

between isolates as compared with the control (without 

antibiotic). Differences in pyocyanin concentration for all 

isolates ranged between 0.37 – 5.13 µg/ml. PA2 isolate 

showed a significant difference in pyocyanin production, 

where there was a noticeable increase in pyocyanin 

concentration that reached 5.13 and 4.22 µg/mL with 

cefotaxime (CTX) and ampicillin (AM), respectively. 

quantify the pyocyanin produced. This experiment was 

performed in triplicate on different days for each isolate. 

Pyocyanin concentration was determined by adding 4 

mL of the supernatant to 3 mL of chloroform, mixed 

with a vortex till the color turned green-blue. Samples 

were centrifuged (10,000×g for 10 min) and 3 mL of the 

blue-colored product was conveyed to a tube including 

1 mL of 0.2 M HCl and shaking till the color changed to 

pink. The pink layer was transported to a cuvette to 

measure absorbance at 520 nm. The absorbance was 

multiplied by factor 17.072 to obtain pyocyanin concen-

tration per Essar et al. (1990). 

Expression of pyocyanin genes 

P. aeruginosa (PA2) isolate was selected and grown in 

LB broth at 37°C for (18-20) h with shaking (180 rpm), 

and then 1.5 mL of culture was centrifugated at 4°C 

(8000 rpm for 10 minutes) to harvest cells. RNA was 

extracted using (TransZol Up Plus RNA Kit /TransGen 

Biotech / China) kit. All isolation protocols were carried 

out based on the manufacturer’s instructions without 

further modifications. NanoDrop spectrophotometer 

(BioDrop/UK) was used to estimate concentrations and 

purities of RNA, and values of ~2.0 were regarded as 

indicative of relatively pure RNA. The expression of the 

pyocyanin gene was estimated using a two-step re-

verse transcriptase (RT)-PCR assay. The RNA sam-

ples were purified from remaining DNA contaminants 

and then transcribed into complementary DNA (cDNA) 

using EasyScript
® One-Step gDNA Removal and cDNA 

Synthesis SuperMix/ TransGen Biotech/ China kit. 

Then, cDNAs were amplified with qPCR primers target-

ing the genes (Table 1), and TransStar® Top Green 

qPCR SuperMix (TransStar
® Top Green qPCR Super-

Mix/ TransGen Biotech/ China) kit. Expressions of pyo-

cyanin were analyzed using the Step One Plus real-

time PCR system (Analytikjena/ Germany). The relative 

expression levels of pyocyanin were calculated using 

the 2−∆∆CT method. 

Ethical approval 

The study was conducted following the ethical princi-

ples of the Declaration of Helsinki. It was carried out 

Table 1. Primers used in amplification of pyocyanin-producing genes by Qpcr 

Primer Name  Primer Sequence (5’ – 3’) Reference 

FabD-F 
FabD-R 

GCATCCCTCGCATTCGTCT 
GGCGCTCTTCAGGACCATT 

(Meng et al., 2023) 

PhzA1-F 
PhzA1-R 

AACGGTCAGCGGTACAGGGAAAC 
ACGAACAGGCTGTGCCGCTGTAAC 

(Dong et al., 2020) 

PhzA2-F 
PhzA2-R 

CTGTAACCGTTCGGCCCCCTTCATG 
ATGCGAGAGTACCAACGGTGAAAG 

PhzH-F 
PhzH-R 

GCTCATCGACAATGCCGAACT 
GCGGATCTCGCCGAACATCAG 

PhzM-F 
PhzM-R 

AGCAACCTGGCATTCCACGAG 
TGCAGGATGGCCTTGGTCAATT 

PhzS-F 
PhzS-R 

CCGAAGGCAAGTCGCTGGTGA 
GGTCCCAGTCGGCGAAGAACG 
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While, pyocyanin concentration decreased to 2.81 µg/

mL with tetracycline (TE) and (2.90) µg/mL with kana-

mycin (K), as listed in Table 2.  

