Anti-cancer activity of crude Slrp protein conjugated mesoporous silica nanoparticles in HeLa Cell Lines: An in vitro approach

Shiva Prasad Panjala
Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad-500007 (Telangana), India; Food Chemistry Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad-500007 (Telangana), India

Satyanarayana Swamy Vyshnava
Department of Biotechnology, University College of Science, Sri Krishnadevaraya University, Anantapuramu-515003 (Andhra Pradesh), India; Department of Microbiology, Keshav Memorial Institute of Commerce and Sciences, Narayanguda, Hyderabad-500029, (Telangana), India

Swathi Banapuram
Clinical Division, National Institute of Nutrition, ICMR, Hyderabad-500007 (Telangana), India

Vihari Vasikarla
University of California, Data Science, At Halicioglu Data Science Institute, La Jolla -92037 (San Diego), United States of America

Paramasivam Kameshpandian
DMI St. John The Baptist University, Lilongwe Campus P.O. Box 2398, Area 4 (Lilongwe Malawi), Central Africa

Muralidhara Rao Dowlathabad
Department of Biotechnology, University College of Science, Sri Krishnadevaraya University, Anantapuramu-515003 (Andhra Pradesh), India

Roja Rani Anupalli*
Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad-500007 (Telangana), India

*Corresponding author: E-mail: anupallirr@gmail.com

Article Info
https://doi.org/10.31018/jans.v16i1.5285
Received: November 20, 2023
Revised: February 26, 2024
Accepted: March 3, 2024

How to Cite

Abstract
Microbial based therapeutics for cancer have gained a significant interest in recent decades. The present study relies on the synthesis, analysis, and conjugation of Salmonella Leucine-rich Proteins (SlrP) with mesoporous silica nanoparticles (MSN\(^{NPA}\)) to evaluate their potential anticancer activity. The SlrP proteins were effectively produced and isolated from Salmonella enterica using Tryptic Soy Broth (TSB), and the subsequent SDS-PAGE analysis verified the presence of a band at around 72 KDa. The MSN synthesis yielded particles with an average diameter of 68.05±0.87 nm and a pore diameter of 7.1 nm. In addition, we synthesized MSN\(^{NPA}\) and then conjugated them with SlrP. Characterization studies confirmed the effective conjugation. The cytotoxicity evaluation conducted on HeLa cells revealed no substantial modification in cell viability upon treatment with MSN alone. Nevertheless, when MSN\(^{NPA}\)/SlrP was done, it demonstrated significant cytotoxic properties, as evidenced by an IC\(_{50}\) value of 10 µg/mL. The results indicate that SlrP-conjugated MSN (MSN\(^{NPA}/SlrP\)) could be utilized as promising nanocarriers for delivering anticancer proteins.

Keywords: Anti-cancer activity, Bio-conjugations, Bacterial Proteins, Mesoporous silica, Nanoparticles

INTRODUCTION

Cancer, a relatively intricate and complicated ailment, is a significant factor in global mortality (Bray et al. 2018). Despite significant progress in cancer therapy, the pursuit of more efficient and less harmful treatments remains a fundamental objective in oncology research (Pucci, Martinelli and Ciofani 2019, Kuznetsov, Clairambault and Volpert 2021). An emerging approach in this field is, harnessing proteins produced from microorganisms as therapeutic agents.

Throughout the past studies, it has been extensively reported that bacteria have a tendency to specifically infect tumor tissues, a behavior that has been observed for more than a century (Rook and Dalgleish 2011, Dzutsev et al. 2017, Huang et al. 2021). In recent decades many research groups have been studying the potential of bacterial proteins in cancer therapies due to their distinct activity (Forbes 2010, Roy and Trinchieri 2017, Wong and Yu 2019, Cani 2018). Specific bacterial proteins have been discovered to trigger programmed cell death in cancer cells, hinder the formation of new blood vessels, and regulate the immune response in a way that promotes the depletion of the size of tumors (Huang et al., 2021; Lugano et al., 2020; Sedighi et al., 2019; Liang et al. 2019). Three categories of bacteria have been investigated for their potential as agents that can combat cancer. Class I includes obligate anaerobes such as Bifidobacteria Sp. (B. longum, B. adolescentis, B. infantis), which are Gram-positive bacteria renowned for their probiotic characteristics, and they possess an oncolytic function (Wei et al., 2008; Dailey et al., 2021).

