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INTRODUCTION 

Bacterial infections have become a major healthcare 

challenge owing to the rise and dissemination of multi-

drug-resistant bacteria. Over the last few decades, Pro-

teus infections have received special attention due to 

the emergence of species resistant to various antimi-

crobial agents, particularly β-lactams. According to the 

World Health Organization (Jun Kwon et al., 2022; 

Vasconcelos et al., 2018), antimicrobial drug abuse is a 

universal challenge. 

After Escherichia coli and Klebsiella pneumoniae, Pro-

teus isolates are the third most frequent cause of uri-

nary tract infections (UTIs). It mainly accounts for se-

vere UTIs or UTIs continuously catheterized individuals. 

Proteus species are widespread soil inhabitants and 

part of the normal flora of human and animal intestinal 

regions and have been shown to cause opportunistic 

infections in various anatomical areas (Talebi et al.,  

2023; Wang et al., 2023). 

This bacterium is on the list of medically significant nos-

ocomial agents because of its virulence factors, includ-

ing antibiotic resistance genes, fimbria, flagella, hemo-

lysins, urease, proteases, amino acid deaminase, lipo-

polysaccharides (LPS), and capsular polysaccharides 

(Shanmugasundarasamy et al., 2022). Antibiotic re-

sistance in bacterial infections is growing, increasing 

the likelihood of therapeutic failure and death (Hutinel 

et al., 2022).  

Conjugative Plasmids are crucial to the physiology of 

bacteria, and they are the primary agents for horizontal 

gene transfer (HGT) in clinical settings, which facilitate 
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the direct exchange of resistance genes that aid bacte-

ria to quickly adjust to therapeutic surroundings (Hua et 

al., 2020). Recent research has revealed that more 

plasmids than previously thought may be able to mobi-

lize and undergo HGT (Ramsay and Firth, 2017). Mo-

bile genetic elements particularly insertion sequences 

play a role in the rearangment of plasmids (Hua et al., 

2020). Although all Extended Spectrum Beta Lac-

tamases (ESBLs) function by cleaving the amide 

bond of the beta-lactam ring, the genes encoding these 

enzymes are diverse and divided into several groups 

(Biondo, 2023). 

Until 2000, TEM- and SHV-type ESBLs were the pre-

dominant ESBL families. Today, the most commonly 

encountered ESBL types are phylogenetically distinct 

from the first β-lactamases that appeared in the early 

1980s (Hays et al., 2022). CTX-M-type enzymes are 

the most commonly encountered ESBL types present in 

several members of the order Enterobacteriales 

(Yasmeen et al., 2023). Isolated isolates harboring CTX

-M had great resistance to cefotaxime and low suscepti-

bility to ceftazidime (Mushtaq, 2022). Other forms of 

ESBLs include OXAs, AmpCs, and carbapenemases. 

Oxas and AmpC are β-lactamase enzymes encoded by 

chromosomal and plasmid genes. They are resistant to 

β-lactamase inhibitors. The most prevalent mechanism 

of bacterial resistance is medication efflux from cells via 

membrane transporters. These transporters are pro-

teins from the ATP-binding cassette (ABC) gene super-

family. Overexpression of ABC transporters is a major 

determinant of multidrug resistance (Zheng and Lupoli, 

2023; Wu et al., 2023).  

UTIs are mostly caused by Gram-negative bacteria, 

which pose a growing concern to public health due to 

their potential to acquire genes from transferable plas-

mids that code for extended-spectrum -lactamases 

(ESBLs) (Bedenić and Meštrović, 2021). These en-

zymes can hydrolyze third-generation cephalosporins 

and monobactams, but not carbapenems. Furthermore, 

ESBLs constitute a public health hazard since they are 

encoded on plasmids that typically carry other re-

sistance genes against several types of antibiotics, in-

cluding aminoglycosides, sulfonamides, and quinolones 

(Mancuso et al., 2021). Plasmids promote the transfer 

of genetic material, including antimicrobial resistance 

genes, between bacterial species and genera. Because 

of the presence of virulence factors on these mobile 

genetic components, bacterial populations may become 

more virulent (Abdulrahman and Omar, 2012). P. mira-

bilis coordinates an increase in the synthesis of many 

virulence factors, such as the hemolysin. Like other 

Enterobacterales, clinical strains of P. mirabilis have 

developed increased resistance to antimicrobial drugs 

over the past few decades (Filipiak et al., 2020 ; He et 

al., 2019 ).  

