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Abstract

Over the last few years, air pollution has become a matter of great concern. Numerous machine learning and deep learning
techniques have been applied to predict PM, s (Particulate Matter,5). However, deterministic models perform forecasting based
on the mean of probable outputs and cannot handle the uncertainties in reaklife situations. With the aim of solving the low accu-
racy of PM,s concentration prediction during uncertainties, the present study proposed an innovative probabilistic model-Prob
PM,s which predicts one day ahead PM, s concentration for time series data, which is multivariate in nature. First, a compre-
hensive correlation analysis between the meteorological features and PM, 5 concentration is done. Finally, the Conditional GAN
framework is used to train the ProbPM, s with the help of adversarial training. The proposed framework that transformed a de-
terministic model into a probabilistic model provided improved performance. Comparative analysis with conventional models,
such as LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Unit) reveals that ProbPM, s outperforms during testing,
showcasing resilience in the face of unforeseen events like COVID-19. Hence, the proposed method could perform improved
characterization of time series characteristics of the air pollutant changes in order to obtain better accuracy of PM, s concentra-
tion prediction

Keywords: Air pollution monitoring, Gated Recurrent Unit, Generative adversarial network, Long-short term memory, Multivari-

ate time series data, PM, 5 prediction

INTRODUCTION

Air pollution has increased tremendously in the last few
decades because of increased growth, urbanization,
and improved lifestyles in cities. In most Indian cities,
air pollution is rising day by day due to rapid urbaniza-
tion (Selokar et al., 2020). Thus, addressing this issue
is vital (Bhadauria et al., 2023; Khanna et al., 2013).
PM,s (Particulate Matter ,5) is the most dangerous
(Evans et al., 2013) pollutant among all. They are sus-
pended particles with a diameter less than or equal to
2.5 microns. It has a trivial diameter, large surface area
and strong activity. It can easily absorb various kinds of
toxic and harmful substances. It stays in the atmos-
phere long and has a large diffusion rate. That is why it
greatly affects human health and the air quality. Litera-
ture advocates that for every 10 mg/m®increase in
PM.s, it can upsurge the cardiovascular disease rate

by 12 ~ 14%. PM,s contains numerous organic com-
pounds, such as hydrocarbons and formaldehyde and
inorganic compounds, such as S04/2- (Sulfates),
NO3A- (Nitrates), etc. (Feng et al., 2016; O’'Donnell et
al., 2011). That is why it is essential to understand the
temporal and spatial evolution and forecasting of PM, 5
is very important so that effective measures can be
taken by the concerned authorities to deal with the
problem(Medhi and Gogoi, 2021).

With the improvement in lifestyle and increased envi-
ronmental protection awareness, real-time monitoring
of PM,s can no longer satisfy people. The prediction of
PM 5 for the future is of great concern, so that effective
measures can be taken beforehand. So, it is important
to monitor PM, 5 concentration and perform predictions
based on historical data. Past literature uses classic
algorithms such as ARIMA (Autoregressive Integrated
Moving Average) (Abhilash et al, 2018), machine
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learning algorithms, LSTM (Long Short-Term Memory),
etc., for predicting time series data. An overview of
forecasting in time series data is revealed in paper
(Mahalakshmi et al., 2016). Numerous research studies
have utilized point prediction methods, which offer sim-
plicity and ease of understanding. Real life is full of un-
certainties like COVID-19 pandemic, which cannot be
reflected by these deterministic models (Dutta et al.,
2023). Probabilistic models have been designed to
handle these issues. They quantify the uncertainties of
the predictions by forming probability distributions over
possible outcomes(Gneiting and Katzfuss, 2014). In the
current scenario, GAN (Generative Adversarial Net-
work) is among the most powerful models for perform-
ing predictions. The model uses a generator and dis-
criminator, which is adversarial in nature and helps in-
crease the model's accuracy. GAN has been extensive-
ly used in image generation, but not much is done con-
cerning time series data.

Timely and accurate PM, s concentration prediction will
help the government manage major air pollution in an
emergency and provide a scientific basis to take
measures and decisions for production, emission and
traffic restrictions. The government can also formulate
prevention and control measures by analyzing the
changing trend of PM,s concentration based on the
prediction information.

