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INTRODUCTION 

Air pollution has increased tremendously in the last few 

decades because of increased growth, urbanization, 

and improved lifestyles in cities. In most Indian cities, 

air pollution is rising day by day due to rapid urbaniza-

tion (Selokar et al., 2020). Thus, addressing this issue 

is vital (Bhadauria et al., 2023; Khanna et al., 2013). 

PM2.5 (Particulate Matter 2.5) is the most dangerous 

(Evans et al., 2013) pollutant among all. They are sus-

pended particles with a diameter less than or equal to 

2.5 microns. It has a trivial diameter, large surface area 

and strong activity. It can easily absorb various kinds of 

toxic and harmful substances. It stays in the atmos-

phere long and has a large diffusion rate. That is why it 

greatly affects human health and the air quality. Litera-

ture advocates that for every 10 mg/m3 increase in 

PM2.5, it can upsurge the cardiovascular disease rate 

by 12 ~ 14%. PM2.5 contains numerous organic com-

pounds, such as hydrocarbons and formaldehyde and 

inorganic compounds, such as SO4^2- (Sulfates), 

NO3^- (Nitrates), etc. (Feng et al., 2016; O’Donnell et 

al., 2011). That is why it is essential to understand the 

temporal and spatial evolution and forecasting of PM2.5 

is very important so that effective measures can be 

taken by the concerned authorities to deal with the 

problem(Medhi and Gogoi, 2021).  

With the improvement in lifestyle and increased envi-

ronmental protection awareness, real-time monitoring 

of PM2.5 can no longer satisfy people. The prediction of 

PM2.5 for the future is of great concern, so that effective 

measures can be taken beforehand. So, it is important 

to monitor PM2.5 concentration and perform predictions 

based on historical data. Past literature uses classic 

algorithms such as ARIMA (Autoregressive Integrated 

Moving Average) (Abhilash et al., 2018), machine 
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learning algorithms, LSTM (Long Short-Term Memory), 

etc., for predicting time series data. An overview of 

forecasting in time series data is revealed in paper 

(Mahalakshmi et al., 2016). Numerous research studies 

have utilized point prediction methods, which offer sim-

plicity and ease of understanding. Real life is full of un-

certainties like COVID-19 pandemic, which cannot be 

reflected by these deterministic models (Dutta et al., 

2023). Probabilistic models have been designed to 

handle these issues. They quantify the uncertainties of 

the predictions by forming probability distributions over 

possible outcomes(Gneiting and Katzfuss, 2014). In the 

current scenario, GAN (Generative Adversarial Net-

work) is among the most powerful models for perform-

ing predictions. The model uses a generator and dis-

criminator, which is adversarial in nature and helps in-

crease the model's accuracy. GAN has been extensive-

ly used in image generation, but not much is done con-

cerning time series data. 

Timely and accurate PM2.5 concentration prediction will 

help the government manage major air pollution in an 

emergency and provide a scientific basis to take 

measures and decisions for production, emission and 

traffic restrictions. The government can also formulate 

prevention and control measures by analyzing the 

changing trend of PM2.5 concentration based on the 

prediction information. 

The existing prediction models based on machine 

learning predict PM2.5 concentration based on historical 

data of the target prediction site. It cannot fully consider 

the spatial relationship between the prediction site and 

the surrounding monitoring sites. Further, the model 

fails to produce accurate predictions in case of uncer-

tainties. To grasp the intricate probability distribution 

within air pollution data, which inherently involves un-

certainties, GANs emerge as an immensely potent tool. 

However, mastering them presents a formidable chal-

lenge. The selection of model architecture and hy-

perparameters requires meticulous attention, given the 

volatility of the training process. (Bai et al., 2021; Good-

fellow et al., 2016). The present study aimed to intro-

duce an innovative probabilistic predictive model, 

ProbPM2.5 to predict PM2.5 concentration using Condi-

tional Generative Adversarial Network.    

MATERIALS AND METHODS 

This experiment used a framework set up using Keras 

and Tensorflow(Hany and Walters, 2019). Experiments 

were performed using LSTM, GRU (Saif-ul-Allah et al., 

2022) and the proposed model and analysis were 

based on the results (Hochreiter and Schmidhuber, 

1997; Staudemeyer and Morris, 2019). In the LSTM 

model(Sun and Li, 2020), Bidirectional LSTM (Kim et 

al., 2023) was utilized in the 1st layer. Adam algorithm 

with a learning rate (0.001) was used as an optimizer. 