The ability of this organism to produce a range of extra-

cellular enzymes, including urease, which causes kid-

ney and bladder stones to develop, may account for 

some of its medical significance. Stones around the 

bacterium prevent antibiotics from having their intended 

therapeutic effects. Additionally, hemolysin is toxic to 

the cells that line the urinary tract (Abbas et al., 2015). 

Adhesins, toxins, invasins, protein secretion systems, 

iron absorption systems, and other bacterial virulence 

factors may be encoded on the chromosomal DNA of 

P. mirabilis, bacteriophage DNA, plasmids, or transpos-

ons (Shelenkov et al., 2020 ; Carattoli, 2013 ).  

The (KPC) enzyme hydrolyzes most β-lactam antibiot-

ics, including carbapenems. Numerous KPC variants 

have been reported, and KPC- producing bacteria have 

been found worldwide. These bacteria often belong to 

the order Enterobacterales (Hua et al., 2020a). Alt-

hough the prevalence of carbapenemase in P. mirabilis 

is relatively low, it tends to rise globally over time. KPC 

synthesis is frequently linked to other resistance mech-

anisms, and strains containing these enzymes typically 

have strong resistance to fluoroquinolones and amino-

glycosides (Girlich et al., 2020; Castanheira et al., 

2010). Proteus has long been recognized to be respon-

sive to β-lactam antibiotics. Extended-spectrum β-

lactamase has led to increased resistance (Musa et al., 

2019). Plasmid-mediated CTX-M enzymes are the most 

frequent ESBLs, and studies have revealed that the 

genes encoding for CTX-M β-lactamases were more 

prevalent among tested bacterial strains compared with 

the genes encoding SHV-type or TEM-type β-

lactamase (Ojdana et al., 2014; Qin et al., 2015).  

Due to the importance of plasmids in P. mirabilis iso-

lates causing UTI, the present study aimed to detect 

the number of plasmids found in the isolates and identi-

fy the genes commonly located on such plasmids. For 

this purpose, 17 pairs of primers were used to amplify 

several virulence and antibiotic-resistant genes predict-

ed to be carried on P. mirabilis plasmids. 

MATERIALS AND METHODS 

Sample collection and bacterial identification 

Four hundred and fifty urine samples were collected 

from patients of different ages suffering from urinary 

tract infections (UTI) who visited Ibn Sina Teaching 

Hospital, Al Salam Teaching Hospital, Al Jumhuri 

Teaching Hospital, and Mosul General Hospital in Mo-

sul city, Iraq, from December 2022 to April 2023. Sedi-

ments from urine were streaked on blood and Mac-

Conkey agar plates. The plates were incubated aerobi-

cally at 37°C for 24 h. Isolates that produced smooth, 

non-lactose fermenting colonies on MacConkey agar 

and swarmed on blood agar were selected for further 

identification (Hayat et al., 2023 ). Standard biochemi-

cal tests, including catalase and oxidase, were used for 

species identification (Vandepitte et al.,2003). 
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the classification of extensive drug-resistant (XDR) iso-

lates, according to Magiorakos et al. (2012). 

Molecular detection of virulence and antibiotic  

resistance genes in P. mirabilis  

Genomic DNA was isolated from all P. mirabilis strains 

under study using a kit supplied by Geneaid (Taiwan). 

The 17 sets of primers listed in Table 1 for virulence 

and antibiotic resistance determinants in P. mirabilis 

were used to detect the corresponding genes in the 

genomic DNA of P. mirabilis. On the other hand, plas-

mid DNA was purified from multidrug-resistant P. mira-

bilis using the Large Plasmid DNA Extraction Kit sup-

plied by Geneaid company (Taiwan) following the man-

ufacturer’s instructions. Plasmids were separated by 

electrophoresis on 2% agarose gel at 100 V for 1 h, 

visualized with a UV transilluminator, and plasmid 

bands were excised from agarose and purified using 

the gel extraction kit supplied by Geneaid (Taiwan) fol-

lowing their instructions. To detect the location of the 

antibiotic resistance genes and virulence-related genes, 

whether on the plasmid or on the bacterial chromo-

some, PCR was conducted on the purified plasmid 

DNA using the primers listed in Table 1 and an addi-

tional PCR reaction was performed using the universal 

16S rRNA primers as a control.  

