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INTRODUCTION 

The rapid industrial revolution, burgeoning population, 

climate change, and urbanization have collectively in-

tensified pollution levels by releasing various hazard-

ous elements, including organic compounds, inorganic 

substances, petroleum derivatives, and heavy metals 

(Alahmadi, 2022). Among these pollutants, heavy met-

als such as arsenic, lead, mercury, and cadmium stand 

out due to their toxicity and carcinogenicity, posing sig-

nificant risks to human health and ecosystem integrity 

(Shahjahan et al., 2022; Rahman et al., 2020; Mitra et 

al., 2022). Heavy metals exhibit non-biodegradable 

properties, exacerbating their persistence in the envi-

ronment and causing detrimental effects on aquatic life. 

Notably, heavy metals possess the ability to bioaccu-

mulate and biomagnify in aquatic organisms, amplifying 

their toxicity as they ascend the food chain (Shahjahan 
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et al., 2022; Rahman et al., 2020; Mitra et al., 2022). 

Bioremediation has emerged as a promising approach 

to address heavy metal contamination in wastewater, 

employing various processes such as biosorption,  

bioaugmentation, biostimulation, bioprecipitation, and 

bioleaching to remove metals via absorption, precipita-

tion, or solubilization (Atuchin et al., 2023).  

Microbial bioaugmentation presents viable strategies 

for heavy metal remediation, with bacteria such as  

Pigmentiphaga spp. and Paenanthrobacter spp.,  

alongside the fungus Trametes versicolor, showing 

promise in this regard (Lopes et al., 2022). Noteworthy 

microbial examples include Pseudomonas aeruginosa 

and Vibrio parahaemolyticus for mercury remediation, 

Micrococcus luteus for lead and copper, Bacillus sp. 

MNU16 and Aspergillus niger for chromium, and Rhizo-

pus stolonifera and Bacillus megaterium for cadmium 

and nickel ( Xu et al., 2021; Imron et al., 2019; Njoku et 

al., 2020). 

In recent years, nanotechnology has introduced innova-

tive wastewater treatment techniques, while metabolic 

engineering has provided novel technologies to en-

hance treatment efficiency (Mohapatra et al., 2022). 

Nanotechnology has shown potential in improving mi-

crobial bioremediation efficacy by using nanomaterials 

like nanoparticles and nanocomposites to enhance pol-

lutant uptake, transport, and degradation. Iron, titanium, 

and zero-valent metal nanoparticles have been used to 

enhance heavy metal remediation efficiency by facilitat-

ing microbial processes as they provide a larger sur-

face area for microbial attachment and can act as elec-

tron shuttles to facilitate redox reactions (Guerra et al., 

2018; El-Kalliny et al., 2023). Metabolic engineering 

techniques have also revolutionized microbial bioreme-

diation strategies by genetically modifying microorgan-

isms to optimize pollutant degradation (Sharma et al., 

2023). Engineered bacteria with enhanced metal ion 

uptake mechanisms or increased metal-chelating 

agents have shown improved heavy metal remediation 

capabilities (Mahdizade Ari et al., 2024).  Recently, 

novel microbial strains with strong bioremediation  

potential have been reported (Mahdizade Ari et al., 

2024). These include bacterial species like Sphingo-

monas spp. and fungal strains like Aspergillus  

fumigatus, which are highly efficient in degrading  

various pollutants, including heavy metals (Mahdizade 

Ari et al., 2024; Amobonye et al., 2023). Furthermore, 

using consortia or mixed cultures of microorganisms 

has shown synergistic effects, increasing pollution re-

moval efficiency compared to individual strains 

(Amobonye et al., 2023). By integrating nanotechnolo-

gy and metabolic engineering approaches, microbial 

bioremediation can be further optimized, leading to 

more efficient and sustainable treatment of polluted 

environments.   

MATERIALS AND METHODS 

Different heavy metals and their effects on environ-

mental toxicity 

Arsenic is found as As (0), As(III) and As(V) and arse-

nic gas states. It reaches the environment through nat-

ural phenomena such as volcanic eruptions and weath-

ering and anthropogenic activities like mining and 

smelting of metals (Muzaffar  et al., 2023). 