Class II includes facultative intracellular bacteria, such as Salmonella Sp. (S. typhimurium, S. choleraesuis) and Listeria Sp. (L. monocytogenes), as well as E. coli. These bacteria possess the ability to attack tumors of various sizes selectively and hold promise as carriers for vaccines (Sedighi et al., 2019; Toussaint et al., 2013; Kalia et al., 2022; Guirnalda et al., 2012). Salmonella Sp. Strains exhibit a substantial ratio of 1000:1 between tumors and normal tissue. Nevertheless, the cell wall components of these organisms can induce an immune response, and there are safety problems associated with administering them in high quantities (Barrow, 2007; Hurley et al., 2014). Class III comprises exclusively anaerobic bacteria, such as Clostridium Sp., which can be further classified as proteolytic (C. sporogenes) and saccharolytic (C. novyi, C. butyricum, C. acetobutylicum, C. onycitcium, C. beijerincki) (Van Mellaert, 2006; Zargar, 2014; Jafari et al., 2012). These bacteria that create spores are durable and exhibit significant oncolytic capabilities. However, they can only colonise big tumors and can be pathogenic in certain strains (Zygouropoulou et al., 2019).

Leschner et al., 2009 group provide insights of bacterium Salmonella Sp. have been thoroughly investigated as tumour invasion of Salmonella enterica (Leschner et al., 2009). While the Salmonella leucine-rich repeat protein (SlrP) is notable among its assortment of proteins as reported by the research group (Figueroa-Bossi et al. 2001; Ramos-Morales, 2012; Haraga, 2005; Ehrbar et al., 2003). The distinctive interactions of SlrP with eukaryotic cells, including its tendency to disrupt host cellular processes, indicate a promising potential for its utilization in cancer treatment (Lu, 2015; Layton and Galovy, 2007).

Nevertheless, although bacterial proteins present a new and innovative method for cancer treatment, their instantaneous application is not devoid of obstacles (Liu et al., 2018; Albalawi et al., 2021; Martin et al. 2015). Observations have been made concerning aspects such as the possibility of causing an immune response, quick breakdown in the body’s circulation, and unintended effects on nonspecific targets (Liu et al., 2018; Martin et al., 2015). In order to address these challenges, researchers utilize medication delivery techniques that rely on nanoparticles (Anchordoquy et al., 2017; Chentharama et al., 2019). Out of the many different types of nanoparticles that have been investigated, mesoporous silica nanoparticles (MSNs) have received considerable interest (Kankala et al., 2019; Manzano and Vallet-Regi, 2020). MSNs are characterized by their non-toxic nature, biocompatibility, large surface area, adjustable pore size, and convenient ability to be modified with different functionalities (Florek et al., 2017; Ahmadi et al., 2022). Due to their distinctive characteristics, they are excellent vehicles for medicinal substances, ensuring precise delivery while reducing the occurrence of nonspecific adverse effects (Frickenstein et al., 2021; Hossen et al., 2019; Farjadi-an et al., 2019).

The present study aimed to investigate the effectiveness of conjugation of SlrP with MSNs as a novel strategy for cancer treatment. The aim was to synthesize and analyze SlrP-conjugated MSNMPA (MSN(MPA/SlrP)), assess their potential as anticancer agents in-vitro, specifically in their capacity to target and impede the proliferation of cancer cells. Furthermore, the study seeks to evaluate these linked nanoparticles’ compatibility with potential toxicity to determine their safety for therapeutic applications.

