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INTRODUCTION 

Saline soils are prevalent worldwide, particularly in 

semiarid and arid regions. Hassania et al. (2020) esti-

mated the total extent of saline soil to be 11.74 million 

km2. Elevated salinity levels result in soil degradation, 

Abstract  

Linseed (Linum usitatissimum) is a versatile crop cultivated for its seeds, which are valuable source of ω-3 fatty acids. It ad-

versely affected by soil salinity, as high salt levels can hinder their growth and reduce yields. To assess the potential for mitigat-

ing the adverse effects of high salinity concentrations, enhancing the resilience of  three genotypes (Shekhar, Sheela, and Karti-

ka) of linseed plants, this research aimed to find out the impact of Gibberellic acid (GA3) and Calcium (Ca) on various aspects of 

root morphology, osmotic potential of linseed, under varying levels of Cl- dominated salinity. The study employed three salinity 

levels (0, 5, and 10 dSm-1) and exogenous application of  10−6 M GA3 and/or 10 mg CaCl2 kg-1 in potted plants.The findings indi-

cated that increasing salinity stress significantly (p≤0.05) affected root parameters, including total surface area(43.45%), aver-

age diameter(42.06%), total projected area(44.45%),   length per volume (66.23%), root length, total root volume (73.23%), tips, 

forks,fine roots, and osmotic potential(66.67%). Correlations among linseed genotypes were observed between various root 

morphology and osmotic potential parameters. The application of GA3 and Ca effectively ameliorated the impact of salinity 

stress at its highest level (10 dSm-1), resulting in increased root parameters while decreasing the osmotic potential (Ψs). Both 

GA3 and Ca treatments significantly influenced root architecture and maintained optimal osmotic potential. The chloride-

dominated salinity exerted inhibitory effects on all three genotypes’ (Shekhar, Sheela, and Kartika) root growth parameters while 

applying GA3 and Ca successfully mitigated these effects, enhancing root growth. 
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characterized by poor soil structure and diminished 

nutrient content, ultimately contributing to desertifica-

tion. Linseed (Linum usitatissimum L) is a diploid and 

self-pollinated annual crop. Modern cultivars of linseed 

are typically short, highly branched, and known for their 

abundant seed production (Deyholos, 2006). Linseed is 

among the earliest cultivated plants and cultivated his-

torically for its best-quality bast fibers, cellulose-rich, 

and oil content (Huis et al., 2010; Zohary and Hopf, 

2004). Linseed oil is a valuable dietary nutrition, re-

nowned for its high omega-3 fatty acid and α-linolenic 

acid content. Furthermore, this oil is utilized to manu-

facture different industrial raw materials ( Foster et 

al.,2009; Vaisey-Genser and Morris, 2003; McKenzie 

and Deyholos, 2011).While cotton and synthetic fibers 

have largely replaced linseed fibers in the textile indus-

try, they continue contributing to the creation of premi-

um linen products.Moreover, there is a rising trend in 

utilizing linseed fibers within biocomposite polymer ma-

trices to improve their mechanical characteristics, 

marking an expanding field of application for this adapt-

able crop (Bodros et al.,2007; Chemikosova et 

al.,2006; Huis et al., 2010).  

Linseed boasts a well-developed fibrous root system 

characterized by numerous lateral roots. However, 

these linseed roots are highly sensitive to the effects of 

salinity stress. Salt stress conditions can trigger pheno-

typic plasticity in plant roots by influencing the configu-

ration of the root system (Julkowska et al.,2017; Korver 

et al.,2020; Li et al.,2021). The linseed's root system 

serves as the primary point of interaction with saline 

soil, and it displays a strong physiological reaction 

when confronted with adverse growth circumstances. 