RESULTS AND DISCUSSION  

Identification of P. mirabilis  

Biochemical and molecular identification based on 16S 

rRNA showed that 37/420 (8.8%) of the urine samples 

analyzed were positive for P. mirabilis. The morphologi-

cal characteristics of P. mirabilis colonies on blood agar 

were distinctive due to their ability to swarm on the agar 

surface, whereas colonies were pale to colorless on 

MacConkey agar media and had the very weak swarm-

ing ability. All isolates were Gram-negative bacilli when 

examined microscopically (Mirzaei et al., 2019; Gupta 

et al., 2002). Molecular diagnosis using 16S rRNA pri-

mers produced the expected bands (Fig. 1), and when 

sequenced and blasted to the NCBI database, they 

were identified as P. mirabilis  

Antibiotic susceptibility 

The results obtained from the disk diffusion method for 

antibiotic susceptibility testing of P. mirabilis against 18 

antibiotics were confirmed based on the diameter of the 

inhibition zone surrounding the disks and compared 

with the standard tables mentioned in (CLSI 2022). The 

results showed a clear difference in the resistance of 

the isolates under study to the antibiotics used (Fig. 2). 

Local isolates of P. mirabilis isolated from urine showed 

a high resistance to amoxicillin at 100%, which agrees 

with similar studies on P. mirabilis including Al-Taie et 

al. (2013) and two other studies by Wang et al. (2014) 

Molecular identification of Proteus mirabilis  

isolates by Polymerase chain reaction  

Genomic DNA was extracted from pure cultures of P. 

mirabilis isolates using the genomic DNA isolation kit 

supplied by Geneaid (Taiwan). Steps were followed as 

recommended by the manufacturer. The concentration 

and purity of genomic DNA were measured, and DNA 

was stored at 20°C until further use.  

For molecular identification, PCR was carried out in a 

20 μL reaction volume using GoTaq G2 Green Master 

Mix provided by Promega (USA). The full region of the 

16S rRNA gene was amplified employing the universal 

primers 27F (5’ AGAGTTTGATCMTGGCTCAG 3’) and 

1522R (5’ AAGGAGGTGATCCARCCGCA 3’), as sug-

gested by Abdulrazzaq and Faisal (2022). The primer 

concentration was 1 μM each, and 100 ng of DNA tem-

plate was added, adhering to the manufacturer's rec-

ommendations. The PCR program for the 16S rRNA 

gene involved an initial denaturation at 95°C for 3 min, 

followed by 30 cycles of amplification comprising dena-

turation at 95°C for 30 s, annealing at 55°C for 30 s, 

and extension at 72°C for 1 min. After the final exten-

sion step at 72°C, PCR products were resolved on a 

1% agarose gel and dyed with Midori Green Advance 

DNA stain. A 100-bp DNA marker from New England 

Biolabs, UK, served as the reference for molecular 

weight (Khaleel et al., 2023a). 

The PCR products targeting the 16S rRNA gene were 

purified and forwarded to Psomagene sequencing com-

pany (USA) for sequencing. The obtained sequences 

were compared for similarity with published genes in 

GenBank using the BLAST tool at NCBI. For control 

purposes in plasmid experiments, the same primers 

were used as a control to detect possible contamination 

of plasmids with chromosomal DNA. 

