Unlocking the potential of Lion’s Mane Mushroom (*Hericium erinaceus*)

Sabyasachi Banerjee
School of Agriculture, Lovely Professional University, Phagwara-144005 (Punjab), India
Shruti Gupta
School of Agriculture, Lovely Professional University, Phagwara-144005 (Punjab), India
Ritu Raj
School of Agriculture, Lovely Professional University, Phagwara-144005 (Punjab), India
Mudra Gupta
School of Agriculture, Lovely Professional University, Phagwara-144005 (Punjab), India
Sonam Kumari
School of Agriculture, Lovely Professional University, Phagwara-144005 (Punjab), India
Gurpreet Kaur*
Department of Plant Pathology, Lovely Professional University, Phagwara-144005 (Punjab), India

*Corresponding author. E-mail: gurpreetbchandel@gmail.com

How to Cite

Abstract
The Lion’s Mane mushroom, botanically known as *Hericium erinaceus*, stands out as a unique and esteemed member of the fungal kingdom. This extraordinary mushroom not only possesses an alluring appearance but also holds a significant historical presence in diverse cultures, especially within the context of ancient herbal medicine practices. This fungus holds promising prospects in several domains. Its potential as a natural remedy for cognitive health is gaining attention. This mushroom has neuroprotective properties and could play a role in supporting brain function, which is particularly relevant in the present aging population where neurodegenerative conditions like Alzheimer’s disease are a growing concern. Furthermore, Lion’s Mane has been explored for its potential in addressing mood disorders. It is a rich source of bioactive compounds, including β-glucans, that can positively affect the immune system. The fungus produces bioactive compounds that can be used to treat various chronic diseases like obesity, high blood pressure, hepatic disorders, and cancer; it also has other benefits like wound healing and improving the immune system. This review endeavours to elucidate the multifaceted potential of Lion’s Mane mushroom within the domains of nutrition, health, and wellness. Through a comprehensive examination of its properties and benefits, the review explored how Lion's Mane mushrooms can be harnessed to enhance human well-being. By unlocking the secrets hidden within this remarkable fungus, the study provides insights that can empower individuals to incorporate Lion’s Mane into their daily lives, fostering a healthier and more balanced lifestyle.

Keywords: Bioactive compound, Edible fungi, Lion's Mane mushroom, Medicinal mushroom

INTRODUCTION
Medicinal plants and herbs hold significant importance in the context of traditional treatments. Approximately 140,000 to 150,000 mushroom species have been recognized for producing diverse medicinal compounds and about 700 medicinal compounds have been identified from these species (Bacha et al., 2018). Lion’s Mane mushroom is among many medicinal mushrooms renowned for their potential health benefits and therapeutic properties. Referred to as fungi, these organisms encompass the visible fruiting body and the underlying mycelium, constituting a unique biological category. Humans have always fascinated by nature and their properties of mushrooms and gathered knowledge about their medicinal properties. Lion’s Mane belongs to the category of higher fungi, also known as macro-fungi. Among the 14,000 identified species of higher fungi, 350 are recognized as edible and consumed by humans (Niego et al., 2021). It is an intriguing name was derived from its unique appearance, which resembles the cascading tendrils of a lion’s...
The Lion’s Mane mushroom is an uncommon species, and the unauthorized harvesting of its wild fruiting bodies in the United Kingdom is rigorously forbidden. This fungus was artificially cultivated for the very first time in China, under controlled environments using synthetic logs that are enclosed within polypropylene bags and bottles (Imtiaj et al., 2008). This mushroom requires an optimal temperature range of 18-24 °C and 80-90 percent relative humidity for the mycelial growth. Adequate fresh air circulation for about 5-8 hours is essential, and it flourishes best in light conditions ranging from 500 to 1000 lux (Bacha et al., 2018). Despite its nutritional value, it is highly regarded for its mild flavor and succulent texture. Even though wild fruiting bodies are rare, it is very easy to cultivate this fungus using agricultural byproducts abundant in cellulose (Table 1). Lion’s mane mushroom consists of various components such as carbohydrates (60.95 %), protein (42.5 %), ash (8.9 %), low fats (7.9 %), crude fiber (7.81 %) and amino acids (Bacha et al., 2018).