When subjected to salt stress, plant roots tend to ab-

sorb excessive amounts of sodium ions (Na+), leading 

to an disturbance in the Na+/K+ ratio.This discrepancy 

leads to the harmful effects of sodium ions and the initi-

ation of osmotic stress, ultimately hindering roots' 

growth (Yang et al.,2008). This adverse impact was 

observed, where a reduction in overall root volume, 

root length, root count, and darkening of the root tip are 

depicted (Neves et al., 2010). Increased salinity in the 

soil reduces its water potential, exacerbating water 

scarcity and impeding water absorption by plant roots, 

which are already operating at reduced vigor. Addition-

ally, the heightened salt levels within plant cells disrupt 

physiological metabolism, leading to a decline in the 

activity of carbon metabolism enzymes in the root sys-

tem. The decrease in enzyme activity limits the ability 

to assimilate carbon (Nam et al., 2012), consequently 

impeding the growth of the root system. 

Furthermore, signals associated with salt stress impact 

the production and transportation of a range of hor-

mones, including abscisic acid (ABA) and gibberellic 

acid. Consequently, these hormonal changes signifi-

cantly impact root system architecture (Osmont et al., 

2007).Nonetheless, elevating the levels of gibberellic 

acid and other hormones in the roots has been shown 

to alleviate the impediments caused by salt stress on 

root differentiation, as illustrated by Galvan-Ampudia 

and Testerink (2011). These factors, when considered 

together, contribute to the difficulties encountered in 

differentiating and fostering the growth of crop roots in 

highly sodic soil. The external application of phytohor-

mones helps mitigate the detrimental effects of salinity 

and promotes growth. Jia et al. (2020); Meena et al. 

(2016); Borsani et al.( 2001) have also shown that sa-

line stress significantly reduces plant growth and pro-

duction. Gibberellic acid has a positive regulatory influ-

ence on plant stress tolerance under abiotic stress. 

Calcium is known to play a significant role in maintain-

ing the functional and structural integrity of plant mem-

branes, stabilization of cell wall structure, regulation of 

enzyme activity, and signal transduction by acting as a 

secondary messenger (Sun et al., 2010; Song et al., 

2008; Mahajan et al., 2008). Maeda et al. (2005) . The 

alleviating impact of Ca2+ on salt-induced damage in 

plants subjected to high salt levels involves the regula-

tion of ion homeostasis within the stress-signaling path-

way (SOS), as suggested by Zhu (2003). Additionally, it 

is proposed that calcium activation of the SOS3/SOS2 

pathway contributes to enhanced vacuolar Na+ seques-

tration facilitated by vacuolar antiporters (Na+/H+). 

Thus, the present study aimed to investigate the poten-

tial of gibberellic acid (GA3) and calcium (Ca) in mitigat-

ing the adverse impacts of salinity stress on root archi-

tecture and osmotic potential in different linseed (L. 

usitatissimum L.) genotypes under environmental con-

ditions.   

MATERIALS AND METHODS 

Conditions for growing plants 

An experiment with sand culture pots was conducted in 

an atmosphere with ambient lighting. Linum usitatissi-

mum L. healthy seeds of three genotypes (Shekhar, 

Sheela, and Kartika) were procured from NBPGR 

(National Bureau of Plant Genetic Resources) in New 

Delhi, India. Five kilograms of sand were placed inside 

the 12-inch clay pots that were coated with polythene 

bags (to prevent contamination). The sand was cleaned 

with 0.1 N HCl (to remove nutritional cations and fungal 

contamination), then with distilled water before being 

put into the pots. A straightforward randomised design 

with three replicates was used to place the pots. Seeds 

were surface sterilised with 1% NaClO for 10 minutes 

before to sowing, forcefully washed with DDW, and 

then planted in pots filled with sand and nutrient solu-

tion according to Raukura's method (Smith et al.,1983). 

Five healthy plants of the same size were kept in each 

container after two weeks of seeding and thinning. The 

plants received a salinity treatment when they had two 
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to three genuine leaves. Chloride-dominated salinity 

was created by adding different salts with different salt 

concentrations, viz., NaCl, CaCl2, MgCl2, and MgSO4. 

These salts are mixed in the ratio such that Na : (Ca +  

Mg) ratio is 1:1, Ca : Mg is 1:3 and Cl: SO4 ratio is 7:3 

on meq basis. The desired salinity is 0, 5.0, and 10.0 

dSm-1, which was applied to saturate the pot and main-

tain the same concentration. The dosage of calcium 

treatment was 10 mg Ca kg-1 sand in DDW(100 ml). 