Antimicrobial susceptibility test 

The Kirby Bauer disk diffusion method for antibiotic sus-

ceptibility was performed on all isolates under study, 

and the results were interpreted as per the CLSI 2022 

recommendations (Lewis and James, 2022). Eighteen 

antibiotic disks were purchased from (Bioanalyse/

Turkey) and used to test P. mirabilis isolates: amoxicil-

lin-clavulanate (20/10 μg/ disk), amoxicillin (10μg/ disk), 

ampicillin (25μg/ disk), Piperacillin (100/10 μg/ disk), 

cephalexin (30 μg/ disk), Cefotaxime (10 μg/ disk), Nor-

floxacin (30 μg/ disk), Imipenem (10 μg/ disk), mero-

penem (10 μg/ disk), gentamicin (10 μg/ disk), amikacin 

(10 μg/ disk), ciprofloxacin (10 μg/ disk), trimethoprim 

(10 μg/ disk) azithromycin (15 μg/ disk), chlorampheni-

col (10 μg/ disk), tetracycline (10μg/disk), nalidixic acid 

(30 μg/disk), and streptomycin (25 μg/ disk). An organ-

ism demonstrating resistance to at least one antibiotic 

from three or more categories of antimicrobial agents is 

labeled as multidrug resistant (MDR). Isolates sensitive 

to only one or two categories of antimicrobials fall under 
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Table 1. DNA sequences of primers used in this study 

Genes Sequences 5’-3’ Products 

size( bp) 

PCR program Source of  

primer 

ireA F ACTACGATAACGAGCGCCAG 681   

Initial denaturation : 95 °C for 5/

min 

Denaturation: 94  °C (5/ min) 

Annealing : 58 °C for 

ireA ,zapA / 52° C for hpmA, 

mrpA   (1/min) 

Extension72 °C (1/min) 

Final extension:72 °C for 7 min 

  

  

  

(Sanches et 

al., 2019) 

R GCCCTAACTGGGGGAATACG 

hpmA F GTTGAGGGGCGTTATCAAGAGTC 709 

R GATACTGTTTTGCCCTTTTGTGC 

zapA F TATCGTCTCCTTCGCCTCCA 332 

R TGGCGCAAATACGACTACCA 

mrpA F GAGCCATTCAATTAGGAATAATCCA 648 

R AGCTCTGTACTTCCTTGTATACAGA 

MOXM F GCTGCTCAAGGAGCACAGGAT 520   

  

  

  

Initial denaturation :94 °C for 

3min 

Denaturation: 94  °C (0:30 / min) 

Annealing : 58 °C ( 0:40/ min) 

  Extension72 °C (1/min) 

Final extension:72 °C for 7 min 

  

  

  

  

  

(Pérez-Pérez 

and Hanson, 

2002) 

R CACATTGACATAGGTGTGGTG 

CITM F TGGCCAGAACTGACAGGCAAA 462 

R TTTCTCCTGAACGTGGCTGGC 

DHAM F AACTTTCACAGGTGTGCTGGGT 405 

R CCGTACGCATACTGGCTTTGC 

ACCM F AACAGCCTCAGCAGCCGGTTA 346 

R TTCGCCGCAATCATCCCTAGC 

EBCM F TCGGTAAAGCCGATGTTGCGG 302 

R CTTCCACTGCGGCTGCCAGTT 

FOXM F AACATGGGGTATCAGGGAGATG 190 

R CAAAGCGCGTAACCGGATTGG 

CTXG1 F AAAAATCACTGCGCCAGTTC 415   

  

Initial denaturation :94 °C for 5/

min 

Denaturation: 94 °C (0:30/ min) 

Annealing : 52  °C (0:40/min) 

  Extension72  °C (1/min) 

Final extension:72 °C for 6/ min 

  

  

  

  

(Woodford et 

al., 2006) 

R AGCTTATTCATCGCCACGTT 

CTXG2 F 5-CGACGCTACCCCTGCTATT-3 552 

R CCAGCGTCAGATTTTTCAGG 

CTXG9 F CAAAGAGAGTGCAACGGATG 205 

R ATTGGAAAGCGTTCATCACC 

CTXG-8 F TCGCGTTAAGCGGATGATGC 327 

CTXG8-

25 

R AACCCACGATGTGGGTAGC 

CTXG -

25 

F GCACGATGACATTCGGG 666 

  

CTXG8-

25 

R AACCCACGATGTGGGTAGC 

qnrD F CGAGATCAATTTACGGGGAATA 565 Initial denaturation :94 °C for 

3min 

Denaturation: 94  °C (0:30   min) 

Annealing : 50 °C (0:40/min) 

Extension72 °C (1/min) 

Final extension:72 °C for 7/ min 

(Cavaco et 

al., 2009) 

    