MATERIALS AND METHODS

Chemicals and Reagents

Microbial media include Luria Bertani Broth (LB), Nutrient Broth (NB), Tryptone Soya Broth (TSB), Tryptone Soya Agar (TSA) were purchased from Loba Chem Pvt Ltd, India. Mammalian cell culture media include the Dulbecco’s Modified Eagle Medium (DMEM), Fetal Bovine Serum (FBS), Penicillin-Streptomycin solution (Pen:Strep), trypsin-EDTA and 1X PBS solution was purchased from Himedia. Lysis buffer, Triton X-100, Protease inhibitor, Formaldehyde (HCHO), Cetyltrimethylammonium bromide (CTAB), Ammonium hydroxide
(NH$_4$OH), Tetraethyl orthosilicate (TEOS), Ethanol (EtOH), Methanol (MeOH), Propanol (PrOH), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), N-hydroxy succinimide (NHS), 2-(N-morpholino) ethanesulfonic acid (MES) buffer and Acetone (Ac) organic solvent were purchased from Tokyo Chemicals Industry Pvt Ltd. Acrylamide (Ac), Bis-acrylamide (B-Acr), Sodium Dodecyl Sulfate (SDS), Tris (hydroxymethyl)aminomethane (Tris), β-mercaptopr opanic acid (β-MPA) were purchased from Sigma-Aldrich, Ammonium Persulfate (APS), Tetramethyleth ylene diamine (TEMED), β-mercaptoethanol, Bromophenol Blue were purchased from Merck Chemical.

Bacterial culture and crude protein preparation

Salmonella enterica was obtained from *National Centre for Microbial Resource (NCMR)*, Pune, India. *S. enterica* standard strain (MCC 3910) is kept at 4°C on Nutrient Agar medium (NAM) slants, while glycerol stock is kept at -80°C. Throughout this study, *S. enterica* was maintained in a contamination free environment with proper ethical guidelines to be followed, to maintain the bacterial strain with proper microbial cultures and disposals. TSB was used as the growth medium for the bacterial culture of *S. enterica*. A solitary colony of *S. enterica*, obtained from a recently streaked agar plate, was introduced into TSB, LB and NB subjected to incubation at a temperature of 37°C, while continuously agitated at 200 rpm for overnight incubation. The culture was diluted into a fresh medium and allowed to develop until the optical density at 600 nm (OD$_{600}$) reached a value between 0.6 and 0.8, indicating the mid-logarithmic phase.

After the growth phase, the bacterial culture was subjected to centrifugation at a force of 4,000 rpm for 10 minutes at a temperature of 4°C to collect the cells. The resulting pellet was rinsed twice with cold 1X PBS. To extract SlrP, the pellet was mixed with a lysis buffer (50 mM Tris-HCl at pH 8.0, 150 mM NaCl) and 1% Triton X-100. The lysis buffer was further added with a protease inhibitor cocktail. The process of breaking down cells was accomplished by subjecting them to sonication while kept on ice. The sonication was performed with specific parameters: 10 cycles of 30 seconds of sonication followed by 30 seconds of rest, at an amplitude of 40%. After sonication, the lysis was subjected to centrifugation at a force of 12,000 rpm for 20 minutes at a temperature of 4°C to separate the cell debris.

The liquid portion, which included the unrefined protein extract, was subsequently analyzed using sodium do decyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The gel slice was processed to extract the protein, which was then identified as the crude protein extract. To ensure extended preservation and future experimentation, portions of this extract were stored at a temperature of -80°C (Tsakalidou et al., 1994; Costas 1995).