The existing prediction models based on machine
learning predict PM, s concentration based on historical
data of the target prediction site. It cannot fully consider
the spatial relationship between the prediction site and
the surrounding monitoring sites. Further, the model
fails to produce accurate predictions in case of uncer-
tainties. To grasp the intricate probability distribution
within air pollution data, which inherently involves un-
certainties, GANs emerge as an immensely potent tool.
However, mastering them presents a formidable chal-
lenge. The selection of model architecture and hy-
perparameters requires meticulous attention, given the
volatility of the training process. (Bai et al., 2021; Good-
fellow et al., 2016). The present study aimed to intro-
duce an innovative probabilistic predictive model,
ProbPM, 5 to predict PM,s concentration using Condi-
tional Generative Adversarial Network.

MATERIALS AND METHODS

This experiment used a framework set up using Keras

and Tensorflow(Hany and Walters, 2019). Experiments
were performed using LSTM, GRU (Saif-ul-Allah et al.,
2022) and the proposed model and analysis were
based on the results (Hochreiter and Schmidhuber,
1997; Staudemeyer and Morris, 2019). In the LSTM
model(Sun and Li, 2020), Bidirectional LSTM (Kim et
al., 2023) was utilized in the 1% layer. Adam algorithm
with a learning rate (0.001) was used as an optimizer.
Batch size of 64 and 50 epochs was used during train-
ing. In the GRU model, two layers of GRU were used.
Adam algorithm with a learning rate 0.0001 was used
as the optimizer, and batch size of 128 and 50 epochs
was used for training.

Dataset

This study used the continuous Ambient air quality
monitoring station (CAAQMS) data for Guwahati. Gu-
wahati has been chosen as the focus area of the study
because of its recognition as one of the cities having
the highest recorded levels of Black Carbon globally
(Barman and Gokhale, 2019). The concentration of
particulate matter in Guwahati exceeds permissible
thresholds significantly, posing a severe threat to the
health of both adults and children(Amnuaylojaroen &
Parasin, 2023; Oliveira et al., 2016). The Pollution Con-
trol Board of Assam (PCBA), headquartered in
Bamunimaidan, Guwahati, is accountable for monitor-
ing the city's ambient air quality. Since 2008, the PCBA
has consistently reported PM,s concentrations well
above the recommended limits (Kioumourtzoglou et al.,
2016).

The first data set contained CAAQMS data of Guwahati
city from January 2019 to December 2022 (3 years).
The data count was 33067, which contained hourly
data. Some data was lost due to missing values. The
second data set contained CAAQMS data of Delhi city
from January 2016 to December 2022 (4 years). The
data count was 66090. Both the datasets were collect-
ed from the Central Pollution Control Board, India
(CCR, n.d.) (https://airquality.cpcb.gov.in/ccr/#/caagm-
dashboard-all/caagm-landing/data).

The parameters used in the study are given in Table.
1. A descriptive statistic of the available meteorological
conditions, criteria gases and particulates measures:
count, mean, standard deviation, minimum, 25%, 50%,
75%, maximum, skewness, kurtosis and variance for
Guwahati and Delhi city were calculated. There was no
high skewness value in the datasets. It showed that no

Table 1. Summary of measurement site and observed variables.

Measurement Site Type

Variables

Meteorological conditions

Guwabhati City and Delhi City Criteria gases

Particulates

Relative humidity, Wind speed, Wind direction,
Temperature, Rainfall, Pressure

NO,, SO, NO, NOx, NH3 CO, Ozone, Benzene, Eth
-Benzene, MP-Xylene

PM2.5, PM10

705


https://airquality.cpcb.gov.in/ccr/#/caaqm-dashboard-all/caaqm-landing/data
https://airquality.cpcb.gov.in/ccr/#/caaqm-dashboard-all/caaqm-landing/data

Medhi, S. & Gogoi, M. / J. Appl. & Nat. Sci. 16(2), 704 - 712 (2024)

sharpness was observed with the increase in the data.
The high value of kurtosis in PM, s indicates the pres-
ence of data discontinuities. The aim is to predict 1 day
ahead PM, s concentration for classification and regres-
sion. 75% of the dataset was used for training, 20% for
testing and 5% for validation.

Principle

GAN architecture was used to predict PM, 5 concentra-
tion. Conditional GAN was used to train a probabilistic
PM, s forecasting model with the help of adversarial
training (Bai et al., 2021). ProbPM2.5 was utilized as
the generator. The gradient required for optimizing
ProbPM, s during training was provided by discrimina-
tor. The Conditional GAN utilized historical data {Xt, ...,
Xo} as its condition to forecast P(Xt+1 | Xt,..., Xo).