Calcium chloride (CaCl2) was used as the calcium 

source. GA3 (10-6 M) treatment was administered after 

a two-week chloride-dominated therapy. A 10-2 M stock 

solution of GA3 was created by mixing GA3 in ethyl al-

cohol and diluting it with DDW. DDW was used to cre-

ate 10-6 M GA3 from this standard solution. The only 

plants that received DDW were regarded as the control. 

The experimental pots received daily irrigations of DDW 

(50-100 ml) to maintain the sand wet. The salinity 

stress, CaCl2, and GA3 treatments are mentioned in 

Table 1. The plants were provided with Raukura's nutri-

ent solution every two days, with 200 ml added per pot. 

  

Root architecture 

Following harvest, the freshly harvested root systems 

underwent a thorough tap water rinse and were then 

placed directly onto waterproof trays from Regent. To 

capture root system images, the study employed a 

highly optimized Epson Expression/STD 4800 scanner. 

Subsequently, we utilized the WinRHIZO software, 

which incorporates an automatic global thresholding 

method, for root system analysis. This software, devel-

oped by Regent Instruments Inc. in Quebec, Canada, is 

specifically tailored for the automatic and interactive 

analysis of various root morphological traits, including 

surface area, root length, average diameter, projected 

area and root volume. For each treatment, we scanned 

the roots of three seedlings (equating to single roots 

per pot), and the data presented here represent the 

 

 

Osmotic potential 

Osmolality was determined according to the method 

given by Cuin et al. (2009). Fresh shoot samples (1 g) 

were collected and frozen at −20 °C. Crushed samples 

were squeezed to extract the sap, and osmolality was 

measured with 5 μl of the sap using Vapor Pressure 

Osmometer (Model 5600, ELITech Group, Belgium) 

after calibrating it with the osmolality reference stand-

ards of NaCl (Wescor Inc, USA).   

RESULTS AND DISCUSSION  

Total root length and total projected area 

Two-way ANOVA revealed chloride dominated salinity 

stress and GA3, Ca had significant effects on total root 

length and total project area (P < 0.05; Fig.1).With in-

creasing salinity stress (10 dSm-1), the root length and 

total project area were significantly reduced (Fig. 2 A, 

B). At GA3 supply, the 5 dSm-1 treatment reduced the 

root length by 25.26% (G1), 39.59%(G2) and 40.91%

(G3), respectively, and the 10 dSm-1 treatment reduced 

the root length by 40.99%, 65.03% and 58.41%, in 

three genotypes ‘Shekhar’,’Sheela’ and ‘Kartika’ re-

spectively, compared with control. At GA3 supply, the 5 

dSm-1 treatment increased total root length by 18.81%, 

34.49% and 42.11%, respectively, and the 10 dSm-1 

treatment increased total root length by 26.15%, 

37.46% and 40.24%, respectively, compared with Con-

trol(T0). The root length effective trends were similar to 

the root length in response to the calcium treatments. 

Compared to Control, the root length of  10 dSm-1 in-

creased  by 21.89%, 30.39%, and 32.53%, respective-

ly, under the calcium treatments. Similarly, the root total 

projected area of   10 dSm-1 compared to that of control 

increased  by 24.74%, 25.63%, and 27.18%, respec-

tively, under the GA3 treatments. Under GA3 supply, the 

5dSm-1 treatment increased the total projected area by  

51.70%, 40.74% and 31.0%, respectively, and the 10 

dSm-1 treatment reduced the root total project area by 

44.41%, 42.72% and 41.45%, respectively, compared 

with Control (Fig. 1.,B).  

 

Total surface area and average diameter 

Total surface area and average diameter decreased 

obviously(p≤0.05) by 37.69%,42.75% in ‘Shekhar’, 

30.65%,37.48% in ‘Sheela’ and  43.45%,42.06% in 

‘Kartika’(Fig.2.A, B) in the 10 dsm-1 salinity stress 

plants respectively compared with control (Fig. 2 A, B). 