Differential expression of pyocyanin related Genes: 

 Psuedomonas aeruginosa releases multiple virulence 

agents that permit occupation and cause host infections 

involving humans. Pyocyanin is an essential virulence 

factor, a phenazine carrying a redox activity that ena-

bles the interaction with oxygen to produce ROS. Pyo-

cyanin synthesis and regulation in P. aeruginosa has 

been extensively studied (Higgins et al., 2018). To eluci-

date the change in the level of expression for pyocyanin 

production genes in P. aeruginosa isolate PA2, the ex-

pression levels of (phzA1, phzA2, PhzH, PhzM and 

PhzS) genes were compared in all antibiotic-treated 

cultures and the control. FabD was used as a house-

keeping gene for normalization. Results showed a vari-

ation in the expression levels of tested genes according 

to different antibiotics tested; however, most of the pyo-

cyanin production genes were up-regulated compared 

to the control. High expression was observed in phzA1, 

phzM and phzS, while lower expression was detected in 

phzH. The difference in gene expression between pyo-

cyanin genes is probably due to the presence of these 

genes on different operons, thereby responding differ-

ently. In addition, it has been shown that antibiotics 

have two different and opposite effects; at high doses, 

they will be lethal, but at low doses, they may stimulate 

genetic variations and alter the expression of virulence 

genes. Continuous exposure of bacteria to antibiotics 

has been suggested to enhance mutations, which may 

affect gene expression in regulatory regions (Couce 

and Blazquez, 2009). It is well-known that subinhibitory 

concentrations (SIC) of many antibiotics can intertwine 

with some important aspects of bacterial physiology, 

involve alterations in the morphology, virulence, ge-

nome stability and cause genetic variations (Davies et 

al., 2006). Antibiotics exhibit a hormesis phenomenon, 

and their antimicrobial activity can impact alternative 

pathways at the molecular level in bacteria (Kumar et 

al., 2021). 

 In cefotaxime (CTX) treatment, generally all genes 

(phzA1, phzA2, phzH, phzM and phzS) were overex-

pressed compared to the housekeeping gene, the fold 

change was (235.56, 88.64, 97, 340.14 and 280.13), 

respectively as shown in Fig. 1.a . This result is in ac-

cordance with what has been achieved by Zhao et al. 

(2022) who showed that cefotaxime (CTX) promotes 

pyocyanin production in P. aeruginosa PA-COP2 and 

elevated pqs QS system when growing in plates con-

taining sub-inhibitory concentrations of cefotaxime 

(CTX) or Levofloxacin. The increasing expression of 

phzM and phzS explains the high concentration of  

pyocyanin observed when quantified by spectropho-

tometer after extraction, as shown in Table 2. In the 

case of ampicillin (AM) treatment, there was a signifi-

cant up-regulation in fold-change expression of all 

genes, especially with phzA1, phzH and phzM (108.38, 

88.64, 79.89), respectively, Fig. 1.b. This result indi-

cates the activation of phzA1 operon and is consistent 

with the increase in pyocyanin concentration, as shown 

in Table 2.  

Gene expression in amoxiclav (AMC) treatment was up

-regulated, particularly in phzA1 and phzM (24.42, 

18.50) fold change, respectively, while (2.05) fold 

change for phzH, as shown in Fig. 1.c. Over expression 

of genes involved in pyocyanin synthesis with cefotax-

ime (CTX), ampicillin (AM) and amoxiclav (AMC) may 

be because the production of pyocyanin is changed as 

a result of the influence of exposure to non-lethal doses 

of antibiotics by the QS system and other regulatory 

genes. Increase in pyocyanin production might be relat-

ed to the inactivation of LasA, an important component 

of the QS system (Aleanizy et al., 2021). Also, the inac-

tivation of LasR led to higher expression in phzA1 (Soto

-Aceves et al., 2021).  On the other hand, RsaL was 

also shown to act as a negative regulatory protein that 

activates phzA1 operon expression (Rampioni et al., 

2009), as the inactivation of RhIR was shown to cause 

a decrease in rsaL expression (Babić et al., 2010). 