The value function for training ProbPM 5 is given by
Framework for conversion of deterministic model
to probabilistic model

Addressing the numerous challenges associated with
multivariate time series data is imperative. A more intri-
cate architecture is necessary to predict future values
and handle feature dependencies in multivariate time
series data. As discussed earlier, ensuring a stable
training process for GANs necessitates meticulous

minmax V(Di, PB25) =Ext + 1 ~ Pdata(xt + l][log:(D:’(xt +11st, xﬂ]ﬂ
+ Ez~Po(2) log (1 - i (PB2.5((xt,...20)) ) Eq 1

model architecture and selection of hyperparameters.
Yet, finding an optimal architecture for the generator

and discriminator, especially for multivariate time series
data, can be exceptionally laborious or unattainable. To
mitigate this challenge, a novel framework is intro-
duced. This framework constructs a probabilistic PM, 5
predictor by leveraging a deterministic PM,s predictor,
employing the architecture of GANs. The search for
suitable generator and discriminator architectures was
conducted independently to streamline the GAN archi-
tecture search process. The proposed framework and
the adversarial training setup are illustrated in Fig. 1.
Initially, an optimal architecture for the deterministic
PM, s forecasting model is sought. If a suitable deter-
ministic model is already available, the first step can be
bypassed, and the existing model can be utilized. For
hyperparameter tuning, Bayesian Optimization used
the Bayes Theorem to search for suitable parameters.
Learning rate between 0.0001 and 0.0009 was used,
epochs between 100 to 200 and batch size of 64 to 512
was used. The model was finally trained using Adam
algorithm as an optimizer, 0.0001 as the learning rate,
100 epochs and a batch size of 128. Then, a noise vec-
tor Nz was integrated into the deterministic model. After
conducting various experiments, it was observed that
optimal outputs were obtained when a noise vector was
inserted into the advanced layers of the network. In the
initial stages, the network's earlier layers were em-
ployed to learn the depiction of the input window. Sub-
sequently, the model underwent training using GAN to
acquire the probabilistic model, ProbPM, 5. To function
as the discriminator, an appropriate PM,s classifier
must be sought during the GAN training process. The
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search space of the GAN architecture is reduced to the
discriminator only. This helps to find a discriminator
structure efficiently that can train ProbPM, s, delivering
superior performance compared to the deterministic
models alone. The framework works like the below:
Choose a suitable deterministic model for PM, 5 predic-
tion. This can involve either utilizing an existing model
or searching for an ideal deterministic PM, 5 predictor
model.

Construct the generator using the architecture and hy-
perparameters derived from the selected deterministic
PM, s predictor. Embed a noise vector into the ad-
vanced layers of the network to facilitate the generation
of synthetic samples.

Explore various discriminator architectures to find an
optimal one, then train the ProbPM,s model using the
selected discriminator.

Model setup

An architecture search was run for each experiment to
search for an optimal deterministic model. Mean Abso-
lute Error (MAE) was utilized as a loss function to train
the deterministic model. The input window representa-
tion was learnt using Gated Recurrent Unit (GRU). The
depiction of the input window was then fed through two
dense layers to map it to prediction of PM,s. ProbPM, 5
was built by concatenating the noise vector to the out-
put of the window representation of GRU and then the
Multi-Layer Perceptron block was extended as shown
in Fig. 2. In the final step, an optimal architecture for the
discriminator was searched by using a genetic algo-
rithm and the ProbPM, s was trained. Concatenation of
Xw1to the end of the input window was done by the
discriminator to construct {Xu.1, X, .. Xo}. After that, a
GRU block was employed, and its output was fed
through two layers of MLP using PyTorch (Hany & Wal-
ters, 2019).

Data analysis
Following evaluation metrics (Steurer et al., 2021) were
utilized to evaluate the efficiency of the models.