The linseed crop treated with GA3 showed an increase 

in the total surface area up to 29.25% in variety 1, 

62.05% in variety 2 and 50.25% in variety 3 concerning 

salinity stress. Similarly, a significant increase was ob-

served in the total surface area of the root when sup-

plementation of Ca was applied, upto 19.27%(G1), 

54.93% (G 2) and 35.98%(G 3) compared to stress 

treated plants(Fig.2.A, B). Ca and GA3 separately in-

creased total surface area compared with plants grown 

under salinity stress. Stress related attribute average 

root diameter was recorded to be markedly(p≤0.05) 

Table 1. Different treatments used in the experiment 

Sr. 

No. 

Treatment 

code 

Chemical constituents in the 

treatment 

1. T0 Control (0 dSm-1+ 0 GA3+ 0 CaCl2) 

2. T1 5.0 dSm-1 

3. T2 10.0 dSm-1 

4. T3 10-6 M GA3 

5. T4 5.0 dSm-1 + 10-6 M GA3 

6. T5 10.0 dSm-1 + 10-6 M GA3 

7. T6 CaCl2 
8. T7 5.0 dSm-1 + CaCl2 

9. T8 10.0 dSm-1 + CaCl2 
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28.43%, 44.67% and 46.03%, respectively, compared 

with Control. The length per volume effective  trends 

were similar to that of the length per volume in re-

sponse to the calcium treatments. Compared to Con-

trol, the length per volume of  10 dSm-1 increased  by 

26.66%, 42.70%, and 37.94%, respectively, under the 

calcium treatments. Similarly, the total root volume of 

10 dSm-1 compared to that of control increased  by 

42.17%, 64.47%, and 42.02%, respectively, under the 

GA3 treatments. Under GA3 supply, the 5dSm-1 treat-

ment increased the  total root volume by  46.60%, 

52.15% and 37.63%, respectively, and the 10 dSm-1 

treatment reduced the total root volume by 73.23%, 

44.25% and 58.32%, respectively, compared with Con-

trol(Fig. 3.,B).Similar trends were obtained with Ca  

supplementation with 10 dSm-1.Ca application with total 

root volume, plants under salt stress showed increased 

activity of 35.04%(G1),55.26%(G2), and 37.11%(G3) 

as compared to plants treated to chloride-dominated 

salinity 10 dSm-1.However, the result indicated that out 

of three genotypes, Kartika performed significantly in-

creased length per volume and total root volume com-

pared to Sheela and Shekhar under saline conditions.  

 

Tips and forks 

The impact of different treatment (GA3 & Ca) on root 

tips, forks and fine roots in Linseed varieties is present-

ed in (Fig. 4 A,B,C).The GA3 and calcium treatments 

observed a significant (p≤ 0.05) effect on tips,forks and 

fine roots compared with control C.At all salinity levels 

(5 dSm-1, 10 dSm-1), our analysis showed considerable 

improvements in tips,forks and fine  of root architecture 

parameters (Fig. 4 A,B,C). The root tips number de-

creased as the salt stress level increased (Fig. 4 A), 

Fig. 1. Effect of calcium and gibberellic acid on Linseed cultivated under chloride-dominant salinity stress on total root 
length (A) and total project area (B). Each value is the average across three replicates, with standard error calculated. 
Each bar with a distinct letter differed significantly across treatments (p≤ 0.05); means SE; two-way ANOVA; Tukey's 
post hoc test. [ control (T0);5.0 dSm-1 (T1);10.0 dSm-1 (T2);10-6 M GA3 (T3);5.0 dSm-1 + 10-6 M GA3 (T4);10.0 dSm-1 + 10-6 
M GA3 (T5); CaCl2  (T6);5.0 dSm-1 + CaCl2  (T7);10.0 dSm-1 + CaCl2  (T8)]  

Fig. 2. Effect of calcium and gibberellic acid on Linseed cultivated under chloride-dominant salinity stress on total surface 

area (A) and average diameter (B). Each value is the average across three replicates, with standard error calculated. 