As(V) can replace phosphate in several metabolic path-

ways, leading to ATP depletion. Arsenite, As (III), re-

acts with sulphydryl and thiol groups, disrupting pro-

teins structure and regulation of proteins and enzymes, 

such as pyruvate dehydrogenase (PDH), which, when 

altered, affects ATP formation cellular respiration, caus-

es dilation of capillaries and thus increased permeabil-

ity . The most toxic form is arsine gas. Its inhalation at 

10 ppm is lethal; at 25 ppm, it is lethal in less than an 

hour; and at 250 ppm, it is lethal at instance 

(Kuivenhoven and Mason, 2023). Arsenic exposure 

leads to various cancers such as skin, bladder, lung 

cancer etc (Goswami et al., 2022a). Coal mining is the 

major source of entry of mercury in the environment. Its 

majorly binds with components containing sulphur and, 

through plants and food reaches higher trophic levels 

due to its bioaccumulation property (Raj and Maiti, et 

al., 2019). In anaerobic and aquatic conditions, it con-

verts into an organic form, its most toxic form, pos-

sessing carcinogenic and genotoxic characteristics 

(Goswami et al., 2024).  Mercury toxicity can cause 

epigenetic alterations and various types of heart dis-

ease in humans
 
(Khan et al., 2019) neurotoxic and re-

productive adverse effects in marine fishes. In plants, 

studies have shown to affect the height of rice plants, 

metabolic activities, induce closure of stomata and in-

duce oxidative stress (Zheng et al., 2019). 

Lead (Pb) is used in industries such as mining, agro-

chemicals, paint, etc. and it enters the environment 

through natural phenomena such as volcanic eruptions, 

weathering of rocks etc. It affects growth, hearing ca-

pacity, cognitive behavior, neurological and cardiovas-

cular diseases, kidney disfunction, and human repro-

ductive health. Lead in plants is shown to affect mor-

phology and growth. It also affects seed germination, 

obstructs photosynthetic pathways, and causes plant 

oxidative stress (Kumar et al., 2020). Lead toxicity in 

broilers causes weight loss, anorexia, and wing drop 

and affects organs such as liver and kidney. 

Cadmium (Cd) has mainly entered our environment 

through agricultural means; other sources are mining, 

combustion, sewage, traffic, contaminated food, water, 

cigarette smoking etc. It affects the bone and liver in 

humans. The presence of cadmium has the potential of 

causing cancers such as breast cancer, kidney cancer, 

prostate cancer, and lung cancer. In plants, Cd is 
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known to affect root and shoot growth, metabolic activi-

ties, alteration in several elements and water uptake, 

disturbance in pigment metabolism and plasma mem-

brane activity.  Cadmium also has epigenetic effects 

(Haider et al., 2021; Genchi et al., 2020). 

Chromium (Cr), Cr (IV) is a toxic form. Chromium en-

ters the environment through various activities such as 

chrome plating, mining and industries such as dye and 

leather, and naturally from soil and rocks. It affects 

plants by degrading photosynthetic pigments, reducing 

seed germination, and reducing the growth of shoots, 

and is also known to affect the nucleic acids through 

DNA disruption and epigenetic changes (Coetzee et al., 

2020; DesMarais and Costa, 2019). Table 1 summariz-

es different heavy metals and their hazardous effects 

on the environment. 

Mechanism of bioremediation by microbial species 

Bacterial biomass is employed in the biosorption of 

metals from wastewater, while dead biomass is used 

as adsorbent. Charges play a significant role in biore-

mediation as the negatively charged microbes readily 

bind with the metals in a cationic state.   

For a mixture of several metals received from industrial 

waste, multimetal biosorption is applied, which is affect-

ed by factors such as the number of metals, order in 

which the metal is added, concentration of the metals 

etc. The mechanism of biosorption is majorly based on 

equilibrium isotherms and adsorption kinetics 

(Priyadarshanee and Das, 2020). 

The relationship between the concentrations of metal 

ions adsorbed on the surface of the biomass and the 

isotherm represents the concentrations of the solution's 

Table 1. Common heavy metals and their hazardous effects on the environment 

Name of heavy 

metal 

Effects on the environment References 

 Arsenic (As) ATP depletion 

Disrupt protein structure and regulation of proteins and enzymes. 