INPUT WINDOW
X0 | X1 Xt
CONCAT
PREDICTION
X0 | X1 Xt | Xts1

Xt+1

Fig. 2. Discriminator architecture of conditional GAN

l

-

—

©
|
©
|
©
|
©

—

Negative form of Continuous ranked probability
score (CRPS¥)

The negative form of CPRS* (Zamo & Naveau, 2018)
(Berrisch & Ziel, 2023; Hersbach, 2000) was used to
reflect the calibration and sharpness of a probabilistic
model. It is given below

Here, Y and Y' represent independent copies of a ran-
dom variable generated by the probabilistic predictor G,
while y denotes the ground truth. It is vital to find a di-
rect way to compare deterministic and probabilistic
models. And it is done by CRPS*.

Mean absolute error (MAE)

In place of CRPS*, Mean Absolute Error (MAE) (Medhi
et al., n.d.)is used for the deterministic model. MAE is
denoted as

Where x is the actual value and x’ is the predicted value

CRPS * (Ge,y) =Eg | Y —v| — (%)Em ¥—Y'| Eg.2
Root Mean Square Error (RMSE)

RMSE is used to analyze the performance of the mod-
els (Chai & Draxler, 2014, 2014). It is denoted by
Where vyi is the actual PM,5s concentration value, yp is
the predicted PM,s concentration value, and n is the
number of data points.

RESULTS AND DISCUSSION

Correlation analysis between PM,5 concentration
and meteor-
ological

features

The influence of meteorological features on PM,5 con-
centration is very important and it is also very complex
(Y. Liu et al., 2021; Wang et al., 2019). If each feature
is considered separately, it becomes difficult to reflect
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GRU BLOCK

©—0—
DENSE
LAYER

!
!

—— OUTPUT

!
|

707



Medhi, S. & Gogoi, M. / J. Appl. & Nat. Sci. 16(2), 704 - 712 (2024)

the coupling effect of multiple features on PM,s con-
centration well. The correlation between PM, 5 concen-
tration and meteorological features is depicted in Fig. 3.
The analysis revealed positive correlations between
PM, s concentration and relative humidity, temperature,
and pressure. Conversely, negative correlations were
observed between PM,5 concentration, wind speed,
wind direction, and rainfall.

PM_ s prediction using LSTM

The result of LSTM for the Delhi and Guwahati da-
tasets are depicted in Fig. 4 (a) and (b). In both scenar-
ios, all the predicted values were slightly lower than the
actual PM,s concentration. But, the prediction was
slightly better for the Delhi dataset than the Guwahati
dataset. During the training phase, the RMSE value
was slightly higher for the Guwahati dataset than the
Delhi dataset. During the testing phase also, the RMSE
value was slightly higher for the Guwahati dataset than
the Delhi dataset. For both datasets, the model per-
formed better in the training phase than in the testing
phase. LSTM model performed better with the Delhi

dataset with RMSE value of 5.86, contrary to the Gu-
wahati dataset, which had an RMSE value of 6.86.
LSTM performed worst among all the models.

PM_ s prediction using GRU

The result of GRU model for the Delhi and Guwahati
datasets is shown in Fig. 5 (a) and (b). Like LSTM, in
GRU model also, all the predicted values were slightly
lower than the actual PM, s concentration in both cases
(Tran et al., 2023). Again, for the Delhi dataset the pre-
diction was slightly better compared to Guwahati da-
taset. During both training and testing, the RMSE value
was slightly higher for the Guwahati dataset than the
Delhi dataset. For both datasets, the model performed
better in the training phase than in the testing phase.
GRU model performed better with Delhi dataset with
RMSE value of 4.38, contrary to Guwahati dataset with
an RMSE value of 5.38. Compared to LSTM model,
GRU model predicted more accurately the PM, s con-
centration. Among all the models, GRU performed best
during the training phase. However, during the testing
phase, it performed better than LSTM, but prediction
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Fig. 3. Correlation coefficients between PM, s concentration and meteorological features
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accuracy was less compared to ProbPM, s model.

The deterministic model served as a framework for
capturing a robust representation from the input time
window. Trained to estimate the mean of potential pre-
dictions, these models inherently encoded a clear indi-
cation of the target distribution's location. Subsequent-
ly, leveraging these indicators, the Multi-Layer Percep-
tron block adeptly translated the noise vector z into a
probabilistic distribution of forthcoming PM,s concen-
tration values. The performance of GRU and LSTM
decreased due to the occurrence of the unexpected
event COVID-19 when the concentration of PM,s de-
creased suddenly due to fewer pollution-causing activi-
ties due to the lockdown. However, ProbPM,s per-
formed well despite the unexpected event.