Each bar with a distinct letter differed significantly across treatments (p≤ 0.05); means SE; two-way ANOVA; Tukey's 

post hoc test. [ control (T0);5.0 dSm-1 (T1);10.0 dSm-1 (T2);10-6 M GA3 (T3);5.0 dSm-1 + 10-6 M GA3 (T4);10.0 dSm-1 + 10-6 

M GA3 (T5); CaCl2  (T6);5.0 dSm-1 + CaCl2  (T7);10.0 dSm-1 + CaCl2  (T8)] 
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increase by GA3 by 74.12% (G 1),27.76%(G 2) and 

44.67%(G3), respectively, compared with 10 dsm-1 sa-

linity (Fig 2. A, B) Furthermore, the use of GA3 caused 

the average root diameter parameter in stressed plants 

to increase even further, and the results were different 

from those in unstressed plants.The average diameter 

effective trends were similar to that of the total surface 

area in response to the calcium treatments. Compared 

to Control, the average diameter of  10 dSm-1 increased 

by 54.78%, 22.61%, and 36.72%, respectively, under 

the calcium treatments. This offered solid proof that 

GA3 and Ca function better individually in correcting salt 

stress. Treatment with GA3 and Ca increased the aver-

age root diameter and total surface area as GA3 and 

Ca were applied, the effect of chloride-dominated salin-

ity was neutralized, and the aforementioned metrics 

significantly improved compared to plants treated with 

salt. However, the result indicated that out of three gen-

otype, Shekhar performed significantly increased aver-

age diameter compared to Sheela and Kartika under 

saline conditions.  

 

Length per volume and total root volume 

Two-way ANOVA revealed chloride dominated salinity 

stress and GA3, Ca had significant effects on length per 

volume and total root volume (P < 0.05; Fig.1).With 

increasing salinity stress (10 dSm-1), the length per vol-

ume and total root volume were significantly reduced 

(Fig. 3.A, B). 5 dSm-1 treatment reduced the  length per 

volume by 24.73% (G1), 38.67%(G2) and 23.18 %(G3), 

respectively, and the 10 dSm-1 treatment reduced the 

length per volume by 42.95%, 66.38% and 48.76%, in 

three genotypes ‘Shekhar’,’Sheela’ and ‘Kartika’ re-

spectively, compared with control. At GA3 supply, the 5 

dSm-1 treatment increased length per volume by 

25.68%, 32.14% and 41.74%, respectively, and the 10 

dSm-1 treatment increased length per volume by 

upto 60.86% in 'Shekhar', 79.86%  in 'Sheela', 

and ,73.44% in 'Kartika' were observed at the highest 

salt stress (10 dSm-1) compared to the control. The 10 

dSm-1 salinity challenged root tips increased much 

more after GA3 treatment. GA3 was introduced to coun-

teract the negative effects of salt on the plants' antioxi-

dant defence mechanism.In addition foliar spray of GA3 

increased root tips up to 32.26% (G1),38.64% (G 2) 

and 56.23% (G 3)  compared to highest salinity treat-

ments (Fig 4.A). Ca application with root tip number 

under salt stress showed increased activity of  32.17% 

(G1), 34.89% (G2), and 50.69% (G3) as compared to 

plants treated with chloride-dominated salinity 10 dSm-

1.Similarly, results were observed with root forks. Its 

number decreased up to 50.32%(G1), 74.12% (G2), 

67.76% (G3) at the highest salinity level 10 dSm-1. But 

in contrast with GA3 supplementation, the negative im-

pact of salinity was counteracted by 24.21% in 

‘Shekhar’,45.33% in ‘Sheela’ and 51.27% in ‘Kartika’. 

Exogenously Ca supplementation in salinity treated 

plant, compared to highest salinity stress treatment. 