Alters PDH, pyruvate dehydrogenase affecting ATP formation, cellular res-

piration, cause dilation of capillaries and thus increased permeability. 

Inhalation at 10 ppm is lethal. 

Hemolysis when absorbed by lungs. 

Cancers such as skin, bladder, lung cancer 

Hypertension, diabetes, neurodegeneration 

Kaur, S et al., 

2011; Pakulska D 

et al., 2006 

  

Mercury (Hg) Epigenetic effects 

Heart diseases 

Neurotoxic and reproductive effects in marine fishes 

Height of rice plants 

In plants affects metabolic activity, induces stomatal closure and oxidative 

stress. 

Khan et al., 2019; 

Zheng et al., 2019 

Lead (Pb) In humans: 

Growth hearing capacity cognitive behavior neurological and cardiovascu-

lar diseases kidney disfunction reproductive health 

In plants: 

morphology and growth seed germination obstructs photosynthetic path-

ways. causes oxidative stress in plants 

In broilers: 

weight loss anorexia wing drop affects organs such as liver and kidney. 

Kumar et al., 2020 

Cadmium (Cd) In humans: 

affects the bone and liver several kidney related disorders potential of 

causing cancers such as breast cancer, kidney cancer, prostate cancer 

and lung cancer 

In plants: 

affect root and shoot growth metabolic activities alteration in uptake of sev-

eral elements and water disturbance in pigment metabolism and plasma 

membrane activity 

Epigenetic effects 

Haider et al., 2021; 

Genchi et al., 2020 

Chromium (Cr) Carcinogenic and mutagenic properties 

In plants: 

Degradation of photosynthetic pigments 

reduction in seed germination 

reduction in growth of shoot 

DNA damage and epigenetic effects. 

Coetzee et al., 

2020; DesMarais 

and Costa, 2019 
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metal ions at equilibration. Kinetic analyses to identify 

the mass transfer and chemical reactions that control 

the rate of biosorption. Models of pseudo-first and 

pseudo-second order are used to analyse the kinetics 

of biosorption. Humic compounds serve as plant signal 

molecules and are also included in biostimulant prod-

ucts. The mechanism involves isolating the bacteria, 

conducting phylogenetic analysis, analysing the toler-

ance and inhibitory properties, and eventually selecting 

the appropriate strategy (Ijoma et al., 2019). Different 

mechanisms of Bioremediation utilized by microbial 

species are summarized in Fig. 1.  

 Pseudomonas aeruginosa is an example of a microor-

ganism that is frequently employed in biochelation. This 

bacterium produces siderophores and can chelate or 

sequester heavy metals like lead, cadmium, and mer-

cury. The bacteria may draw the metal from the envi-

ronment and concentrate it inside their cells once it has 

been attached to the siderophore. Biochelators are an-

other potential option for enhancing phytoremediation 

effectiveness. Moreover, due to its single carboxyl 

group, the biosurfactant rhamnolipid (RLs) made by 

Pseudomonas bacteria demonstrates excellent selec-

tivity, biodegradability, and biocompatibility as well as a 

strong affinity to metals, including Cd (Wang et al., 

2021). Resistance bacteria can endure exposure to 

harmful heavy metals and eliminate them biologically 

through evolving mechanisms, including biotransfor-

mation, bioreduction, bio-oxidation, biosorption, and 

bioaccumulation.  

Role of bacteria and fungus in bioremediation 

Bacterial activity against the pollutants also depends on 

many physiochemical properties like temperature, pH, 

moisture, oxygen concentration, nutrient availability, 

and type of pollutant or xenobiotic compound to be de-

graded. It is observed that the bacteria are compara-

tively less effective than the fungus in acidic pH. Many 

bacterial enzymes also play an important role in en-

hancing the remediation process. For example, when 

used in industrial effluent remediation, a ligninolytic 

bacterial enzyme laccase becomes more efficient 

(Panwar et al., 2023). Table 2 summarizes the role of a 

few of the bacterial species in bioremediation.  