Batch size of 64 and 50 epochs was used during train-

ing. In the GRU model, two layers of GRU were used. 

Adam algorithm with a learning rate 0.0001 was used 

as the optimizer, and batch size of 128 and 50 epochs 

was used for training. 

Dataset  

This study used the continuous Ambient air quality 

monitoring station (CAAQMS) data for Guwahati. Gu-

wahati has been chosen as the focus area of the study 

because of its recognition as one of the cities having 

the highest recorded levels of Black Carbon globally 

(Barman and Gokhale, 2019). The concentration of 

particulate matter in Guwahati exceeds permissible 

thresholds significantly, posing a severe threat to the 

health of both adults and children(Amnuaylojaroen & 

Parasin, 2023; Oliveira et al., 2016). The Pollution Con-

trol Board of Assam (PCBA), headquartered in 

Bamunimaidan, Guwahati, is accountable for monitor-

ing the city's ambient air quality. Since 2008, the PCBA 

has consistently reported PM2.5 concentrations well 

above the recommended limits (Kioumourtzoglou et al., 

2016). 

The first data set contained CAAQMS data of Guwahati 

city from January 2019 to December 2022 (3 years). 

The data count was 33067, which contained hourly 

data. Some data was lost due to missing values. The 

second data set contained CAAQMS data of Delhi city 

from January 2016 to December 2022 (4 years). The 

data count was 66090. Both the datasets were collect-

ed from the Central Pollution Control Board, India 

(CCR, n.d.) (https://airquality.cpcb.gov.in/ccr/#/caaqm-

dashboard-all/caaqm-landing/data). 

 The parameters used in the study are given in Table. 

1. A descriptive statistic of the available meteorological 

conditions, criteria gases and particulates measures: 

count, mean, standard deviation, minimum, 25%, 50%, 

75%, maximum, skewness, kurtosis and variance for 

Guwahati and Delhi city were calculated. There was no 

high skewness value in the datasets. It showed that no 

Table 1. Summary of measurement site and observed variables. 

Measurement Site Type Variables 

 

 

Guwahati City and Delhi City 

Meteorological conditions Relative humidity, Wind speed, Wind direction, 

Temperature, Rainfall, Pressure 

Criteria gases NO2, SO2, NO, NOx, NH3, CO, Ozone, Benzene, Eth

-Benzene, MP-Xylene 

Particulates PM2.5, PM10 

https://airquality.cpcb.gov.in/ccr/#/caaqm-dashboard-all/caaqm-landing/data
https://airquality.cpcb.gov.in/ccr/#/caaqm-dashboard-all/caaqm-landing/data
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sharpness was observed with the increase in the data. 

The high value of kurtosis in PM2.5 indicates the pres-

ence of data discontinuities. The aim is to predict 1 day 

ahead PM2.5 concentration for classification and regres-

sion. 75% of the dataset was used for training, 20% for 

testing and 5% for validation. 

Principle 

GAN architecture was used to predict PM2.5 concentra-

tion. Conditional GAN was used to train a probabilistic 

PM2.5 forecasting model with the help of adversarial 

training (Bai et al., 2021). ProbPM2.5 was utilized as 

the generator. The gradient required for optimizing 

ProbPM2.5 during training was provided by discrimina-

tor. The Conditional GAN utilized historical data {Xt, …, 

Xo} as its condition to forecast P(Xt+1 | Xt,…, Xo). 

The value function for training ProbPM2.5 is given by 

Framework for conversion of deterministic model 

to probabilistic model 

Addressing the numerous challenges associated with 

multivariate time series data is imperative. A more intri-

cate architecture is necessary to predict future values 

and handle feature dependencies in multivariate time 

series data. As discussed earlier, ensuring a stable 

training process for GANs necessitates meticulous 

model architecture and selection of hyperparameters. 

