Antibacterial and antibiofilm activity of cinnamic acid against Multidrug-resistant bacteria isolated from Ramadi Teaching hospitals, Iraq

Saleem Obaid Gatia Almawla
Medical Laboratory Technology, Al-Huda University College, Anbar, Iraq
Luma Dali
College of Basic Education/Haditha, University of Anbar, Anbar, Iraq
Mohammed Mukhles Ahmed*
Department of Biotechnology, College of Science, University of Anbar, Anbar, Iraq
Ali Ibrahim Edan
Medical Laboratory Technology, Al-Huda University College, Anbar, Iraq
Yusser Mahmoud Ragheb
Department of Biology, College of Science, University of Anbar, Anbar, Iraq
Ali Hazim Abdulkareem
Department of Biotechnology, College of Science, University of Anbar, Anbar, Iraq
Afrah I. Waheeb
Department of Biology, College of Basic Education/Haditha, University of Anbar, Anbar, Iraq

*Corresponding author: Email: moh.mukhles@uoanbar.edu.iq

INTRODUCTION
Antibiotic resistance has emerged as a critical global health challenge, escalating both in community and hospital settings. The persistence and proliferation of multidrug-resistant (MDR) bacteria, and even pan-resistant strains that are impervious to all available therapeutic antibiotics, have resulted in treatment failures, leading to higher mortality and morbidity rates. Additionally, this situation considerably impacts the cost of medical treatments (Cepas et al., 2019; Ahmed and Al Meani, 2019; Abdulkareem et al., 2021). Bacteria develop resistance to antibiotics through various changes and adaptations. These mechanisms include modifying the impermeability of the bacterial cell wall to prevent antibiotic entry, altering the drug’s target site to reduce its effectiveness, and undergoing genetic changes like mutations in target genes and other mutational events. Additionally, bacteria can acquire resistance genes through small plasmids, mobile genetic elements that facilitate the transfer of resistance traits among bacterial populations (Qi et al., 2016; Ahmed et

How to Cite

Abstract
Various bacterial pathotypes remain a significant public health concern due to their pathogenicity and antimicrobial resistance. Moreover, the ability of bacteria to form biofilms can hinder host defense and antimicrobial eradication, leading to additional resistance. This study aimed to estimate the cinnamic acid's anti-biofilm activity against biofilms-producing bacteria. From October to November 2023, various clinical isolates were obtained from the Bacteriology Unit, Ramadi Teaching Hospital, Iraq. All isolates were identified using a conventional and automated VITEK-2 compact system. Based on the Clinical and Laboratory Standards Institute (CLSI) guidelines and the European Committee on Antimicrobial Susceptibility Testing (EUCAST), the Kirby-Bauer disk diffusion and AST were performed for antimicrobial susceptibility. Biofilm formation was estimated using a 96-well Enzyme-linked immunosorbent assay (ELISA) reader. Based on the antimicrobial susceptibility test, all bacterial isolates showed antibiotic resistance, including Klebsiella pneumoniae, Psuedomonas aeruginosa, Escherichia coli and Staphylococcus aureus. The data showed that MICs of cinnamic acid against bacteria were 125 μg/ml. The biofilms formed by all isolates exhibited strong strength (OD570: 0.078-0.099). Cinnamic acid demonstrated significant inhibition of biofilm production in Multidrug resistance (MDR) bacteria (P-value = 0.0236). The results indicated that Cinnamic acid could be a promising anti-infective agent based on its ability to inhibit MDR-bacterial infections through biofilm formation.

Keywords: Antibiotic resistance, Biofilm, Cinnamic acid, Multidrug resistance

Research Article
MATERIALS AND METHODS

Study design

Between October and November 2022, a prospective study was conducted at two hospitals in Al Ramadi city (General Ramadi Teaching Hospital, Ramadi Teaching Hospital for Women and Children) in Iraq, focusing on multidrug-resistant (MDR) bacteria obtained from the bacteriology unit at Ramadi Teaching Hospital. The purpose of the ongoing research is to examine the impact of cinnamic acid on bacteria that are capable of producing biofilms.