Benefits of Lion’s mane mushroom:
Lion’s mane mushroom contains bioactive compounds such as hericins, alkaloids, steroids, polysaccharides and erinacines (Table 2). Among these the terpenoid compounds like hericenones obtained from the fruiting body of the fungi and erinacines obtained from cultured media stimulate synthesis of Nerve growth factor (NGF). Among these, the most significant results have been found in treating Parkinson’s and Alzheimer disease. It also has antitumor, antidiabetic and anticancerous properties (Fig. 1).

Improve brain function
Li et al. (2020) conducted a study wherein for a period of 49 weeks Chinese nationals were given 350 mg capsules three times daily, each containing 5 mg/g of erinacine A, and the results showed improvements in various blood biomarkers, including calcium, hemoglobin, albumin, brain-derived neurotrophic factor, superoxide dismutase, and homocysteine. Moreover, participants who consumed capsules containing *Hericium erinaceus* mycelium also showed enhancements in alpha-act (α-ACT) and reductions in β-amyloid levels. These findings indicate improved cognitive abilities and greater levels of Neurocognitive benefits (social cognition, language, learning, memory, executive function and perceptual-motor skills). Martínez-Mármol et al. (2023) reported that Hericene-A functions by utilizing a unique signaling pathway that promotes overall neurotrophic effects, enhancing cognitive abilities. Kuo et al. (2016) reported that mycelium of *H. erinaceus* alleviate the damaging impact on neuronal cells within an animal model treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (Kuo et al., 2016). *H. erinaceus* can

| Table 1. Cultivation of Lion’s Mane mushroom using Agricultural Waste |
|--------------------------|---------------------------|-----------------------------|
| **Developmental Stages** | **Organs** | **Agricultural Products** |
| Vegetative | Mycelia | Rice bran, wheat bran, barley bran, egg shell Chinese cabbage, soybean powder, Potato dextrose agar medium, yeast malt medium, oak saw dust medium Sunflower seed hulls Tofu whey |
| Reproductive | Fruiting Body | Agro wastes (rice straw, soybean dregs, sugarcane bagasse) Textile industry wastes (hemp, rye straw, flax shive, alder sawdust,) Artemisia capillaries |

be used to treat various cognitive impairments (Mori et al., 2009), Alzheimer disease (Tzeng et al., 2016), Parkinson’s disease (Kuo et al., 2016), Ischemic stroke (Lee et al., 2014), Presbycusis (Chan et al., 2019).

Support digestive health
Peptic ulcers, encompassing gastric and duodenal ulcers, have posed a significant health concern for the global population (Xie et al., 2022). The main factors contributing to peptic ulcer disease include persistent inflammation triggered by Helicobacter pylori infection and the consumption of nonsteroidal anti-inflammatory drug (NSAIDs) (Narayanan et al., 2018). The gastric mucus barrier serves a vital function in protecting the stomach (Allen and Flemstrom, 2005; Jia et al., 2023). When animals were pretreated with an aqueous extract of H. erinaceus, there was a notable enhancement in gastroprotection. This was evident as there was a significant increase in free mucus compared to animals with ulcers but without treatment. This mucus primarily consisted of mucin-type glycoprotein, identified using alcian blue dye. Alcian blue dye binds to substances with negative charges. The mucus gel that adheres to the surface of the gastric mucosa acts as a shield, safeguarding the underlying epithelium from substances like acid pepsin and damaging agents such as ethanol and indomethacin (Devaraj et al., 2011). However, it is important to note that according to Allen and Flemstrom (2005), the mucus lining the gastric wall plays a more crucial role in protecting the gastric mucosa against chemical or mechanical threats than the soluble mucus found within the stomach’s lumen. This gastric wall mucus coating may contribute to the healing of damaged gastric epithelium (Shih et al., 2005; Hagen 2021). Therefore, the increased capacity of alcian blue binding suggests that the aqueous extract of H. erinaceus can activate the defensive system of the gastric mucus barrier.