Genes related to pyocyanin synthesis fall under the 

influence of mvaT and mvaU genes, which encode two 

transcriptional proteins, MvaT and MvaU. Transcription-

al levels of genes related to pyocyanin synthesis 

(phzM, phzS and phzH) and phzA1 operon are elevat-

ed by the inactivation of mvaU, which leads to the en-

hancement of pyocyanin production (Dong et al., 2020). 

Expression of pyocyanin genes treated with chloram-

phenicol (C) was also up-regulated, phzA1 showed the 

highest effect with (22.78) fold change; meanwhile, 

phzH and phzM genes were up-regulated with (19.02, 

16.33) fold change as shown in Fig. 1.d. There was no 

difference in pyocyanin production of cultures treated 

with chloramphenicol (C) as compared with the control 

(Table 2); however, up-regulation in gene expression 

was still observed. That reflects the important role of 

the enzyme produced by phzM gene in converting 

phenazine-1-carboxylic acid to 5-methylphenazine-1-

Table 2.  Quantification of pyocyanin in Psuedomonas 

aeruginosa (PA2) 

Treatment 
Pyocyanin Concentration 
µg/ml 

Control (without antibiotic) 3.22 

Cefotaxime (CTX) 5.13 

Ampicillin (AM) 4.22 

Chloramphenicol (C) 3.24 

Tetracycline (TE) 2.81 

Kanamycin (K) 2.90 

Ceftazidime (CAZ) 3.61 

Ceftriaxone (CRO) 3.31 

Amoxiclav (AMC) 3.98 
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carboxylic acid betaine, which is later converted to pyo-

cyanin by phzS.  

In ceftazidime (CAZ) and ceftriaxone (CRO) treat-

ments, phzA1 gene documented less expression levels 

compared to previous treatments with (7.56, and 7.36) 

fold change, respectively. High expression levels in 

ceftriaxone (CRO) treatment were detected in phzM 

with (13.26) fold change, while in ceftazidime (CAZ) 

treatment, both phzM and phzS showed (22.31) fold 

change as in Fig. (1. e and f). The present results con-

tradict what has been previously detected by Kumar et 

al. (2021), who found that both ceftazidime (CAZ) and 

ceftriaxone (CRO) at sub-inhibitory concentrations sup-

press pyocyanin production in P. aeruginosa PAO1. 

They documented that these cephalosporins interact 

genetically with the pathway related to pyocyanin syn-

thesis.     

Treatment of kanamycin (K) showed upregulation in 

phzS (6.14) fold change and a slight rise in gene ex-

pression for phzA1, phzM with (2.77, 2.41) fold change, 

Fig. 1.  Effect of antibiotics on the expression levels of genes involved in pyocyanin production (phzA1, phzA2, phzH, 

phzM, phzS) 

CTX 

a) 

AM 

AMC C 

CAZ CRO 

K 
TE 

b) 

c) d) 

e) f) 

g) h) 
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rate operons involved in pyocyanin synthesis via qPCR 

experiments indicated that using different antibiotics at 

non-lethal concentrations stimulated the production of 

pyocyanin in P. aeruginosa, by inducing the expression 

of five major genes related to pyocyanin synthesis. The 

results showed that different genes were induced differ-

entially according to the operon they were located on 

the influence of antibiotics at sub-inhibitory concentra-

tions was previously shown to affect quorum system 

components, regulatory genes (mvaU and mvaT) and 

RsmA posttranscriptional regulatory system, which in 

turn regulate the production of pyocyanin. More care 

should be taken when administering antibiotics to treat 

infections caused by P. aeruginosa, as the use of anti-

biotics that the bacteria resists may cause up-

regulation of virulence factors and, therefore, help 

spread the pathogen, especially when taken in sub-

lethal concentrations.   
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