Ethical approval

All participants obtained informed consent, which was received from the ethical approval committee at Ramadi General Teaching Hospital in Al-Anbar Province, Iraq. A structured questionnaire was employed for data collection from both patients and controls, ensuring adherence to the guidelines established in the informed consent procedure.

Identification of bacterial isolates

Bacterial isolates, such as wounds, sputum, urine, blood, and burns, were obtained from various clinical sources. Isolated bacteria were identified using the biochemical identification cards of the Vitek® 2 Systems.

Antimicrobial susceptibility

The antimicrobial susceptibility test was conducted using the Kirby-Bauer disk diffusion method (Hudzicki 2009) for the bacteria indicated by the European Committee on Antimicrobial Susceptibility (GaCommittee et al. 2020). Various antibiotics used in the present work included Amoxicillin/Clavulanic Acid, Piperacillin/Tazobactam, Cefotaxime, Ceftazidime, Cefepime, Imipenem, Meropenem, Amikacin, Gentamicin, Ciprofloxacin, and Trimethoprim/Sulfamethoxazole (Mast Group, Bootle, England).

Biofilm assay

The biofilm formation of bacteria was assessed following the method outlined by Ong et al. (2018). This was evaluated using a microtitre plate assay. First, an overnight culture of bacteria was diluted to a 0.5 McFarland standard. The bacterial culture was diluted to one-twentieth of its original concentration, and 200 μL aliquots were added to each of the three wells in a 96-well μL plate. The plates were incubated at 37°C for 24 hours. After incubation, the wells were washed with phosphate buffer saline (PBS) to remove any non-attached cells. The wells were then stained with crystal
The bacterial culture was diluted and added to the wells, added to each well of a 96-well microtiter plate. Negative controls, with no inoculum, were included to ensure that the absorbance readings were not due to background noise.

Acinetobacter baumannii ATCC19606 (HiMedia; India) is a strain of A. baumannii known to form biofilms. The study used it as a positive control to ensure that the experimental conditions were appropriate for biofilm formation. This strain is known to form biofilms, so its OD reading should be significantly higher than the negative controls. The OD cutoff value (ODc) for biofilm formation was determined as three standard deviations above the mean absorbance of the negative control without the inoculum. Based on this criterion, the isolates were categorized as follows: i) Non-biofilm formers: OD ≤ ODc, ii) Weak biofilm formers: ODc < OD ≤ (2 × ODc), iii) Moderate biofilm formers: 2 × ODc < OD ≤ (4 × ODc), iv) Strong biofilm formers: OD > (4 × ODc).

Estimation of sub-minimum inhibitory concentration (Sub-MIC) for cinnamic acid against MDR bacteria

In brief, 1% of the overnight grown culture of the test organism was added to 24 well microtitre plates (MTPs) containing LB broth supplemented with cinnamic acid ranging from 14 μg/ml to 1.5 mg/ml. The microtitre plates (MTP) were then incubated for 24 hours at 37°C. The sub-MICs (sub-minimum inhibitory concentrations) were determined as the highest concentration of cinnamic acid that did not affect the growth of the test bacteria, as indicated by the cell density (OD600) measurement (Srinivasan, Santhakumari, and Ravi 2017). To evaluate the impact of the sub-MIC level of cinnamic acid on the growth of MDR-bacteria, 1 ml of the broth culture was collected at 2-hour intervals, and the optical density (OD) was measured at 600 nm over 24 hours to generate a growth curve. All subsequent anti-biofilm assays were conducted using the sub-MIC concentration (Banerjee et al. 2017).