Relieve depression and anxiety
Depression is a prevalent and severe neuropsychiatric condition, ranking among the top contributors to the worldwide burden of disease. While there are numerous antidepressant medications on the market, their effectiveness is often limited, and a significant number of them come with undesirable side effects. There are various hypotheses involved in depression about how it works. One of the hypotheses is monoamine hypothesis, which state that the symptoms and expressions of depression are linked with impairment of monoamine systems, that encompass serotonin, norepinephrine and potentially dopamine (Coppen 1967; Schildkraut 2006; Chong et al., 2019). Reduced transmission of monoamine neurotransmitters can occur due to a range of factors, including deficits or malfunctions in monoamine precursor molecules, receptors, enzymes, and transporters, as well as issues related to monoamine synthesis (Fig. 2). Moreover, an increase in monoamine oxidase activity and reduced exocytosis can contribute to this deficiency. Clinical observations conducted in vivo have supplied substantial evidence in favour of the monoamine hypothesis (Bunney and Davis 1965; Coppen 1967; Schildkraut 2006; Chong et al., 2019). When animals displaying depressive-like symptoms were given H. erinaceus orally, it produced effects similar to those of conventional antidepressant medications. It is noted that H. erinaceus helps reinstate serotonin, norepineph-

Fig. 1. Benefits of Lion’s mane mushrooms
Table 2. Bioactive compounds of *Hericium erinaceum* and their therapeutic potential.