Yet, finding an optimal architecture for the generator 

and discriminator, especially for multivariate time series 

data, can be exceptionally laborious or unattainable. To 

mitigate this challenge, a novel framework is intro-

duced. This framework constructs a probabilistic PM2.5 

predictor by leveraging a deterministic PM2.5 predictor, 

employing the architecture of GANs. The search for 

suitable generator and discriminator architectures was 

conducted independently to streamline the GAN archi-

tecture search process. The proposed framework and 

the adversarial training setup are illustrated in Fig. 1. 

Initially, an optimal architecture for the deterministic 

PM2.5 forecasting model is sought. If a suitable deter-

ministic model is already available, the first step can be 

bypassed, and the existing model can be utilized. For 

hyperparameter tuning, Bayesian Optimization used 

the Bayes Theorem to search for suitable parameters. 

Learning rate between 0.0001 and 0.0009 was used, 

epochs between 100 to 200 and batch size of 64 to 512 

was used. The model was finally trained using Adam 

algorithm as an optimizer, 0.0001 as the learning rate, 

100 epochs and a batch size of 128. Then, a noise vec-

tor Nz was integrated into the deterministic model. After 

conducting various experiments, it was observed that 

optimal outputs were obtained when a noise vector was 

inserted into the advanced layers of the network. In the 

initial stages, the network's earlier layers were em-

ployed to learn the depiction of the input window. Sub-

sequently, the model underwent training using GAN to 

acquire the probabilistic model, ProbPM2.5. To function 

as the discriminator, an appropriate PM2.5 classifier 

must be sought during the GAN training process. The 

Fig. 1. Proposed framework and adversarial training setup 
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search space of the GAN architecture is reduced to the 

discriminator only. This helps to find a discriminator 

structure efficiently that can train ProbPM2.5, delivering 

superior performance compared to the deterministic 

models alone. The framework works like the below: 

Choose a suitable deterministic model for PM2.5 predic-

tion. This can involve either utilizing an existing model 

or searching for an ideal deterministic PM2.5 predictor 

model. 

Construct the generator using the architecture and hy-

perparameters derived from the selected deterministic 

PM2.5 predictor. Embed a noise vector into the ad-

vanced layers of the network to facilitate the generation 

of synthetic samples. 

Explore various discriminator architectures to find an 

optimal one, then train the ProbPM2.5 model using the 

selected discriminator. 

Model setup 

An architecture search was run for each experiment to 

search for an optimal deterministic model. Mean Abso-

lute Error (MAE) was utilized as a loss function to train 

the deterministic model. The input window representa-

tion was learnt using Gated Recurrent Unit (GRU). The 

depiction of the input window was then fed through two 

dense layers to map it to prediction of PM2.5. ProbPM2.5  

was built by concatenating the noise vector to the out-

put of the window representation of GRU and then the 

Multi-Layer Perceptron block was extended as shown 

in Fig. 2. In the final step, an optimal architecture for the 

discriminator was searched by using a genetic algo-

rithm and the ProbPM2.5 was trained. Concatenation of 

Xt+1 to the end of the input window was done by the 

discriminator to construct {Xt+1, Xt, … X0}. After that, a 

GRU block was employed, and its output was fed 

through two layers of MLP using PyTorch (Hany & Wal-

ters, 2019). 

Data analysis 

Following evaluation metrics (Steurer et al., 2021) were 

utilized to evaluate the efficiency of the models. 

Negative form of Continuous ranked probability 

score (CRPS*) 

The negative form of CPRS* (Zamo & Naveau, 2018) 

(Berrisch & Ziel, 2023; Hersbach, 2000) was used to 

reflect the calibration and sharpness of a probabilistic 

model. It is given below 

Here, Y and Y' represent independent copies of a ran-

dom variable generated by the probabilistic predictor G, 

while y denotes the ground truth. It is vital to find a di-

rect way to compare deterministic and probabilistic 

models. And it is done by CRPS*.   

 

Mean absolute error (MAE) 

In place of CRPS*, Mean Absolute Error (MAE) (Medhi 

et al., n.d.)is used for the deterministic model. MAE is 

denoted as 

 

Where x is the actual value and x’ is the predicted value  

Root Mean Square Error (RMSE) 

RMSE is used to analyze the performance of the mod-

els (Chai & Draxler, 2014, 2014). It is denoted by 

Where yi is the actual PM2.5 concentration value, yp is 

the predicted PM2.5 concentration value, and n is the 

number of data points.  