Synthesis of Mesoporous silica nanoparticles

The synthesis of MSNN (MSNs with naked, unmodified surface) was based on the hydrothermal synthesis methods developed by Gu et al. (2012) with minor changes to the temperature and time variables for particle growth. Initially, 442 mL of deionized water was adjusted to a pH of 11 by introducing 10.8 g of NH$_4$OH, a solution containing 30% NH$_3$ by weight in water. Subsequently, 0.279 grams of CTAB was introduced into the HCHO solution with vigorous stirring. The temperature of the combination steadily increased to 50°C, simultaneously with an increase in the stirring speed. The outcome led to a reduction in the pH of the CTAB solution to 10.3. Once the solution had reached the ambient temperature, 1.394 mL of tetraethyl orthosilicate (TEOS) was added. Within a span of 120 seconds, the solution underwent a modest turbidity and the pH level dropped to 9.8, suggesting a fast hydrolysis of the silicate. Approximately 2 hours later, the pH rose to 10.6, possibly because of silica condensation. Following the completion of the previously mentioned procedure, the sample was further subjected to filtration and calcination. The formed MSNN were collected in a centrifuge tube by using acidified methanol thrice the volume of the MSNN solution, washed twice or thrice to remove any excess CTAB and formaldehyde. The precipitate after centrifugation (4000 rpm at Room temperature for 10 minutes) was collected dried, and the fine powder of MSNN was stored at room temperature until further use. The purified MSNN were characterized utilizing a wide range of techniques. The morphology and size of the nanoparticles were analyzed using Transmission Electron Microscopy (TEM) (Thermofisher TALOS F200S) and Scanning Electron Microscopy (SEM) (TESCANNIRA 3-Quantax 200), to observe distinct and consistent structure. Atomic Force Microscopy (AFM) (Innova SPM) was used to find precise topographical data and validate the nanoparticles’ surface roughness. The X-ray Diffraction (XRD) (Rigaku Smartlab) study was used to observe distinct peaks, providing evidence of the crystalline structure and purity of the produced MSNs. The optical properties were investigated using UV-visible absorbance spectroscopy and Fourier Transform Infrared Spectroscopy (FTIR) (Thermo Nicolet iS50), which will provide the existence of certain functional groups or sizes by unique absorption peaks. Dynamic Light Scattering (DLS) (Malvern Nano ZS) and Zeta potential measurements were used to determine the hydrodynamic diameter and surface charge of the nanoparticles in suspension, confirming their stability and uniform distribution.
Surface modification of Mesoporous silica nanoparticles
The MSNN were further modified by incorporating a monodentate thiol ligand, specifically β-MPA, onto the surface to introduce a negative charge with the modified previously published protocol (Wang et al., 2015; Vyshnava et al., 2022b; Vyshnava et al., 2020; Vyshnava et al., 2022c). MSNN were thoroughly cleaned by dispersing them in ethanol and subjected the mixture to ultrasonication bath for one hour. The surface contaminants were effectively eliminated through subsequent centrifugation and vacuum drying. To make the MSNMPA surface ligand exchange, 50 mg of the purified particles were mixed with 10 mL of a freshly prepared solution containing 10 mM of β-MPA in dimethyl sulfoxide (DMSO), while maintaining inert conditions. Subsequently, the mixture was agitated for 24 hours at ambient temperature, facilitating the development of thiol-silica bonds due to the negative charge imparted to the MSN surface by the carboxylic acid group of β-MPA. The functionalized MSNMPA were subjected to centrifugation and washed three times, alternating between DMSO and ethanol, to eliminate any excess β-MPA. The MSNMPA product proceeded with vacuum drying and was analyzed using AFM, FTIR, DLS, and zeta potential procedures to confirm the successful binding of β-MPA to the MSNs, which possessed a negative charge.

Conjugation of Mesoporous silica nanoparticles with StrP protein
Further the MSNMPA were allowed to conjugate with the crude StrP protein using EDC/NHS coupling chemistry MES buffer based on earlier established protocols (Vyshnava et al., 2022b; Lin et al., 2019). Initially, 10 mg of the MSNMPA was evenly distributed in 5 mL of MES buffer (pH 6.0) to create a uniform mixture. Simultaneously, EDC and NHS were dissolved in MES buffer to achieve final concentrations of 10 mM and 5 mM, respectively. The EDC/NHS solution was slowly added to the MSNMPA suspension while stirring continuously to activate the carboxylic acid groups on the β-MPA capped MSNMPA. Following a 15-minute activation period, the excess EDC and NHS were removed using centrifugation of the MSNMPA suspension (4000 rpm at 4°C for 15 minutes), and the resulting pellet was then resuspended in a new MES buffer. Afterwards, a solution containing the StrP protein at a concentration of 1 μg/mL was added to the activated MSNMPA suspension. The combination was then stirred gently at a temperature of 4°C for a duration of 4 hours. This allowed for the formation of covalent bonds between the StrP protein, and the carboxylic groups present on the MSNMPA. Ultimately, MSNMPA/StrP were separated using centrifugation (4000 rpm at 4°C for 15 minutes), carefully rinsed with 1X PBS to eliminate any free protein in the reaction solution, and then suspended again in 1X PBS and stored at -20°C for subsequent examination and analysis.