<table>
<thead>
<tr>
<th>List of compounds</th>
<th>Action</th>
<th>Medical use</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polysaccharides</td>
<td>Anti-carcinogenic</td>
<td>Stomach and intestinal cancers (gastric, liver, colorectal), Leukemia</td>
<td>Sokol et al., (2015); David and William (2023)</td>
</tr>
<tr>
<td>β-D-glucans</td>
<td>Immune response modulation</td>
<td>For treating cancers</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal shielding</td>
<td>Chronic gastritis, ulcers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bactericidal effect</td>
<td>Ailments caused by Helicobacter pylori</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduction of Cholesterol and triglyceride levels</td>
<td>Hyperlipidaemia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-hyperglycemic</td>
<td>Diabetes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver function support</td>
<td>Liver tissue injury</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyphenols</td>
<td>Oxidative stress protection</td>
<td>Skin rejuvenation</td>
<td>Sokol et al., (2015); David and William (2023)</td>
</tr>
<tr>
<td>Hericenones A–B</td>
<td>Anti-thrombotic</td>
<td>Thrombosis, vascular diseases, stroke</td>
<td>Sokol et al., (2015); David and William (2023)</td>
</tr>
<tr>
<td></td>
<td>Cytolytic</td>
<td>Cancers</td>
<td>Sokol et al., (2015); David and William (2023)</td>
</tr>
<tr>
<td>Hericirine</td>
<td>Diminishing inflammatory signaling molecules and immune system messengers (cytokines)</td>
<td>Inflammatory ailments</td>
<td>Sokol et al., (2015); David and William (2023)</td>
</tr>
<tr>
<td>Hericenones C–H, erinacines A–I</td>
<td>Neuro-restorative, Nerve cell preservation</td>
<td>Dementia, Alzheimer’s and Parkinson’s diseases, depression</td>
<td>Sokol et al., (2015); David and William (2023)</td>
</tr>
<tr>
<td>Erinacine A</td>
<td>Heightened synthesis of neurotrophins, leading to elevated levels of nerve growth factor messenger RNA (NGF mRNA).</td>
<td>Neuroregenerative treatments for neurological disorders or injuries</td>
<td>Rupcic et al., (2018)</td>
</tr>
<tr>
<td>Erinacine B</td>
<td>Augmented generation of neurotrophins, specifically an elevation in the production of nerve growth factor messenger RNA (mRNA).</td>
<td>Treatment of neurodegenerative disorders, nerve injuries, and conditions where enhanced neural regeneration is desired</td>
<td>Rupcic et al., (2018)</td>
</tr>
<tr>
<td>Erinacine C</td>
<td>Mitigating neuroinflammation by decreasing the levels of nitric oxide (NO), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α), and hindering the activation of NF-kB and the phosphorylation of IκBα.</td>
<td>Treatment of various neurological disorders</td>
<td>Wang et al., (2019)</td>
</tr>
<tr>
<td>Erinacine P</td>
<td>Substantial promotion of the extension of neuronal projections (neurites).</td>
<td>Treatment of conditions involving nerve injuries, neurodegenerative diseases, or other disorders where the promotion of neural growth and connectivity is desirable</td>
<td>Zhang et al., (2018)</td>
</tr>
<tr>
<td>Erinacine S</td>
<td>The promotion of neurite outgrowth in primary neurons from both the central nervous system (CNS) and peripheral nervous system (PNS) is significantly increased.</td>
<td>Promotes nerve regeneration and functional recovery in cases of injuries to both the CNS and PNS</td>
<td>Lin et al., (2023)</td>
</tr>
<tr>
<td>Erinacine W,X,Y</td>
<td>Induced growth of neuronal projections</td>
<td>Repair and recovery of damaged nerves, which is particularly relevant in conditions involving nerve injuries or neurodegenerative diseases</td>
<td>Ma et al., (2021)</td>
</tr>
<tr>
<td>Hericenone F</td>
<td>Diminished nitric oxide (NO) production resulting in an anti-inflammatory effect</td>
<td>Treatment of inflammatory conditions</td>
<td>Lee et al., (2016)</td>
</tr>
<tr>
<td>Isohericerinol, Corallocin A</td>
<td>Elevated the production of brain-derived neurotrophic factor (BDNF) protein.</td>
<td>Treatment of neurodegenerative disorders, mood disorders, and other conditions where neuronal health and plasticity are critical</td>
<td>Ryu et al., (2021)</td>
</tr>
</tbody>
</table>
Lion's Mane mushroom is recognized for its abundance of beta-glucans, especially beta 1-3, 1-6 glucan, among the various mushroom varieties rich in this compound (Kawagishi et al., 1992), it also contains erinacines (Kawagishi et al., 1992; Kawagishi et al., 1994; Nagai et al., 2006), Hericenones (Mori et al., 2009), dilinoleoyl-phosphatidylethanolamine, DLPE (Kawagishi 2006), terpene compounds (Kenmoku et al., 2001), protein vitamins (Wu et al., 2012) amino acids (Li et al., 2014). Mushroom-derived β-glucans are well-known for their potent immunomodulatory properties, surpassing other types in terms of their ability to affect immune and inflammatory responses (Han et al., 2020; Ikewaki et al., 2021). Immunomodulation involves the capacity to correct aberrant immune functions, which can entail bolstering weakened or suppressed aspects or normalizing hyperactive or excessive functions (Jesenak et al., 2014) Because of their versatile mechanism of action, β-glucans are recognized as biological response modifiers. They alter the epigenetic profile of innate immune cells, leading to an enhanced immune response. Additionally, they serve as pathogen-associated molecular patterns, binding to specific receptors for pathogen
recognition, thereby triggering innate and adaptive immune reactions (Han et al., 2020; Ikewaki et al., 2021). These β-glucans can additionally boost the performance of macrophages and neutrophils, bolster the capabilities of natural killer (NK) cells, affect the generation of cytokines and chemokines, and oversee the control of antibody production, among a myriad of other roles. Therefore, it can be concluded that Hericenone can increase the immune health. H. erinaceus fruiting body contains various compounds that show hemagglutination (Gong et al., 2004). This fungus also shows anti microbial properties (Yim et al., 2007; Chong et al., 2019), immunomodulatory (Kim et al., 2012; Zhao et al., 2020), anti-aging (Zhang et al., 2012; Tripodi et al., 2022), anti-oxidant properties (Malinowska et al., 2009; Hsu et al., 2023).