Fungi also play a vital role in bioremediation, as my-

coremediation. White rot fungi can degrade lignin and 

various other pesticides like DDT, lindane, polychlorin-

ated biphenyls, etc. (Prajapati et al., 2022). Marine fun-

gi have a huge potential for producing enzymes and 

Fig. 1. Different mechanisms of bioremediation utilized by microbial species (Image sources: https://www.frontiersin.org/

journals/microbiology/articles/10.3389/fmicb.2019.00081/full; https://www.mdpi.com/1996-1073/13/18/4664; https:/ 

www.hello-nature.com/us/key/) 

https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2019.00081/full
https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2019.00081/full
https://www.mdpi.com/1996-1073/13/18/4664
https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2019.00081/full
https://www.hello-nature.com/us/key/
https://www.hello-nature.com/us/key/
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secondary metabolites that can be further used in the 

degradation of recalcitrants. They also can produce 

nanoparticles, which have a huge application in various 

industries. Extremophilic fungi play a pivotal role in the 

remediation of industrial effluent due to their tolerance 

to the harsh environment (Singh et al., 2021). 

Metabolic engineering approaches to improve bio-

remediation 

There are several approaches through metabolic engi-

neering, including heterologous expression of entire 

gene clusters, engineering regulatory networks, gene 

insertions and deletions, redirecting metabolic path-

ways, stimulating by precursors, and genetic knocking 

out of loci. 

In S. rimosus NRRL 3016, heterologous expression of 

entire gene clusters was successful in manufacturing 

secondary metabolites such as tetrangulol and tetran-

gomycin (Zheng  et al, 2021). In another case, the 

genes responsible for Ralstonia eutropha's polyhydroxy 

butyrate (PHB) biosynthesis pathway were transferred 

to Saccharomyces cerevisiae, a more practical organ-

ism for industrial application (Thu et al., 2023). The 

resulting recombinant yeast could produce PHA and 

PHB, which can be used to make biodegradable bio-

plastics (Deng et al., 2024). 

Streptomyces coelicolor, has been displayed to fabri-

cate secondary metabolites (actinorhodin) more pro-

ductively by constant expression of SARP 

(Antimicrobial Administrative Protein) positive control-

lers. In S. griseus, for example, inactivation of pathway-

specific repressors increased chromomycin production 

(Zhang et al., 2023). It is critical in metabolic engineer-

ing to guarantee that the expression of non-native path-

ways does not result in a metabolic imbalance. 2-keto 

acids, for example, are used as intermediates in the 

amino-acids synthesis in the bacteria Escherichia coli 

(E. coli). Keto acids can be transformed into higher al-

cohols that can be utilised as fuel by adding genes from 

the yeast S. cerevisiae that encode 2-keto acid decar-

boxylase and alcohol dehydrogenase (Kumar et al., 

2023).  

Rerouting the metabolic pathway requires multiple 

changes to a pathway to produce a specific product, 

Table 2. Role of the bacterial species in bioremediation 

Name of bacteria Role in bioremediation Reference 

Pseudomonas aeruginosa Detoxify Cd2+ through production of intracelular 

cadmium-binding proteins 

Mei et al., 2024 

Rhodococcus chlorophenolicus, Fla-

vobacterium sp. and Arthrobacter sp. 

Degrade pentachlorophenol in soil Khalil and Omara, 2023 

Bacillus stearothermophilus Use the hydrocarbons of crude oil as their 

source of nutrition 

Novik et al., 2019 

Pseudomonas putida Removes heavy metals like 100% of Ti, 96% of 

Pb, 83% of V, 57% of Ni , 71% of Co, 

Ali et al., 2023 

  

Bacillus licheniformis Absorbs Zn (53%), Cd (39% and Al (23%) Ali et al., 2023 

S. paucimobilis Removes Cu, Fe, Pb, Cd and Cr from industrial 

wastewater by 60, 63, 54, 57 and 53% respec-

tively 

Ali et al., 2023 

  

Bacillus subtilis Removes Cu, Fe, Pb, Cd, and Cr from industrial 

wastewater by 51, 36, 41, 34 and 37%, respec-

tively 

Wrobel et al., 2023 

Rhizobium radiobacter Removal was 49, 51, 45, 40 and 50%, respec-

tively 

Wrobel et al., 2023 

Pseudomonas reidholzensis Useful in the degradation of diesel Vidal-Verdu  et al., 2022 