Cell culture
The DMEM, supplemented with 10% fetal bovine serum (FBS) and 1% antibiotic solution (10,000 units of Pen/Strep solution), was used to grow HeLa cells (Acquired from NCCS Pune, India). The cultures were kept in an incubator with humidity control, 5% CO\textsubscript{2} atmosphere, and a temperature setting of 37°C. A trypsin -EDTA buffer solution with a pH of 7.4 was used to facilitate cell dissociation, followed subsequent subculture the cells every two weeks for further experimentations.

Cytotoxicity of MSNN and MSNMPA
The MTT assay was used to assess the cytotoxic effects of MSNN and MSNMPA on HeLa cells. At first, HeLa cells were placed in 96-well microtiter plates (MTP) with a density of 1×105 cells per well and allowed to adhere overnight. The following cells were exposed to increasing doses of MSNN and MSNMPA (0, 20, 40, 60, 80, and 100 μg/mL) in triplicate in their respective wells of MTP. The plates were then placed in an incubator set at a temperature of 37°C and an environment containing 5% CO\textsubscript{2} for a period of 24 hours. Following the incubation period, the vitality of the cells was evaluated using the MTT assay, following established recommendations. The nanoparticles’ cytotoxicity was measured by identifying the concentration at which 50% inhibition of cells occurred (IC\textsubscript{50}).

Anticancer activity of MSNMPA/StrP
This work extended the results obtained from evaluating the effects of MSNN and MSNMPA on HeLa cells by further investigating the anticancer activity of MSNMPA/StrP (Cheng et al., 2017). The HeLa cells were placed in 96-well plates with a concentration of 1×105 cells per well and allowed to settle for overnight. Subsequently, the cells were treated with increasing amounts of MSNMPA/StrP (0, 0.1, 1.0, 10, 20, and 40 μg/mL). The plates were placed in an incubator set at a temperature of 37°C and an environment with 5% CO\textsubscript{2} for 24 hours. Following the incubation period, the vitality of the cells was assessed using the MTT test in accordance with established guidelines. The nanoparticles’ cytotoxicity was assessed by determining the IC\textsubscript{50} value, which corresponds to the concentration that causes a 50% reduction in cell viability.

Additionally, the Olympus inverted microscope was employed to examine the morphological changes of the HeLa cells. This examination aimed to assess the cell membrane’s integrity and identify cellular bleeding caused due to MSNMPA/StrP impact. We used 1mm coverslips on a 6 well plate. Each well was seeded with
the HeLa cells of 1×10⁵ cells per well, followed by incubation for 24 hours to check the confluency of minimum 60 %. Later, based on the IC₅₀ values from the previous cytotoxicity assay, the MSNⁿMMPA/SirP were added to the respective wells and allowed them to incubate for overnight. Various magnifications were utilized to observe and record a comprehensive perspective on cellular responses to the treatment. The MTT assay and morphological analysis combination provides a relative insight into the impacts of MSNⁿMMPA/SirP nanoparticles on HeLa cells.

RESULTS AND DISCUSSION

Crude SirP protein production and characterization
Salmonella enterica was effectively cultured in TSB broth with precise control over the parameters in our experiment. The bacterial culture’s development was assessed by quantifying the optical density at 600 nm, where readings ranging from 0.6 to 0.8 indicated the successful attainment of the mid-logarithmic phase, as shown in the Supporting information Fig. S1. Following centrifugation and subsequent washing, the bacterial cells were lysed to extract the SirP in microgram (µg) quantities, thus successfully accomplishing the primary goal of this study. As shown in Fig. 1(a), the crude protein SDS-PAGE data revealed the clear band at around 72 KDa, which corresponds to the established molecular weight for crude SirP proteins. This result was consistent with the earlier reports from Zouhir et al., 2014; Bernal-Bayard, Cardenal-Munoz and Ramos-Morales, 2010, Cordero-Alba and Ramos-Morales, 2014). The yield of crude extract for triplicate experimentation was 3.9, 4.3, and 4.1 µg of protein for 5mg of bacterial pallets. This steady exploration confirms the reliability and accuracy of our protein extraction approach.