Prevent cancer

Erinacine-A potentially triggers a series of programmed cell death events in TSGH 9201 cells (Mori et al., 2009) through the activation of the FAK/AKT/p70S6K/PAK1 pathway and the increased expression of proteins 1433S and MTUS2. This offers a novel explanation for how this compound exerts its anti-cancer effects on human gastric cancer cells (Li et al., 2014). This potent anti-tumor effect of Erinacin-A has been further validated by a study, which not only replicated these findings in vitro using two human colon cancer cell lines (DLD-1 and HCT-116) but also confirmed its efficacy in an in vivo mouse model. This subsequent research provided additional insights into the mechanisms underlying its strong anti-tumor properties and also increased NK cells (Figure-3) (Lee et al., 2019).

Utilizing the body’s innate immune system to target cancerous cells, NK cell-based immunotherapy represents an innovative frontier in cancer treatment (Cheent and Khakoo 2009; Shin et al., 2020) This innovative therapy capitalizes on the unique abilities of NK cells, which are a type of white blood cell with a natural propensity to target and destroy cancerous cell (Cheng et al., 2013; Liu et al., 2021). NK cell-based immunotherapy holds great promise for various cancers, including leukemia, lymphoma, and solid tumors. It offers a targeted and less toxic alternative to traditional cancer treatments like chemotherapy and radiation therapy. However, challenges remain, such as optimizing NK cell expansion, persistence and overcoming the immunosuppressive tumor microenvironment. Ongoing research and clinical trials aim to refine this approach further and improve its efficacy to fight against malignant cells.

The polysaccharides present in H. erinaceus have the capacity to modulate pro-inflammatory cytokines, trigger immune responses mediated by macrophages, and stimulate the maturation of dendritic cells (Sheu et al., 2013). Reducing cancer risk is possible through a well-rounded diet and making appropriate lifestyle decisions. Laboratory studies indicate that Lion’s Mane contains polysaccharides and aromatic compounds with anti-cancer properties. Researchers have identified multiple mechanisms through which Lion’s Mane extract can inhibit the proliferation of diverse cancer cells, including those associated with lung and breast cancer.

![Immunotherapy Harnessing Natural Killer Cells](image-url)
Investigations are ongoing to understand its potential role as a supplementary treatment in cancer care. (Atay et al., 2021). The presence of polysaccharides, hericirine, polyphenols, and various other compounds in Lion’s Mane contributes to the inhibition of inflammation, provides antioxidant benefits, and regulates immune responses. Consequently, consistent consumption may contribute to the reinforcement of the immune system (Meena et al., 2020).

Manage diabetes

In the year 2000, diabetes was determined to have a worldwide prevalence of 2.8 per cent among people of all age groups, and it is anticipated to increase to 4.4 per cent by the year 2030 (Wild et al., 2004; Ka-veeswar et al., 2014). In diabetes mellitus, persistent high levels of blood sugar lead to a range of biochemical irregularities (Giugliano et al., 1996; Rajasekaran et al., 2005). Oxidative stress plays a significant role in the development of diabetes (Nishikawa et al., 2000; Forbes et al., 2008; Giacco and Brownlee, 2010). Clinical investigations have shown that strict management of hyperglycemia can lower the risk or slow down the progression of diabetes. Nevertheless, with the existing medications for lowering blood sugar levels, achieving and sustaining precise glycemic control in diabetic individuals can be challenging (Nathan et al., 1993; Ohkubo et al., 1995; Dronavalli et al., 2008). The substantial antioxidant capabilities and presence of bioactive compounds in *Hericium erinaceus* make it a valuable resource for addressing metabolic disorders, particularly in the context of diabetes treatment (Chaiyasut et al., 2017). Exo-biopolymer derived from *H. erinaceus* mycelial culture has beneficial impact on lowering lipid levels in rats with diet-induced hyperlipidemia (Han et al., 2013) as well as lowering the glycemic index in animals (Wang et al., 2005). All these studies concludes that lion’s mane can reduce the lipid accumulation in the body and also reduces the glycemic index.