Similarly, results were obtained with forks, up to 

22.81% in Shekhar,18.56% in Sheela and 36.21% in 

Kartika under the highest salinity stress. Fig. 4 A, B, C 

show increased values of tips, forks and fine roots in 

Ca, GA3 and salinity-treated plants when compared to 

salinity treated, in contrast to the converse being true 

when Ca treated plants were compared to chloride 

dominated salinity treated plants. Results obtained from 

this study indicate that the fine root structure was de-

creased with increasing salinity up to  43.45% in G1, 

64.67% in G2 and 60.88% in G3, but exogenous appli-

cation of GA3 increased by 24.57%, 41.075% and 

49.72% in Shekhar, Sheela, Kartika genotype. Similar-

ly, the results were obtained with Ca supplementation, 

and fine root diameter increased by 20.46%,30.94%, 

and 42.78%, respectively.In plants that were stressed 

Fig. 3. Effect of calcium and gibberellic acid on Linseed cultivated under chloride-dominant salinity stress on Length per 

volume (A) and total root volume (B). Each value is the average across three replicates, with standard error calculated. 

Each bar with a distinct letter differed significantly across treatments (p≤ 0.05); means SE; two-way ANOVA; Tukey's 

post hoc test. [ control (T0);5.0 dSm-1 (T1);10.0 dSm-1 (T2);10-6 M GA3 (T3);5.0 dSm-1 + 10-6 M GA3 (T4);10.0 dSm-1 + 10-6 

M GA3 (T5); CaCl2  (T6);5.0 dSm-1 + CaCl2  (T7);10.0 dSm-1 + CaCl2  (T8)]  
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by salinity, Ca and GA3 were just as efficient in increas-

ing root tips, forks and fine roots as Chloride salt alone. 

  

Osmotic potential 

Two-way ANOVA revealed chloride-dominated salinity 

stress and GA3, Ca significantly affected the osmotic 

potential of leaves and roots (P < 0.05; Fig.6. A, B). 

Increasing salinity stress (10 dSm-1) significantly re-

duced osmotic stress (Fig. 5. A,B). At moderate salinity 

level, the 5 dSm-1 treatment decreased  the osmotic 

potential of leaves and roots  by 33.33%,38.46% (G1), 

24.00%,18.75%(G2) and 36.84%,27.78%(G3), respec-

tively, and the 10 dSm-1 treatment reduced the osmotic 

potential by 66.67%,69.23% in ‘Shekhar’, 

64.00%,56.25% in ‘Sheela’ and 68.42%,66.67% in 

‘Kartika’, all three genotypes respectively, compared 

with Control. At GA3 supply, the 5 dSm-1 treatment in-

Fig. 4. Effect of calcium and gibberellic acid on Linseed 

cultivated under chloride-dominant salinity stress on Tips 

(A), Forks (B) and Fine roots(C ). Each value is the aver-

age across three replicates, with standard error calculated. 

Each bar with a distinct letter was significantly different 

across treatments (p≤ 0.05); means SE; two-way ANOVA; 

Tukey's post hoc test. [ control (T0);5.0 dSm-1 (T1);10.0 

dSm-1 (T2);10-6 M GA3 (T3);5.0 dSm-1 + 10-6 M GA3 

(T4);10.0 dSm-1 + 10-6 M GA3 (T5); CaCl2  (T6);5.0 dSm-1 + 

CaCl2  (T7);10.0 dSm-1 + CaCl2  (T8)]  

Fig. 5. Effect of calcium and gibberellic acid on Linseed 

cultivated under chloride-dominant salinity stress on Os-

motic potential of leaves (A) and roots (B). Each value is 

the average across three replicates, with standard error 

calculated. Each bar with a distinct letter differed signifi-

cantly across treatments (p≤ 0.05); means SE; two-way 

ANOVA; Tukey's post hoc test. [ control (T0);5.0 dSm-1 

(T1);10.0 dSm-1 (T2);10-6 M GA3 (T3);5.0 dSm-1 + 10-6 M 

GA3 (T4);10.0 dSm-1 + 10-6 M GA3 (T5); CaCl2  (T6);5.0 

dSm-1 + CaCl2  (T7);10.0 dSm-1 + CaCl2  (T8)]  
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creased osmotic potential by 21.43%(G1), 16.67%(G2) 

and 21.74%(G3), in leaves respectively, and the 10 

dSm-1 treatment increased osmotic potential by 

14.29%, 19.51% and 12.50%, of leaves respectively, 

compared with Control (Fig.5. A, B). The osmotic po-

tential effective trends were similar in response to the 

calcium treatments. Compared to the Control, the os-

motic potential of  10 dSm-1 increased by 11.43%, 

14.63%, and 15.63% in leaves and 13.64%,16.00%, 

20.00% in roots, respectively, under the calcium  

treatments. 