PM, s prediction using ProbPM, 5

The loss plot of ProbPM, s model for Guwahati dataset
and Delhi dataset is given in Fig 6(a) and (b), respec-
tively. For Guwahati dataset, D_loss is the loss path of
the discriminator and G_loss is the loss path of the
generator. Over time, it was noticed that the discrimina-
tor's loss initially surpassed that of the generator; how-
ever, gradually, the discriminator's loss approached

GRU

zero. This trend was consistent even when examining
the Delhi dataset, where the discriminator's loss re-
mained higher than that of the generator. But it con-
verged to zero faster as compared to the Guwahati
dataset. The proposed framework underwent experi-
mentation on the datasets to identify optimal hyperpa-
rameters, as outlined in Table 2. In Table 3, experi-
ment’s results are summarized, presenting CRPS* of
the optimal deterministic model and ProbPM,s model
for the two datasets. To «calculate CRPS* for
ProbPM, s , 200 times sampling was done. In Table 4, a
comparison was made between the RMSE values dur-
ing training and testing period for all three models.
When the testing dataset was considered, it was found
that ProbPM, s performed the best. LSTM and GRU's
performance decreased due to the unexpected event
COVID-19 (Biswas and Pathak, 2022; Mangayarkarasi
et al., 2021). The proposed model exhibited superior
performance compared to the traditional baseline mod-
els.

Based on the conducted experiments, it was noted that
ProbPM, s surpassed the deterministic model in perfor-
mance on the Delhi dataset despite having a nearly
alike structure. Despite the dataset containing a sub-
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Table 2. Hyperparameter optimal values for the generator and discriminator for each experiment

Delhi Dataset

Generator Hyperparameters

Input Window Size 180
Noise Size 320
Number of GRU layers 1

Number of GRU cells in each layer 125

Discriminator Hyperparameters

3
158

Guwahati Dataset

Generator Hyperparameters

Input Window Size 174
Noise Size 195
Number of GRU layers 1

Number of GRU cells in each layer 125

Discriminator Hyperparameters

Table 3. CRPS* of deterministic model and ProbPM2.5

Best Deterministic Model ProbPM2.5
CRPS* for Delhi dataset 247.5 240.6
CRPS* for Guwahati dataset 1.07 x 107 7.63 x 107
Table 4. RMSE (train data and test data) of deterministic model and ProbPM2.5
LSTM GRU ProbPM2.5
RMSE (Train data) 1.52 1.20 1.79
RMSE (Test data) 6.86 5.38 4.65

stantial number of features, ProbPM,s demonstrated
the capability to offer precise predictions for multivari-
ate time series datasets (Muruganandam and Arumu-
gam, 2023). In the Guwahati dataset, ProbPM,5 out-
performed its parallel deterministic model in spite of
having similar structural similarities. It was also ob-
served that the proposed model worked well even
though the Guwahati dataset size was smaller than the
Delhi dataset. It was also noted that the proposed
framework successfully transformed the deterministic
model into a more accurate probabilistic model. GAN is
sensitive to the architecture of its components (A. Liu et
al., 2019), but ProbPM, 5 still worked well when it was
defined by engaging the deterministic architecture model.

Conclusion

The paper presents three main contributions: i) an inno-
vative probabilistic model, ProbPM, s was introduced to
predict the PM,s concentration using multivariate time
series data. Conditional GAN was used to set up train-
ing, ii) A framework was proposed that transformed
deterministic PM, 5 prediction model into probabilistic
model, and iii) Experiments were conducted on two
datasets. Results show that the probability model out-
performed the deterministic models. The results indicat-
ed that ProbPM,s effectively learnt intricate patterns
from datasets, discerning dependencies among numer-
ous attributes and accurately predicting PM,s concen-

tration. The experiments conducted on the proposed
framework demonstrated a systematic approach for
transforming deterministic models into probabilistic
models, resulting in enhanced accuracy. The promising
outputs of the experimentations suggest a great poten-
tial for probabilistic prediction utilizing GANs and further
research can be done with this approach. Further com-
plex architectures for discriminators and generators can
be experimented. The proposed framework simplified
the process of selecting model architecture and hy-
perparameters. Leveraging an efficient deterministic
model as a foundation facilitated the creation of more
effective probabilistic models. Experimental results con-
sistently demonstrate the superiority of the proposed
model over others, highlighting its efficacy and potential
for practical applications.
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