The hypoglycemic and antihyperlipidemic effects of the aqueous extract from *H. erinaceus* have been documented in experimental rat models. The addition of *H. erinaceus* extract (at doses of 100–200 mg/kg body weight) resulted in enhanced serum insulin levels and decreased glucose levels in diabetic rats induced by streptozotocin. The study also indicated that supplementation with *H. erinaceus* aqueous extract demonstrated antiatherosclerotic properties and enhanced the activity of free radical scavenging enzymes (Liang et al., 2013). Wu and Xu (2015) documented the in vitro antioxidianticabetic properties of *H. erinaceus*, highlighting that the suppression of a-glycosidase and aldose reductase activity occurred in a dose-dependent manner. Zhang et al. (2015) observed that the ethanolic extract derived from *H. erinaceus* demonstrated anti-neuropathic pain effects in a diabetic neuropathic Wistar rat model induced by alloxan. Supplementation with approximately 40 mg of the ethanolic extract per kilogram of body weight led to a reduction in neuropathic pain, increased inhibition of lipid peroxidation, and enhanced activities of antioxidant enzymes such as lactate dehydrogenase, glutathione peroxidase, glutathione reductase, catalase, Na+ K+ ATPase, and glutathione S transferase in the experimental rats. The findings suggested that the improvement in the host's antioxidant system by *H. erinaceus* extract could be accountable for the alleviated diabetic neuropathy.

Reduce heart disease risk

Atherosclerosis, which is a multifaceted pathological progression, accounts for over 50 per cent of fatalities in industrialized nations (Murray et al., 1997). The primary factor implicated in the initiation of atherosclerosis is commonly identified as the oxidative modification of low-density lipoprotein (LDL). Atherosclerosis is the major reason that ultimately result in cardiovascular diseases (CVD) and strokes (Murray et al, 1997; Libby, 2002; Roger et al., 2012). The factors governing the oxidation of LDL lay the groundwork for the harmful progression of atherosclerosis (Li and Mehta, 2005; Yoshida and Kisugi, 2010; Rahman et al., 2014). Oxidized LDL is readily taken up by macrophages. Mushrooms have naturally low fat content and do not contribute to elevated cholesterol levels. Moreover, specific mushrooms, such as Lion’s Mane, contain compounds that inhibit lipid oxidation and demonstrate an antihyperlipidemic effect. Consequently, Lion’s Mane is recognized as beneficial for cardiovascular health (Jang et al., 2017). *Hericium erinaceus* extracts possess inhibitory effect on HMG CO-A reductase activity and in vitro LDL oxidation (Rahman et al., 2014). Mushrooms have been recognized for their capacity to inhibit both cholesterol production (Rahman et al., 2014) and absorption (Bukh et al., 1994; Berger et al., 2004) as well as promote the excretion of cholesterol through feces (Yang et al., 2013). Additionally, the dietary fibers found in mushrooms contribute to their effectiveness as agents for reducing lipid levels (Cheng et al., 2002; Ganesan and Xu, 2018).