After comparing TSB, NB and LB broth, as shown in Fig. 1(a), it was shown that the production of the SirP protein was noticeably greater in cultures cultivated in TSB. This observation indicates that TSB may create a more favorable environment for S. enterica to generate and concentrate the desired protein, making it the favored option for subsequent extraction (Observe the relative concentrations in Supporting information Fig. S1). The utilization of gel slicing and salting-out procedures enabled the retrieval of the crude state of the protein from several SDS-PAGE gels. An additional SDS-PAGE study, as shown in Fig. 1(b) provided further verification of the protein’s existence in microgram quantities. It was maintained at extremely low temperatures of -80°C to maintain its stability and longevity to preserve the protein extract for future experimental objectives.

Synthesis and characterization MSNⁿ nanoparticles
The production of MSNⁿ was initially demonstrated by the appearance of a turbid white precipitate in the HCHO solution, a behavior that has been reported in previous investigations (Gu et al., 2012). The link between the sizes of particles and pores in MSN and the concentration of the silica source, tetraethyl orthosilicate (TEOS), has been previously described (Gu et al., 2012; Zhang et al., 2011; Manzano and Vallet-Regí, 2020; Maggini et al., 2016; Mohseni et al., 2015). UV-Visible spectroscopy detected a distinct peak at 640 nm, as shown in Fig. 2(a), consistent with the distinctive pattern of silica nanoparticles observed in a previous report from Parasuraman et al. (2019). The morphology and size distribution of the MSN were examined in further detail using SEM results, as shown in Fig. 2(b), which confirmed the presence of spherical nanoparticles with noticeable pores, which aligns with

Fig. 1. SDS-PAGE Gel images of SirP crude protein run from Salmonella enteric (a) SirP crude protein yield with respective media including LB, TSB, and NB broth (b) Gel slicing and salting out the protein followed by protein run to check the weight of the protein in micrograms
previous reports (Zhang et al., 2011; Gu et al., 2012; Mohseni et al., 2015; Hossen et al., 2019). As shown in Fig. 2(c) and 2(d), TEM analysis revealed that the average particle size was 68.05±0.87 nm, and the mean pore size was 7.1 nm. Further study with AFM, the particles exhibited distinct spherical shapes with a uniform distribution. The particles also had a relatively rough surface due to the presence of pores, as depicted in Fig. 3(a). This observation was further confirmed by DLS, which revealed that the MSNN particles had a hydrodynamic size of 68±0.8 nm, as shown in Fig. 3(b).

Fig. 2. Characterization of MSN\(^N\) using (a) UV-Visible spectroscopy with the characteristic peak at 640nm on the absorbance spectrum, (b) Scanning electron microscopic image reveals the spherical morphology, (c & d) High resolution transmission electron microscopy showing crystal structure with specific d-spaces.

Fig. 3. Characterization of MSN\(^N\) using (a) Atomic force microscopy with contact mode showing clear rough surface spherical nanoparticles, (b) Hydrodynamic size distribution using dynamic light scattering, (c) Zeta potential of the particles, (d) Fourier Transform Infrared Spectroscopy, peaks with distinctive peaks for surface functional groups.
Additionally, the zeta potential measurements indicated a surface charge of approximately -43.9 mV as shown in Fig. 3(c), which is consistent with previous reports (Kaasalainen et al., 2017; Kobler et al., 2008). The distribution of functional groups was assessed using FTIR. Strong peaks were observed at wavenumbers 3381.33, 2972.67, 2855.05, 1636.39, 1465.71, 1089.49, and 875.71 cm\(^{-1}\), which correspond to the \(-\text{OH}\), \(-\text{COO}\), \(-\text{C}=\text{O}\), \(-\text{N}-\text{H}\), and \(-\text{CN}\) peaks as observed in Fig. 3(d). These findings are consistent with previous results (Rameli et al., 2018).