 

Correlation 

A Pearson's correlation graph was constructed to ex-

amine the associations among various root trait param-

eters, encompassing total projected area, total root 

length, length per volume, total root volume, average 

diameter, tips, forks, fine roots, and osmotic potential 

(both in leaves and roots) of Linseed genotypes (Fig. 6. 

A, B, C). Among the three genotypes, namely Shekhar, 

Sheela, and Kartika, positive correlations were ob-

served between all these parameters. However, these 

parameters exhibited a negative correlation with the 

total surface area in the case of the "Shekhar" geno-

type, and conversely.  

Furthermore, leaves subjected to GA3 and Ca treat-

ments in the presence of salinity exhibited an elevated 

osmotic potential, indicating greater solute accumula-

tion compared to the control. Salinity stress negatively 

affected the root morphological structure including pri-

mary and secondary lateral roots, number of forks, root 

diameter, root length and root volume compared to 

control (Fig. 7A-B). Fig. 7 C,D  showed that the exoge-

nous application of GA3 and Ca increased these pa-

rameters  under salinity stress.  

Previous studies (Jia et al. 2020; Meena et al. 2016; 

Borsani et al. 2001) show that saline stress significantly 

reduced plant growth and production. Gibberellic acid 

has a positive regulatory influence on plant stress toler-

ance under abiotic stress. Salt stress conditions can 

trigger phenotypic plasticity in plant roots by influencing 

the configuration of the root system (Julkowska et 

al.,2017; Korver et al.,2020; Li et al.,2021). The present 

study observed that chloride-dominated salinity at 10 

dSm-1 exerted inhibitory effects on root system growth 

and induced changes in root architecture (Fig.1-4). Ele-

vated salinity stress has been observed to impede the 

lignification process and the development of transport 

tissues (Gowda et al., 2011). In particular, the cortical 

tissue, a vital component of fine roots, occupies a sub-

stantial portion of the root cross-section, influencing 

both root absorption and radial transport (Gowda et al., 

2011). 

In typical crops, root growth parenchyma cells in the 

cortex naturally die, causing radial cell walls to come 

together and create air-filled cavities, forming 

aerenchyma.The paerenchyma serves as a conduit for 

the efficient transport of oxygen during root aerobic 

respiration, thus minimizing potential harm to the plant, 

as highlighted in the study by Zhang et al. (2016). 

Some of the oxygen in the paerenchyma moves toward 

A 

B 

C 

Fig. 6. A Pearson’s correlation graph among various root 

architecture related parameters and osmotic potential of 

Linseed under salinity, GA3, Ca conditions with three gen-

otypes Shekhar (A), Sheela (B) and Kartika (C ). In this 

study, the mean values of the various variables were nor-

malised and grouped together. The colour scale shows the 

strength of the normalised mean values of different fac-

tors. Abbreviations -TRL:Total root length; TPA:Total pro-

ject area; AD:Average diameter; LPV:Length per volume; 

TRV- Total root volume; FR-Fine roots; OP-Osmotic po-

tential;L-Leaves;R-Roots. The lines emerging out of the 

central region of the biplots show negative or positive cor-

relations with various parameters, and how close they are 

to each other displays how strong the correlation is be-

tween that parameter and that line  
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the root tip, gradually reaching the surrounding soil. 

This creates an oxygen-rich environment that supports 

rhizospheric microbes, preventing damage from salt 

stress in root cells (Akcin et al., 2015).Root morphologi-

cal characteristics, such as root volume, surface area, 

root length, and the number of root branches and tips, 

play a vital role in a plant's adaptation, overall well-

being, and productivity (Huang et al., 2019). 