Limited evidence from experimental research suggests that incorporating mushrooms into the diet has a positive impact on serum/plasma triglycerides and High-sensitivity C-reactive protein (hs-CRP) levels. Increased mushroom consumption is associated with reduced levels of blood triglycerides and hs-CRP, which are indicators of cardiometabolic health. (Uffelman et al., 2023). L-ergothioneine is an amino acid obtained from the diet, known for its antioxidant and anti-inflammatory characteristics, which are linked to the onset of various degenerative and chronic conditions, including several cardiometabolic diseases (CMD) (Nguyen et al., 2013). Notably, animals and
higher plants do not produce L-ergothioneine; instead, it is biosynthesized by mushrooms, cyanobacteria, and certain soil bacteria. While L-ergothioneine is present in low levels in various foods, mushrooms stand out as the most significant dietary sources (Kalaras et al., 2020).

Conclusion

Lion’s Mane products, such as supplements and functional foods, are expected to become more popular. Moreover, Lion’s Mane’s unique culinary qualities, resembling the taste and texture of seafood, make it a sought-after ingredient for plant-based and vegetarian diets. Its adaptability in various recipes and dishes adds to its appeal in the culinary world. In the context of agriculture and sustainability, Lion’s Mane cultivation is relatively eco-friendly, requiring minimal resources and space. As the demand for sustainable and locally sourced food grows, the cultivation of this mushroom could play a role in meeting these preferences. In conclusion, Lion’s Mane mushroom is poised for a bright future, driven by its potential in brain health, mental well-being, nutrition, culinary applications, and sustainability. Continued research and innovation in harnessing its benefits may lead to even more exciting developments in the future.

Conflict of interest

The authors declare that there is no competing interest.

REFERENCES

47.

93. Wong, K. H., Vikineswary, S., Abdullah, N., Naidu, M. &
 mane mushroom Hericium erinaceus (Bull Fr) Pers
 (Aphylloporomyctidiae) on the neural cell line NG108-
 antiox9080261

 Dai, Y. C., Norvell, L. L., Yang, Z. L., Ryvarden, L., Su, C.
 H., Li, Y. U., Zhuang, W. Y., Yao, Y. J., Chen, C. J., Chen,
 nomenclature for niu-chang-chih (Taiwanofungus cam-
 phoratus), an important medicinal polypore. Taxon, 61
 (6), 1305–1310. doi: 10.1002/tax.61601

 activities of eight medicinal mushroom species from Chi-
 intjmedmushrooms.v17.i2.40

 and national burden of peptic ulcer disease from 1990 to

 promotes fat removal in hypercholesterolemic mice. Exp.
 Ther. Med. 6(6), 1409–1413. http://dx.doi.org/10.1
 55/2019/3030967

98. Yim, M. H., Shin, J. W., Son, J. Y., Oh, S. M., Han, S. H.,
 Cho, J. H., Cho, C. K., Yoo, H. S., Lee, Y. W. & Son, C. G.
 (2007). Soluble components of Hericium erinaceum in-
 duce NK cell activation via production of interleukin-12 in
 doi: 10.1111/j.1745-7254.2007.00577.x

100.Zhang, Y., Liu, L., Bao, L., Yang, Y., Ma, K. & Liu, H.
 (2018). Three new cyathane diterpenes with neurotrophic
 activity from the liquid cultures of Hericium eri-
 s41429-018-0065-8

 (2015). Protective effect of ethanol extracts of Hericium erin-
 aceus on alloxan-induced diabetic neuropathic pain in
 https://doi.org/10.1155/2015/595480

102.Zhang, Z., Lv, G., Pan, H., Pandey, A., He, W. & Fan, L.
 (2012). Antioxidant and hepatoprotective potential of endo-
 polysaccharides from Hericium erinaceus grown on tofu
 016/j.ibiomac.2012.09.002

103.Zhao, S., Gao, Q., Rong, C., Wang, S., Zhao, Z., Liu, Y. &
 Xu, J. (2020). Immunomodulatory Effects of Edible and
 Medicinal Mushrooms and Their Bioactive Immunoregul-
 jof6040269