Antibiofilm of cinnamic acid at sub-MICs

The biofilm formation was evaluated in various clinical samples of Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus (pathogenic bacteria isolated from Ramadi Teaching hospitals) using a microtitre plate (MTP) assay. First, 200 μl of a 0.5 McFarland bacterial suspension was added to each well of a 96-well microtiter plate. After the bacterial culture was diluted and added to the wells, 20 μL of cinnamic acid solutions were added. The concentrations of the cinnamic acid solutions were half and one-quarter of these acids’ minimum inhibitory concentrations (MICs). The plates were incubated for 24 hours at 37°C. After incubation, the plates were washed twice with phosphate-buffered saline to remove non-adherent cells, if any. The wells were then stained with a 0.1% v/v crystal violet solution. After the dye was solubilized in 33% v/v acetic acid, the optical density (OD) of each well was measured at 630 nm using a microtitre plate reader (Tutar et al. 2016). Each assay was performed thrice, and wells containing no cinnamic or gallic acids were used as positive controls for biofilm formation. This means that these wells were expected to form biofilms, and their OD readings were compared to the OD readings of the wells containing cinnamic or gallic acids. The calculation of the biofilm reduction percentage was carried out using the following formula:

\[
\text{As} = \text{OD}_{630} \text{ value of the wells treated with cinnamic acid} \\
\text{Ac} = \text{OD}_{630} \text{ value of the positive control wells} \\
\text{Ac} - \text{As} \times 100 \\
\text{100} \\
\text{Eq. 1}
\]

Where Ac = OD630 value of the positive control wells; As = OD630 value of the wells treated with cinnamic acid (Shao et al. 2015).

Statistical analysis

All data was analyzed using graph pad prism, version 8.0. Chi-square and paired t-tests were employed, and statistical significance was defined as a p-value below 0.05.

RESULTS AND DISCUSSION

Antimicrobial susceptibility

Based on Table 1 and Fig. 1, the present study showed isolates of S. aureus, E.coli and K. pneumonia, were resistant to all antibiotics, which included Amoxicillin/Clavulanic Acid, Piperacillin/Tazobactam, Cefotaxime, Ceftazidime, Cefepime, Imipenem, Meropenem, Amikacin, Gentamicin, Ciprofloxacin, Trimethoprim/Sulfamethoxazole were. While isolates of P. aeruginosa were resistant to all antibiotics except Piperacillin/Tazobactam. Almost all the studied isolates resisted various antibiotic families, except for the P. aeruginosa isolate, which showed sensitivity to the Piperacillin/Tazobactam disk. The isolates were categorized into susceptible, resistant (within 1-4 antibiotic categories), and multidrug-resistant (MDR) groups (resistant to three or more antibiotic families). In this study, all the isolates were identified as MDR since they exhibited resistance to three or more antibiotic families. For example, K. pneumoniae showed resistance to multiple antibiotic families, such as Amoxicillin/Clavulanic Acid, Piperacillin/Tazobactam, Cefotaxime, Ceftazidime, Cefepime, Imipenem, etc.

Table 1 also indicated that P. aeruginosa was resistant to more than one antibiotic family but remained sensi-
The study assessed biofilm formation in different clinical samples of *K. pneumoniae*, *E. coli*, *P. aeruginosa*, and *Staphylococcus aureus* using a microtiter plate (MTP) assay. Four clinical isolates were screened for biofilm formation using the MTP method, and the results showed that all four isolates exhibited a biofilm-positive phenotype after 18 hours of incubation, indicating their ability to form biofilms. The strength of the biofilms was found to be strong for all isolates (OD570: 0.078-0.099) (Fig. 2).