RESULTS AND DISCUSSION 

Correlation analysis between PM2.5 concentration 

and meteor-

ological 

features 

The influence of meteorological features on PM2.5 con-

centration is very important and it is also very complex 

(Y. Liu et al., 2021; Wang et al., 2019). If each feature 

is considered separately, it becomes difficult to reflect 

Fig. 2. Discriminator architecture of conditional GAN 
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the coupling effect of multiple features on PM2.5 con-

centration well. The correlation between PM2.5 concen-

tration and meteorological features is depicted in Fig. 3. 

The analysis revealed positive correlations between 

PM2.5 concentration and relative humidity, temperature, 

and pressure. Conversely, negative correlations were 

observed between PM2.5 concentration, wind speed, 

wind direction, and rainfall. 

PM2.5 prediction using LSTM 

The result of LSTM for the Delhi and Guwahati da-

tasets are depicted in Fig. 4 (a) and (b). In both scenar-

ios, all the predicted values were slightly lower than the 

actual PM2.5 concentration. But, the prediction was 

slightly better for the Delhi dataset than the Guwahati 

dataset. During the training phase, the RMSE value 

was slightly higher for the Guwahati dataset than the 

Delhi dataset. During the testing phase also, the RMSE 

value was slightly higher for the Guwahati dataset than 

the Delhi dataset. For both datasets, the model per-

formed better in the training phase than in the testing 

phase. LSTM model performed better with the Delhi 

dataset with RMSE value of 5.86, contrary to the Gu-

wahati dataset, which had an RMSE value of 6.86. 

LSTM performed worst among all the models. 

PM2.5 prediction using GRU 

The result of GRU model for the Delhi and Guwahati 

datasets is shown in Fig. 5 (a) and (b). Like LSTM, in 

GRU model also, all the predicted values were slightly 

lower than the actual PM2.5 concentration in both cases 

(Tran et al., 2023). Again, for the Delhi dataset the pre-

diction was slightly better compared to Guwahati da-

taset. During both training and testing, the RMSE value 

was slightly higher for the Guwahati dataset than the 

Delhi dataset. For both datasets, the model performed 

better in the training phase than in the testing phase. 

GRU model performed better with Delhi dataset with 

RMSE value of 4.38, contrary to Guwahati dataset with 

an RMSE value of 5.38. Compared to LSTM model, 

GRU model predicted more accurately the PM2.5 con-

centration. Among all the models, GRU performed best 

during the training phase. However, during the testing 

phase, it performed better than LSTM, but prediction 

Fig. 3. Correlation coefficients between PM2.5 concentration and meteorological features 

Fig. 4. Test data plot using LSTM for (a) Delhi Dataset (b) Guwahati Dataset 
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accuracy was less compared to ProbPM2.5  model. 

The deterministic model served as a framework for 

capturing a robust representation from the input time 

window. Trained to estimate the mean of potential pre-

dictions, these models inherently encoded a clear indi-

cation of the target distribution's location. Subsequent-

ly, leveraging these indicators, the Multi-Layer Percep-

tron block adeptly translated the noise vector z into a 

probabilistic distribution of forthcoming PM2.5 concen-

tration values. The performance of GRU and LSTM 

decreased due to the occurrence of the unexpected 

event COVID-19 when the concentration of PM2.5 de-

creased suddenly due to fewer pollution-causing activi-

ties due to the lockdown. However, ProbPM2.5 per-

formed well despite the unexpected event. 

PM2.5 prediction using ProbPM2.5 

The loss plot of ProbPM2.5 model for Guwahati dataset 

and Delhi dataset is given in Fig 6(a) and (b), respec-

tively. For Guwahati dataset, D_loss is the loss path of 

the discriminator and G_loss is the loss path of the 

generator. Over time, it was noticed that the discrimina-

tor's loss initially surpassed that of the generator; how-

ever, gradually, the discriminator's loss approached 

zero. This trend was consistent even when examining 

the Delhi dataset, where the discriminator's loss re-

mained higher than that of the generator. But it con-

verged to zero faster as compared to the Guwahati 

dataset. The proposed framework underwent experi-

mentation on the datasets to identify optimal hyperpa-

rameters, as outlined in Table 2. In Table 3, experi-

ment’s results are summarized, presenting CRPS* of 

the optimal deterministic model and ProbPM2.5 model 

for the two datasets. To calculate CRPS* for 

ProbPM2.5 , 200 times sampling was done. In Table 4, a 

comparison was made between the RMSE values dur-

ing training and testing period for all three models. 