Ligand exchange and characterization MSN\(^{\text{MPA}}\) nanoparticles

Following the ligand exchange of the MSN, we assess the structural integrity of the MSN using X-ray Diffraction (XRD) analysis. The analysis shows a consistent amorphous pattern without any noticeable peaks, which is a characteristic feature of MSN and indicates the stability of the particles before (MSN\(^{\text{N}}\)) and after (MSN\(^{\text{MPA}}\)) ligand exchange as shown in Fig. 4(a) and (b) (Keshavarz and Ahmad 2013). The results obtained from AFM and DLS analyses confirmed a minimal increase in particle size, with an average diameter of approximately 69.77±1.3 nm. The distribution of the particles was found to be uniform, as depicted in Fig. 5 (a) and 5(b). The Zeta potential, as presented in Fig. 5 (c), indicates a reduction in surface charge to -26.5 mV. The distinct peaks observed in the FTIR spectrum, specifically at wavenumbers 3352.63, 2980.98, 2987.88, 1392.40, 1243.59, and 1066.82 cm\(^{-1}\), correspond to functional groups such as \(-\text{OH}\), \(-\text{COOH}\), \(-\text{C}=\text{O}\), \(-\text{C}-\text{C}\), and \(-\text{CN}\) as shown in Fig. 5(d). The present study primarily utilize monodentate ligands, specifically \(\beta\)-MPA, for two primary goals: firstly, to augment the stability of the nanoparticles, and secondly, to offer the most advantageous negatively charged \(-\text{COOH}\) groups for subsequent conjugations. These findings agree with previous reports and indicate the successful transformation of the ligand, resulting in the presence of a negatively charged \(-\text{COO}\) group (Gao et al., 2021).

Bioconjugation of Mesoporous silica nanoparticles with SirP

The above prepared MSN\(^{\text{MPA}}\) were further used to conjugate with crude SirP using EDC/NHS coupling chemistry in the relatively suitable buffer MES. This observation is consistent with earlier investigations on nanoparticle-protein conjugation. The AFM scans confirmed these findings, revealing a surface covered with randomly threadlike structures, which are assumed to be dispersed SirP protein molecules, as shown in Fig. 6 (a). The DLS results indicated a marginal augmentation in the hydrodynamic radius of the MSNs upon SirP conjugation, implying the effective binding of the protein with a size distribution of 76±3.2 nm as shown in Fig. 6 (b). The reduction in the negative charge of the MSNs, as determined by Zeta potential measurements, i.e.,

![Fig. 4. X-ray diffraction spectrum of MSN\(^{\text{N}}\) and MSN\(^{\text{MPA}}\) with characteristic peak absence defines the amorphic nature of the particles](image-url)
+18.42, indicates effective protein binding as shown in Fig. 6(c). FTIR spectroscopy provided additional verification of the conjugation, exhibiting distinctive peaks which include 3691.57, 3363.18, 2960.27, 2903.08, 1649.30, 1386.75, 1239.45, and 1067.02 corresponding to -OH, -COOH, -C=O, -C=C-, -CN and -SH func-
tional groups, which are indicative of EDC/NHS coupling, which shows the effective binding of SlrP on MSNMPA to form a functional MSN$^{MPA/SIP}$ as shown in Fig. 6(d). The prepared conjugates are stored at -20°C for further experimentation.

Cytotoxicity studies of MSNN and MSNMPA
Prior to investigating the anticancer efficacy of MSN$^{MPA/SIP}$, the cytotoxicity of mesoporous silica nanoparticles, namely MSNN and MSNMPA, will be evaluated on HeLa cells. This establishes standard controls and ensures that any observed effects can be attributed to the therapeutic agent rather than a direct impact from the nanoparticles. Our findings showed that there was no significant change in the viability of HeLa cells after being incubated for 24 hours, even when exposed to high concentrations of respective MSNN and MSNMPA, up to 100 µg/mL and greater as shown in the as shown in Fig. 7(a). This observation highlighted the biocompatibility of MSNN and MSNMPA, with in-vitro studies consistent with previous research that found MSN nontoxic in cellular settings (Asefa and Tao, 2012; Tang et al., 2012).

Anticancer activity SlrP Conjugated Mesoporous silica nanoparticles
Building on our initial findings, we undertook additional studies to assess the cytotoxic effects of MSNMPA in combination with SlrP protein i.e., MSN$^{MPA/SIP}$ towards HeLa cell lines. In contrast to prior observations, we noted a substantial reduction in cell viability even at reduced concentrations of 50 µg/mL, exhibiting an exponential trend. The IC$_{50}$ value was found to be 10 µg/mL, suggesting a pronounced cytotoxic effect at relatively low concentrations as shown in Fig. 7(b). The cytotoxicity of both free SlrP and MSNMPA/SlrP was evaluated to validate these findings. The IC$_{50}$ values were consistent, with SlrP showing concentrations of 50 µg/mL and for MSN$^{MPA/SIP}$ ≈50 µg/mL, respectively as depicted in Fig. 7(c). These results suggest that MSN$^{MPA/SIP}$ holds potential as an effective delivery system for anticancer proteins in in vitro cell culture experiments.