R 

AACAAGCTGAAGCGCCTG 

PmIJ1 F ACACCTACAACAAGGCTATC 400 Initial denaturation :94 °C for 

3min 

Denaturation: 94 ° C (0:30 min) 

Annealing : 49 ° C (0:40/min) 

Extension72  °C (1/min) 

Final extension:72 °C for 7/ min 

(Bie et al., 

2018) 

  
LJR1 R AGTTCTAAAGGTTCGTAGTCG 

16S 

rRNA 

27

F 

AGAGTTTGATCMTGGCTCAG 1495 Initial denaturation: 95 °C for 3 

min Denaturation: 95 °C for 

(0:30 min) Annealing at 55 °C 

(0:30 min) Extension 72 °C for 1 

min. 

Final extension: 72 °C for 7/ min 

(Abdulrazzaq 

and Faisal, 

2022) 

152

2R 

AAGGAGGTGATCCARCCGCA 
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and Zixuan et al. (2022) whom found relatively high 

amoxicillin resistance percentages of 83.6% and 98%, 

respectively. Large numbers of the gene have always 

been altered in bacterial isolates that produce beta-

lactamases (Oliver and On, 1999). The results also re-

vealed a percentage of trimethoprim-sulfamethoxazole 

(97%), which is close to the results obtained by (Zixuan 

et al., 2022), who found that the resistance percentage 

among P. mirabilis  was (98%). Other studies by Jun 

kwon et al. (2022) found that the resistance rate was 

(72%) among P. mirabilis isolates. Bacteria resist antibi-

otics by producing enzymes that modify or destroy anti-

biotics, making them ineffective. Bacteria can also mod-

ify the target of the antibiotic within their cells, making 

them less susceptible to its effects. In addition, bacteria 

may acquire mutations that alter their cellular functions, 

making them resistant to antibiotics. Understanding 

these mechanisms is crucial in developing strategies to 

combat antibiotic resistance (Girlich et al., 2020). The 

present study also detected high resistance to ampicil-

lin (94.59%) and tetracycline (94.59%). The percent-

ages are close to what was observed by Shabeeb et al. 

(2018), who demonstrated that (97.37%) of P. mirabilis 

isolates were resistant to ampicillin and 91.89% were 

resistant to piperacillin; this was similar to the study of 

Mo et al. (2022). Their results also showed that cefo-

taxime (a third-generation antibiotic) had a resistance 

rate of (86.48%), while cephalexin was 89.18%. Quino-

lone antibiotics showed a strong and effective effect on 

P. mirabilis isolates, as the resistance rate of bacterial 

isolates to nalidixic acid was 89.18%. In addition, the 

current study showed that the resistance of P. mirabilis 

to chloramphenicol was 83.78% and to azithromycin 

was 67.56%. Most of the resistance of bacteria to mac-

rolide antibiotics occurs through inhibition of protein 

synthesis by affecting the large subunit of the 50S ribo-

some (Grossman, 2016; Butler et al., 2010). 

The current study showed that the resistance of bacte-

rial isolates to amoxicillin-clavulanic acid was 64.86%. 

This was similar to the results reached by John et al. 

(2022), where it was found that the resistance of P. 

mirabilis to this antibiotic was (63%). The current re-

sults showed that the percentage of isolates resistant to 

streptomycin was 67.56%, whereas bacterial isolates 

showed resistance to gentamicin at a rate of 62.16%. 

These antibiotics are considered a group of aminogly-

cosides commonly used in medical clinics to treat life-

threatening infections caused by Gram-negative bacte-

ria, and are the most common aminoglycosides used to 

treat UTI patients in many countries. One of the causes 

of resistance of E. coli to antibiotics belonging to the 

aminoglycosides group is the possession of efflux sys-

tems and a change in membrane permeability as well 

as the presence of aminoglycoside-modifying enzymes, 

1500 

900 

500 

 

100 

1495bp 

Fig 2. Resistance levels of Proteus mirabilis isolates to different antibiotics 

Fig.1.16S rRNA Amplicons of selected isolates of Proteus 

mirabilis 
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N-acetyl transferase and phosphotransferase (Zaman 

et al., 2017). This is almost inconsistent with the results 

obtained by Jun kwon et al. (2022), who found that the 

proportion of gentamicin was 22% among P. mirabilis 

isolates. The results also showed that the percentage of 

amikacin was 54.05%, which does not agree with the 

results obtained by John et al. (2022), who found that 

the resistance rate for amikacin was (16%) among P. 

mirabilis isolates.  