When the testing dataset was considered, it was found 

that ProbPM2.5 performed the best. LSTM and GRU's 

performance decreased due to the unexpected event 

COVID-19 (Biswas and Pathak, 2022; Mangayarkarasi 

et al., 2021). The proposed model exhibited superior 

performance compared to the traditional baseline mod-

els.  

Based on the conducted experiments, it was noted that 

ProbPM2.5 surpassed the deterministic model in perfor-

mance on the Delhi dataset despite having a nearly 

alike structure. Despite the dataset containing a sub-

Fig. 5. Test data plot using GRU for (a) Delhi Dataset (b) Guwahati Dataset 

Fig. 6. Proposed model loss plot for (a) Delhi Dataset and (b) Guwahati Dataset 
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stantial number of features, ProbPM2.5 demonstrated 

the capability to offer precise predictions for multivari-

ate time series datasets (Muruganandam and Arumu-

gam, 2023). In the Guwahati dataset, ProbPM2.5  out-

performed its parallel deterministic model in spite of 

having similar structural similarities. It was also ob-

served that the proposed model worked well even 

though the Guwahati dataset size was smaller than the 

Delhi dataset. It was also noted that the proposed 

framework successfully transformed the deterministic 

model into a more accurate probabilistic model. GAN is 

sensitive to the architecture of its components (A. Liu et 

al., 2019), but ProbPM2.5 still worked well when it was 

defined by engaging the deterministic architecture model.   

Conclusion 

The paper presents three main contributions: i) an inno-

vative probabilistic model, ProbPM2.5  was introduced to 

predict the PM2.5 concentration using multivariate time 

series data. Conditional GAN was used to set up train-

ing, ii) A framework was proposed that transformed 

deterministic PM2.5 prediction model into probabilistic 

model, and iii) Experiments were conducted on two 

datasets. Results show that the probability model out-

performed the deterministic models. The results indicat-

ed that ProbPM2.5 effectively learnt intricate patterns 

from datasets, discerning dependencies among numer-

ous attributes and accurately predicting PM2.5 concen-

tration. The experiments conducted on the proposed 

framework demonstrated a systematic approach for 

transforming deterministic models into probabilistic 

models, resulting in enhanced accuracy. The promising 

outputs of the experimentations suggest a great poten-

tial for probabilistic prediction utilizing GANs and further 

research can be done with this approach. Further com-

plex architectures for discriminators and generators can 

be experimented. The proposed framework simplified 

the process of selecting model architecture and hy-

perparameters. Leveraging an efficient deterministic 

model as a foundation facilitated the creation of more 

effective probabilistic models. Experimental results con-

sistently demonstrate the superiority of the proposed 

model over others, highlighting its efficacy and potential 

for practical applications. 
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Table 2. Hyperparameter optimal values for the generator and discriminator for each experiment 

 Delhi Dataset 

 Generator Hyperparameters Discriminator Hyperparameters 

Input Window Size 180 -- 
Noise Size 320 -- 

Number of GRU layers 1 3 

Number of GRU cells in each layer 125 158 

 Guwahati Dataset 

 Generator Hyperparameters Discriminator Hyperparameters 
Input Window Size 174 -- 

Noise Size 195 -- 

Number of GRU layers 1 1 

Number of GRU cells in each layer 125 128 

Table 3. CRPS* of deterministic model and ProbPM2.5 

          Best Deterministic Model ProbPM2.5 

CRPS* for Delhi dataset 247.5    240.6 

CRPS* for Guwahati dataset 1.07 × 10-2    7.63 × 10-3 

Table 4. RMSE (train data and test data) of deterministic model and ProbPM2.5 

 LSTM GRU ProbPM2.5 

RMSE (Train data) 1.52 1.20 1.79 

RMSE (Test data) 6.86 5.38 4.65 
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