Cellular morphology was assessed using an Olympus inverted microscope to substantiate further present cytotoxicity findings. Cells exposed to MSNN and
MSNMPA/SlrP showed no significant morphological alterations, aligning with the observed lack of cytotoxicity as depicted in Fig. 8(a) and 8(b). Conversely, HeLa cells treated with MSNMPA/SlrP exhibited initial adherence issues, followed by detachment, cellular bleeding after 24 hours, and subsequent cell aggregation after 48 hours. These morphological observations, in conjunction with the cytotoxicity data, underscore the potential anticancer properties of MSNMPA/SlrP complexes as shown in Fig. 9. The observed biocompatibility of MSNN and MSNMPA aligns with prior research underscoring the low toxicity of mesoporous silica nanoparticles (Braun et al., 2018; Di Pasqua et al., 2008; Jafari et al., 2012; Jafari et al., 2019). However, the MSNMPA/SlrP combination demonstrated cytotoxic potential, positioning it as a promising candidate for cancer therapy.

![Fig. 8. Microscopic images of HeLa cells treated with (a) MSNN, (b) MSNMPA where negligible toxicity was observed, suggest the best biocompatibilities for the MSNN and MSNMPA](image)

![Fig. 9. Microscopic images of HeLa cells treated with MSNMPA/SlrP (a) First one hour of treatment improper settlement of the cells (b) 12 hours of treatment cells started to deformation of the shape (c) 24 hours of treatment bleeding of the cell membrane followed by detachment (d) 48 hours of treatment with aggregation of dead cells, insight images are magnified for cellular observations](image)
cytotoxicity of the MSNMPA/SlrP complex compared to free SlrP suggests improved delivery and potential increased cellular uptake, highlighting the utility of nanoparticles as drug carriers. The visible morphological changes further validated our cytotoxicity findings as shown in Fig. 9(c) and 9(d). The observed cellular aggregation and membrane damage are indicative of apoptosis initiation, a common mechanism of action for several anticancer drugs. The present results underscore the promise of MSNMPA/SlrP complexes in anticancer treatment. The alignment between cytotoxicity and morphological data bolsters this proposition, warranting further exploration and validation in subsequent studies.

Conclusion

This study demonstrated the synthesis, purification, and analysis of crude SlrP proteins and their binding to mesoporous silica nanoparticles. The confirmation of MSNN synthesis was achieved by a range of techniques, including TEM, SEM, XRD, AFM, and DLS. These techniques were employed to verify the size, shape, and stability of the nanoparticles. The validation of the bioconjugation between MSN and SlrP was confirmed by observing changes in zeta potential and the presence of unique FTIR peaks. The cytotoxicity experiments demonstrated that MSNN alone did not substantially affect HeLa cells. However, the SlrP-conjugated MSNMPA/SlrP exhibited noteworthy anticancer activity, with an IC50 value of 10 µg/mL. This suggests the potential of MSN as an efficient vehicle for protein delivery in cancer treatment. The findings are consistent with other studies, providing new opportunities for the development of cutting-edge nanotechnology-based treatments for cancer.

Supplementary information

The determination of protein concentration (a) Standard graph of bovine serum albumin (BSA) with mean optical densities (b) Estimated protein concentration of SlrP in various broth cultures is mentioned in Fig. S1. The author(s) is responsible for the content or functionality of any supplementary information. Any queries regarding the same should be directed to the corresponding author. The supplementary information is downloadable from the article’s webpage and will not be printed in the print copy.

Ethical statement

None of the animal or human samples were used in this research.

Conflict of interest

The authors declare that they have no conflict of interest.

REFERENCES

and new challenges. Innovative approaches for cancer treatment: Current perspectives and new challenges. Molecular Medicine, 9, 1-17. https://doi.org/10.1011/g/1971839407000373
cell heterogeneity. *Scientific Reports*, 12, 5868. https://doi.org/10.1038/s41598-022-09702-y