Raoultella ornithinolytica, Serratia 

marcescens, Bacillus megaterium, 

Aeromonas hydrophila 

Efficiently degrades acenaphthene and fluorene Mekontchou et al., 2024 

Brevibacterium frigoritolerans, Bacil-

lus aerophilus,Pseudomonas fulva 

Bioremediation of organophosphorus pesticide 

phorate in soil 

Kilonzi and Otieno, 2024 

Candida viswanathii Helpful in degrading Phenanthrene and benzop-

yrene 

Tao et al., 2024 

Coprinellus radians PAHs, methylnaphthalenes, and dibenzofurans Ren et al., 2023 

Bacillus cereus Diesel oil Elumalai et al., 2024 
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such as succinic acid, which E. coli produces as a mi-

nor fermentation product (Thakker et al., 2011). Howev-

er, during anaerobic fermentation, E. coli preferentially 

forms acetic acid, formic acid, lactic acid, and ethanol 

instead of succinic acid. To increase succinic acid pro-

duction and reduce the formation of other metabolites, 

metabolic fluxes need to be redirected.  (Zhang et al., 

2009; Liu Xiutao et al.,2022)  

To promote new metabolic pathways and characterise 

new mutants to synthesise desirable fuel-grade prod-

ucts, systems biology methods such as transcriptomics, 

proteomics, metabolomics, and fluxomics are combined 

(Corrales et al., 2024). Computational analysis and 

different models are applied during fermentation to im-

prove strain optimization. Making culture media that 

can improve P. pastoris performance uses genome-

scale metabolic models and analysis. A functional ge-

nomics approach is also a crucial tool for the over-

production of folate, where genes are expressed in 

Lactobacillus plantarum WCFS1 (Russo, 2023). 

Some amino acids can serve as both stimulatory pre-

cursors and inducers, such as tryptophan for dimethyl-

allyl-tryptophan synthetase in the production of ergot 

alkaloids (Borkar, 2023) and leucine for bacitracin syn-

thetase (Seyfi et al., 2020). Genetic knockout of loci can 

coition cells and alter their intracellular architecture to 

respond to environmental cues and improve product 

stability (Jo et al., 2023). Antisense technology can also 

be used to temporarily reduce a gene's activity and 

increase the activity of a recombinant enzyme. 

Impact of bioremediation by strategies of metabolic 

engineering 

Metabolic engineering has significantly improved biore-

mediation by impacting several key strategies, includ-

ing bioaugmentation, biosimulation, and biosorption. 

Bacteria have been genetically altered to express en-

zymes that can break down various organic pollutants, 

such as pesticides, polychlorinated biphenyls (PCBs), 

and hydrocarbons (Bala S. et al., 2022) Biosimulation 

models can be used to predict the performance of dif-

ferent remediation strategies and optimize the condi-

tions for biodegradation. Metabolic engineering has 

enabled the development of more accurate models by 

providing detailed information on the metabolic path-

ways of microorganisms and the enzymes involved in 

biodegradation. Genetic engineering has been used to 

modify microorganisms to express high levels of bind-

ing proteins or enzymes that can capture and degrade 

specific contaminants (Goswami and Gupta, 2020). It is 

effective in the elimination of heavy metals, dyes, and 

other toxic pollutants. 

Role of nanotechnology to improve bioremediation 

by microbes 

Incorporating nanomaterials such as nanoparticles, 

nanotubes, and nanofibers can enhance the bioremedi-

ation process's physiological, chemical, and biological 

characteristics, increasing efficiency and effectiveness. 

Research has shown that the use of nanomaterials in 

bioremediation can have significant positive effects on 

the elimination of various contaminants such as heavy 

metals, organic pollutants, and even radioactive ele-

ments. For example, a study demonstrated that using 

iron oxide nanoparticles in conjunction with microbes 

effectively removes hexavalent chromium from contam-

inated water (Vázquez-Núñez et al., 2020). 

The nanomaterials bind to the contaminants, making 

them more accessible to the microorganisms responsi-

ble for their degradation. The nanomaterials' increased 

surface area and reactivity allow for faster and more 

efficient degradation of the contaminants. The nano-

materials can also stimulate the growth and activity of 

the microorganisms, further enhancing the bioremedia-

tion process. Nano bioremediation offers several ad-

vantages over conventional remediation technologies, 

including reduced toxicity, increased effectiveness, and 

cost-effectiveness. However, there are also potential 

hazards related to nanomaterials, including their poten-

tial toxicity and environmental impact, which must be 

carefully considered and addressed (El-Kalliny et al., 

2023). 