Resistance of P. mirabilis to ciprofloxacin in our study 

was 13.51%, which is higher than that observed by Al-

Marjani (2000), who found that the resistance toward 

ciprofloxacin in P. mirabilis was (4.7%), and Al-Tamimi 

and Jabbar (2021), who found it to be 8%. Interestingly, 

the percentage of resistance toward norfloxacin was 

identical to that of ciprofloxacin (13.51%), which deter-

mines that the same genes are responsible for the re-

sistance of both antibiotics. Resistance of imipenem 

and meropenim were 8.10% and 5.40%, respectively. 

Tahreer et al. (2019) detected low resistance to these 

antibiotics towards Proteus spp., who recorded the re-

sistance rate of imipenem and meropenem (0%). In 

general, the increase in bacterial resistance to most 

antibiotics may be the widespread and indiscriminate 

use of antibiotics and the lack of health awareness 

(Eisner et al., 2006; Khaleel et al., 2023b).  

Molecular studies  

In an attempt to search for virulence and antibiotic re-

sistance genes on P. mirabilis plasmids, we detected 

plasmids from 21/37 (56.7%) P. mirabilis isolates. Pri-

mers for various antibiotic resistance and virulence 

genes that enable and contribute to the development of 

infection, particularly those involved in UTI invasion in 

humans, were used to search for corresponding genes 

in P. mirabilis. Our results showed that all P. mirabilis 

strains containing plasmids contained the selected 

genes at a percentage of 100% for all genes.  

The primers used in this study were divided into four 

groups. The first group included the primers used to 

identify six genetic regions, namely CITM, DHAM, 

ACCM, EBCM, FOXM, MOXM. Results shown in Table 

2 indicate that MOXM was detected in 14% of the bac-

terial isolate plasmids, whereas FOXM appeared in 

85.7% of the plasmids. With respect to the primer 

CTIM, a clear band appeared from the plasmids of 

4.7% of the isolates. The appearance of virulence 

genes in samples of bacteria isolated from urine indi-

cates the virulence of the isolates and their resistance 

to most antibiotics. This confirms that Proteus have an 

important role in causing infections in the urinary tract, 

according to what was mentioned previously, which 

agrees with what was stated previously (Aryal et al., 

2020; Pérez-Pérez and Hanson, 2002). They found that 

the genes encoding beta-lactamase enzymes were 

widespread among Proteus isolates, but their preva-

lence rate differed. This could be because genes car-

ried on conjugative plasmids spread faster through con-

jugation, and genes differ from each other in their rate 

of selection through transformation. However, the 

genes DHAM, ACCM, and EBCM were not detected on 

P. mirabilis plasmids, indicating that they were chromo-

somally located. AmpC β-lactamases are cephalospori-

nases of clinical significance encoded on the chromo-

somes of numerous Enterobacteriaceae and a limited 

number of other organisms. They play a role in confer-

ring resistance to cephlothin, cefazolin, cefoxitin, most 

penicillins, and combinations of β-lactamase inhibitors 

with β-lactams, as outlined by Hayat (2023). 

The second group included zapA, ireA (siderophore 

receptor), hpmA (hemolysin) and mrpA,  (fimbriae) 

genes. zapA was detected in 80.95% of P. mirabilis 

plasmids, followed by ireA at a rate of 76.19%, hpmA 

gene at 14.28% and mrpA gene at 4.76%. The pres-

ence of these genes on P. mirabilis plasmids indicates 

that the isolates use plasmid genes for antibiotic re-

sistance and virulence. Antibiotic resistance via plas-

mids may cause higher levels of resistance in the iso-

lates harboring them. Several studies have detected  

these genes on P. mirabilis plasmids (Sanches et 

al.,2019; Cestari et al., 2013; Swihart and Welch, 

1990). Li et al. (2012) noted that antibiotic resistance in 

K. pneumoniae isolated was widely spread. This is be-

cause the genes carried on conjugative plasmids 

spread faster through the conjugation process.  