As a highly responsive component of the plant system 

for sensing soil conditions, root tissue undergoes re-

markable morphological alterations to minimise meta-

bolic demands while maximizing nutrient acquirement 

(Mishra et al., 2017). Under stressful conditions, root 

growth is frequently hindered, and the inhibition of root 

elongation is often the first sign of adverse environmen-

tal factors (Munzuroglu and Geckil, 2002). In present 

study, the Linseed genotypes exhibited a reduction in 

various root parameters, including root volume(Fig. 

3A,B), root surface area(Fig.2 A),total root length(Fig.1 

A), root branches number and tips,forks (Fig. 4 A,B)  

with increasing soil salinity levels. A similar pattern was 

observed by Huang et al. (2019), who noted that Pb 

toxicity in soils led to decreased root length, root diam-

eter, and root surface area in Robinia pseudoacacia 

seedlings. Additionally, Spagnoletti and Lavado (2015) 

reported that elevated soil arsenic concentrations had a 

detrimental effect on morphological traits in G. max 

seedlings, including a reduction in root length.However, 

Srivastava et al. (2009) reported a slight increase in 

root density but no significant difference in root length 

for Brassica juncea seedlings under arsenic stress in 

soils. These alterations in root characteristics provide 

direct evidence of stress-induced damage to roots in 

the soil environment and are likely linked to a compro-

mised plant metabolism Chen et al.,2007). In the pre-

sent study, Linseed genotypes exhibited higher root 

diameter (Fig.2B),  root surface area (Fig. 2A), total root 

length(Fig.1 A), root volume (Fig.3 B), and the number 

of root branches and tips with GA3 and Ca application 

compared to salinity levels at 10 dSm-1. These findings 

align with the conclusion drawn by Wu et al. (2011) and 

Huang et al. (2019).  

Lu et al. (2013) found that the increase in the number of 

root tips enhances the plant's ability to access resources 

and nutrients from the soil. In the current investigation, 

the root tips number (Fig.4A) in Linseed genotypes 

'Shekhar,' 'Sheela,' and 'Kartika' decreased as soil salin-

ity levels increased from 5 dSm-1 to 10 dSm-1. However, 

it was observed that Kartika genotypes had a higher 

root tip number than Shekhar and Sheela, suggesting 

that Kartika could alleviate the reduction in lateral root 

growth and improve the plant's ability to acquire re-

sources in saline soil. This, in turn, facilitated the uptake 

of soil nutrients and water by increasing the active root 

length, and the number of root forks and tips within the 

root system of Linseed genotypes.In this particular in-

vestigation, Shekhar and Sheela exhibited notably lower 

root length (Fig.1 A) percentages when compared to the 

Kartika genotypes. As a result, Kartika exhibited an en-

larged root diameter under different salinity treatment 

conditions, which could be associated with promoting 

larger parenchyma cells and enhanced cortical tissues, 

potentially influenced by AM symbiosis (Sheng et al., 

2009). A similar outcome was observed in a pot experi-

ment involving Robinia pseudoacacia seedlings inocu-

lated with either Glomus versiforme or Rhizophagus 

irregularis under standard growth conditions, as report-

ed by Zhang et al. ( 2016). 

Plant growth regulators, specifically phenolic hormones 

recognized as stress hormones, are pivotal in enhanc-

ing plant stress tolerance by modulating a wide array of 

physiological and metabolic responses(Kim et al., 2017; 

Fig. 7.  Showing   the morphological and architectural traits of the root system under different salinity conditions: Control
(A), Salinity(B),10 dSm-1 +GA3(C ), 10 dSm-1 + Ca (D), including length, diameter, tips, forks, root formation,  root volume 
and surface area. 
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stress, the root architecture parameters decreased and 

osmotic potential also decreased. However, at the high-

est salinity stress condition (10 dSm-1), the GA3 and Ca 

supply had a significantly effect on root architecture, 

including total surface area, average diameter, length 

per volume, total projected area,  root length,  total root 

volume, tips, forks, fine roots, and osmotic potential in 

Linseed genotypes.  The results suggest that gibberel-

lic acid and calcium supply can reduce salinity stress 

by enhancing the root growth of linseed. 
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