The elimination of heavy metals present in wastewater 

using chitosan nanoparticles is one example of how 

nanomaterials are used in biosorption. Heavy metals, 

including copper, lead, and cadmium, have been found 

to have a strong affinity for the biopolymer chitosan, 

which is derived from chitin. When chitosan is convert-

ed into nanoparticles, its surface area is increased, 

leading to improved adsorption efficiency. In a study, 

chitosan nanoparticles were found to be effective in 

removing lead from aqueous solutions, with an adsorp-

tion capacity of 141.84 mg/g (Zhang et al., 2023). In 

biostimulation, iron nanoparticles have been shown to 

stimulate microbial growth and activity, leading to in-

creased degradation of polycyclic aromatic hydrocar-

bons (PAHs) in contaminated soils. In a study, iron na-

noparticles were used to treat PAH-contaminated soil, 

resulting in a significant increase in microbial activity 

and PAH degradation compared to the control group 

(Hao et al., 2020). 

One example of using nanomaterials to remove heavy 

metals is titanium dioxide (TiO2) nanoparticles. The 

study found that the removal efficiency increased with 

increasing TiO2 concentration, and the elimination effi-

ciency of 99% was achieved at a concentration of 0.5 

g/L (Modwi et al., 2023). Another illustration is the elimi-

nation of mercury using carbon nanotubes (CNTs). 

Mercury was removed from tainted water using CNTs. 

With a maximum adsorption capacity of 186.2 mg/g 

(Fayazi et al., 2020), the study discovered that the ad-
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sorption capacity of CNTs for mercury was much higher 

than that of activated carbon. AgNPs, or silver nanopar-

ticles, have also been investigated for removing heavy 

metals, including lead and cadmium. Lead and cadmi-

um were taken out of contaminated water using 

AgNPs. The study found that the removal efficiency of 

AgNPs for cadmium and lead was 95% and 90%, re-

spectively, at a concentration of 0.2 g/L (Negi et al., 

2021). 

Challenges in bioremediation 

Because some substances are not biodegradable, the 

applicability of bioremediation for removing pollutants 

present in polluted locations is constrained. Even if a 

substance is biodegradable, its subsequent processing 

and decomposition may produce harmful metabolites. 

Furthermore, deploying the same bacterial strain to 

several sites is difficult since its effectiveness at a par-

ticular site is determined by a quantity of site-specific 

characteristics. The properties of the contaminants, the 

type of biological processes involved in bioremediation, 

and the availability of suitable nutrient levels are all 

considered to involve the biological processes' com-

plexity. Bioremediation is time-consuming and labor-

intensive because it calls for soil excavation, unique 

site layouts, and customization. The usage of large 

equipment like pumps and machines can produce 

noise and other disruptions that might affect nearby 

communities. In addition, ethical issues regarding the 

use of particular bacterial strains in bioremediation 

raise doubts about the impact they have on regional 

microflora (Vishwakarma et al., 2020). 

Activity of groundwater bioremediation is extremely 

determined by geochemistry, geology, hydrology, and 

pollutant concentration. Low baseline pH and tempera-

ture may impact biological treatments, whereas bed-

rock strength and soil porosity may affect plume move-

ment. Furthermore, precisely anticipating the direction 

and velocity of groundwater flow is critical for managing 

pollutant transfer. Pollutant bioavailability, pollutant sta-

bility reversal, microbial adaptation, metabolic routes, 

enzymatic investigations, pollutant interactions, and 

end-product quality are some of these difficulties. A 

pesticide or polycyclic aromatic hydrocarbon (PAH) 

may be less bioavailable for microbial degradation 

since they are embedded in the soil. Exogenous micro-

organisms' poor compliance with polluted soils might 

impair their capacity to adapt to a particular site and 

degrade contaminants, necessitating proper techniques 

to solve this issue (Narayanan et al., 2023). Ageing of 

pollutants also contributes to reduced bioavailability 

over time, creating a need for solutions that maximize 

pollutant accessibility. 

The metabolic pathways in the bioremediation of organ-

ic pollutants and heavy metals remain incompletely 

understood, making it necessary to explore and under-

stand microbial communities and metabolic dynamics. 