The third group included CTXG1, CTXG2, CTXG9, 

CTXG8, CTXG25,. The results shown in Fig. 4 show 

the appearance of the genetic regions of the five genes 

on P. mirabilis plasmids. CTX9 was the highest gene 

detected on plasmid at a percentage (76.19%) followed 

by CTXG1 (71.42%). This agrees with what was stated 

by Woodford et al. (2006). The other genes, CTXG2, 

CTXG8, and CTXG25, were detected in the genome 

but not on plasmids. CTX-M extended-spectrum β-

lactamases (ESBLs) are becoming more widespread 

globally, particularly among Escherichia coli, Klebsiella 

spp., and Proteus spp. This prevalence extends to the 

United Kingdom, where more than half of microbiology 

laboratories have reported encountering ESBL produc-

ers (Woodford et al., 2004; Munday et al., 2004). More 

than 40 CTX-M β-lactamases have been described and 

are divided into five phylogenetic groups, with different 

groups prevalent in different countries (Bonnet, 2004).  

Associated PmIJ1 and qnrD genes that are linked to P. 

mirabilis pathogenesis were found on P. mirabilis plas-

mids at a rate of 52.38% and 47.61%, respectively, as 

shown in Table 2. P. mirabilis strains can produce 

many virulence factors that play an important role in 

human infection. Previous research has detected the 

qnrD gene in plasmids of P. mirabilis (Cavaco et al., 
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Table 2.  Sequences of primers used in the present study 

Target Sequence (5’ - 3’) Isolates containing plasmids Detection on 

plasmid (%) 

CTIM F 5-TGGCCAGAACTGACAGGCAAA-3 

R 5-TTTCTCCTGAACGTGGCTGGC-3 

No 1/21 (4.76) 

DHAM F 5-AACTTTCACAGGTGTGCTGGGT-3 

R 5-CCGTACGCATACTGGCTTTGC-3 

No 0/21 (0) 

ACCM F 5-AACAGCCTCAGCAGCCGGTTA-3 

R 5-TTCGCCGCAATCATCCCTAGC-3 

No 0/21 (0) 

EBCM F 5-TCGGTAAAGCCGATGTTGCGG-3 

R 5-CTTCCACTGCGGCTGCCAGTT-3 

No 0/21 (0) 

FOXM F5-AACATGGGGTATCAGGGAGATG-3 

R5-CAAAGCGCGTAACCGGATTGG-3 

2,4,6,10,12,13,15,17,20,23,26,29,3

0 ,32 ,34,35,36,37 

18/21(85.71) 

MOXM F 5-GCTGCTCAAGGAGCACAGGAT-3 

R 5-CACATTGACATAGGTGTGGTG-3 

35,36,37 3/21(14.28) 

qnrD F 5-CGAGATCAATTTACGGGGAATA-3 

R 5-AACAAGCTGAAGCGCCTG-3 

6,13,15,17,20 ,29,32,35,36,37 

  

10/21 (47.61) 

zapA F 5-TATCGTCTCCTTCGCCTCCA-3 

R 5-TGGCGCAAATACGACTACCA-3 

4,6,10,12,13,15,17,20,23,26,29,30,

32 ,34,35,36,37 

17/21 (80.95) 

ireA F 5-ACTACGATAACGAGCGCCAG-3 

R 5-GCCCTAACTGGGGGAATACG-3 

4,6,10,12,13,15,17,20,23,26,29,30, 

,34,35, 36,37 

16/21 (76.19) 

hpmA F 5-GTTGAGGGGCGTTATCAAGAGTC-3 

  R 5-GATACTGTTTTGCCCTTTTGTGC-3 

29و   6,36  3/21 (14.28) 

mrpA F 5-TGGCGCAAATACGACTACCA-3 

R5-GAGCCATTCAATTAGGAATAATCCA-3 

6 1/21 (4.76) 

CTXG1 F 5-AAAAATCACTGCGCCAGTTC-3 

R 5-AGCTTATTCATCGCCACGTT-3 

2,4,6,12,13,16,20,23,26,29,30,32,3

4,36,37 

15/21 (71.42) 