Molecular biology techniques such as sequencing and 

synthetic biology approaches and technology can pro-

vide valuable tools for understanding the genomic or-

ganization of indigenous microbes and addressing limi-

tations to pollutant removal (Goswami and Sharma, 

2022b). Enzymatic studies are required to comprehend 

the catalytic action of several enzymes involved in pol-

lution breakdown. More research is needed to investi-

gate kinetics, molecular structure, activity, and inhibito-

ry processes.  

The interactions of contaminants from similar soil or 

compost composition on their degradation are poorly 

known, and additional research is required to overcome 

this obstacle. Finally, it is critical to guarantee that bio-

remediation results are devoid of harmful organic com-

pounds and metals beyond a certain level. 

Future prospects in bioremediation 

Bioremediation is an increasingly popular approach to 

cleaning up contaminated soil and groundwater. How-

ever, there are several challenges in translating labora-

tory-based results to the field. For bioremediation tech-

niques to be widely adopted, three major constraints 

are impeding their spread: a lack of comprehensive 

understanding of how microbes react in the field, diffi-

culty stimulating microbes, and difficulty ensuring prop-

er contact with contaminants (Mondal et al., 2023). De-

spite these obstacles, scientists are working on novel 

engineering ways to excite bacteria, such as gas spark-

ing, which has increased the aerobic breakdown of pe-

troleum compounds. Cell genetic manipulation is ex-

pected to improve through the development of bioaug-

mentation technologies which remove microbiological 

constraints. With a complete knowledge of biotransfor-

mation at the environmental and chromosomal levels, 

advanced bioremediation strategies will be developed. 

These technologies can also be used to develop meth-

ods for treating contaminants like polychlorinated bi-

phenyls and chlorinated solvents, which were previous-

ly thought to be impossible to degrade or difficult to 

degrade (Mondal et al., 2023). To increase microbial 

bioavailability, methods such as garbage solubilization 

by heat injection using hot air, steam, or flushing hot 

water, intense-pressure subsurface matrix fracturing, 

and the use of surfactants are being studied. Develop-

ing efficient and feasible tactics and assessing existing 

approaches' functionality and usefulness is critical. 

Many protocols have been developed to evaluate biore-

mediation technologies and ensure that cleaning objec-

tives are accomplished. Characterization of physio-

chemical parameters in situ also appears promising, 

potentially revolutionising field assessment examina-

tions. Despite the promise of bioremediation, it is nec-

essary to handle the microbes with caution and contin-

uously monitor their activity in the subsurface. The de-



Mehta, S. et al. / J. Appl. & Nat. Sci. 16(2), 741 - 751 (2024) 

748 

velopment of quick technologies that overcome current 

obstacles and help the world move towards a cleaner, 

greener environment will determine the future of biore-

mediation (Khan, 2024). Future prospects entail ad-

vanced engineering approaches, improved microbial 

stimulation methods, and thorough field assessments to 

realize the full potential of bioremediation in creating a 

cleaner, greener environment.   

Conclusion 

The heavy metals like arsenic, lead, mercury, and cad-

mium are significant pollutants due to their toxicity and 

carcinogenicity, posing substantial risks to human 

health and ecosystems. They persist in the environ-

ment, accumulating and magnifying in aquatic organ-

isms, exacerbating their harmful effects up the food 

chain. Bioremediation emerges as a promising solution, 

employing various microbial processes such as bio-

sorption, bioaugmentation, biostimulation, bioprecipita-

tion, and bioleaching to remove metals from 

wastewater. Microbial bioaugmentation showcases via-

ble strategies, utilizing bacteria and fungi with promis-

ing heavy metal remediation capabilities. Nanotechnol-

ogy enhances bioremediation efficacy by employing 

nanomaterials like nanoparticles and nanocomposites 

to facilitate pollutant degradation and microbial activity. 

Metabolic engineering further revolutionizes microbial 

bioremediation, genetically modifying microorganisms 

to optimize pollutant degradation. The review highlights 

novel microbial strains and consortia with strong biore-

mediation potential, paving the way for more efficient 

pollution removal. Despite the progress, challenges 

such as non-biodegradable pollutants, microbial adapt-

ability, and site-specific complexities persist.  
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