CTXG2 F 5-CGACGCTACCCCTGCTATT-3 

R 5-CCAGCGTCAGATTTTTCAGG-3 

NO 0/21 (0) 

CTXG9 F 5-CAAAGAGAGTGCAACGGATG-3 

R 5-ATTGGAAAGCGTTCATCACC-3 

2,4,6,12,16,17,20,23,26,29,30,32,3

4,35,36,37 

16/21 (76.19) 

CTXG8 F 5-TCGCGTTAAGCGGATGATGC-3 

R 5-GCACGATGACATTCGGG-3 

NO 0/21 (0) 

CTXG25 F 5-TCGCGTTAAGCGGATGATGC-3 

R 5-GCACGATGACATTCGGG-3 

NO 0/21 (0) 

PmIJ1 

LJR1 

F5-ACACCTACAACAAGGCTATC-3 

R5-ACACCTACAACAAGGCTATC-3 

2,4,6,10,12,13,15,17,20 ,26,32 11(52.38) 
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Fig. 3. Multiplex PCR assay for MOXM gene (520 bp) 

and CTIM  gene (462bp) detected on P. mirabilis  

plasmids  

Fig. 4. Amplicon of FOXM gene (190 bp) detected on P. 

mirabilis plasmids  
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genes, resulting in alterations in the drug targets. Addi-

tionally, resistance mechanisms involve efflux pump 

mechanisms. Recently, target protection mechanisms 

encoded by the nr genes and enzymatic modifications 

2009; Abossedgh et al., 2020). Resistance to quin-

olones in Enterobacteriaceae mainly occurs through 

point mutations in the quinolone resistance-determining 

regions (QRDR) of the gyrase and topoisomerase IV 

1500 

 

500 

 

100 

• 681bp 

• 332bp 

Fig 5. Multiplex PCR assay for zapA (332bp) and ireA 
(681bp)  detected on P. mirabilis plasmids.  

1500 

 

 

500 

 

• 709bp 

Fig 6. hpmA  gene (709 bp) detected on P. mirabilis 
plasmids.  

Fig 7. qnrD  gene (565bp) detected on  Proteus mirabilis 
plasmids. 
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100 
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Fig 8. Multiplex PCR assay for CTXG1 (415bp), G2 
(552bp), G9 (205bp), G8 (666 bp) detected on Proteus 
mirabilis plasmids.  

Fig. 9. Amplicons for PmIj1 , LJRI  gene (400 bp)  de-
tected on P. mirabilis plasmids 
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encoded by ac(6')-Ib-cr have also been identified as 

contributors to resistance against drugs in this antimi-

crobial class (Aldred et al., 2014). The quinolone re-

sistance gene qnrD has been identified as responsible 

for diminished susceptibility to fluoroquinolones in iso-

lates of Salmonella enterica serovar Bovismorbificans 

and Kentucky strains obtained from humans in China's 

Henan province. Through complete plasmid sequenc-

ing, researchers discovered the novel qnrD gene, which 

was subsequently cloned alongside both the qnrA1 and 

qnrS1 genes. These clones were utilized to compare 

susceptibility patterns in vitro. The novel qnrD gene 

shares similarities with previously described qnr genes. 

This gene encodes a putative pentapeptide repeat pro-

tein that confers reduced susceptibility to fluoroquin-

olones. Recently, Wang and colleagues described an-

other qnr gene, qnrC, which was found in P. mirabilis. 

This gene encodes a 221-amino acid protein with differ-

ent amino acid identities from other known qnrD (Wang 

et al., 2008).  

Conclusion 

Bacterial infections have become a major healthcare 

challenge because of the rise and dissemination of mul-

tidrug-resistant bacteria. In recent decades, Proteus 

infections have received special attention because of 

the emergence of species resistant to various antimi-

crobial agents, particularly β-lactams. According to the 

World Health Organization, antimicrobial medication 

misuse is a universal challenge. This study showed that 

the percentages of antibiotic resistance and virulence 

genes located on P. mirabilis plasmids are high which 

indicates these plasmids have becoming more preva-

lent among clinically isolated P. mirabilis, necessitating 

considerable care to prevent the development of antibi-

otic resistance. Future work that involves plasmid trans-

formation experiments is sugested to identify the partic-

ular phenotypes carried by such plasmids.   
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