Antibiofilm of cinnamic acid

Based on Fig. 3 and Table 3, Cinnamic acid exhibited notable inhibition of biofilm production in multidrug-resistant (MDR) bacteria, as indicated by a significant *P*-value of 0.0236. The escalating rates of multidrug resistance have given rise to significant concerns regarding bacterial infections. The situation is further exacerbated by the ability of these bacteria to form biofilms (Najeeb et al., 2022). The antibiotic resistance observed in biofilms is approximately 1,000 times higher than in planktonic cells, significantly limiting the range of available options for effective antimicrobial treatments (Hall and Mah, 2017). All of these isolates (*K. pneumoniae*, *E. coli*, *P. aeruginosa*, and *S. aureus*) under study were defined as multidrug resistance MDR because they were resistant to three or more antibiotics (Table 1). The emergence of resistance to commonly used antibiotics results from both patient misuse and inappropriate antibiotic use;

Fig. 1. *Kirby-Bauer disk diffusion for bacteria*. A: ceftriaxone; B: Cefepime; C: Ceftazidime; D: Amoxicillin/Clavulanic Acid; E: Cefotaxime; F: Gentamicin; G: Amikacin

Table 1. Antibiogram parameter of different bacterial isolates according Kirbey-Bauer disk diffusion and AST card technique using Vitek-2 system; R: resistant; I: intermediate; S: sensitive

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>K. pneumoniae</th>
<th>P. aeruginosa</th>
<th>E. coli</th>
<th>S. aureus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amoxicillin/Clavulanic Acid</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Piperacillin/Tazobactam</td>
<td>R</td>
<td>S</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Cefepime</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Imipenem</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Meropenem</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Amikacin</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Trimethoprim/Sulfamethoxazole</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
</tbody>
</table>

Several studies showed a significant correlation between biofilm production and multidrug resistance (Pramodhini et al., 2012). These results agree with Nirwati et al. (2019), who showed that almost all of the isolates of *K. pneumoniae* showed resistance to various antibiotics. The majority of these were also revealed to be biofilm producers. Another study on *P. aeruginosa* showed resistance to three or more antimicrobials (Roulová et al., 2022). The study on *S. aureus* was isolated from burn and wound injuries and also showed MDR because it resisted 7 or 8 out of 11 antibiotics used (Alwash and Aboresha, 2021). Another study on *E. coli* showed multidrug resistance as resistance to at least three distinct antibiotics (Wu et al., 2021).

The present study found that *Acinetobacter baumannii* strains were resistant to aminoglycosides and β-lactams. Previous studies have also shown that amikacin resistance is common in imipenem-resistant *A. baumannii* strains, mainly due to the aminoglycoside resistance methyltransferase (ArmA) gene (Hasani et al., 2016); Upadhyay et al. 2018; Bakour et al. 2014). Similarly, recent studies have found associations between...
imipenem (IPM) and levofloxacin (LVX) resistance (Nour El-Din et al. 2021), which could be linked to various impacts arising from mutations at one or a few genetic loci (Adamus-Bialek et al. 2013). The isolates in the present study displayed a significantly higher frequency (100%) of biofilm production compared to other countries investigated: Egypt (70.1)(Asaad et al., 2021), Iran (70.6%)(Ranbar and Farahani 2019), and China (54%) (Chen et al., 2020). Numerous studies have linked the elevated frequency of biofilm formation in MDR bacteria to extended survival and enhanced resistance to external stresses, including limited nutrients and dehydration (Badave and Kulkarni 2015); (El Hamdan et al., 2022), indicating a high prevalence of antibiotic resistance. In the present study’s antibiotic resistance profiling, which revealed that the majority of the clinical isolates were resistant to all antibiotic disks used. Multidrug resistance in bacteria may occur because it assembles several genes, each of which codes for drug resistance. Resistance (R) plasmids are frequently the site of this resistance. Also changed target structure, enzymatic inactivation, increased expression of genes encoding for multidrug efflux pumps, etc., may also be responsible for the MDR (Eliopoulos et al., 2008); Dey et al., 2022); Huang et al., 2022). On the other hand, the variation in antimicrobial resistance among different species depended on the sample type and its sources, such as urine, blood, or respiratory samples (Al Hamdan et al., 2022; Aldrazi et al., 2020).

The present study showed highly resistant-antibiotics and agreed with previous studies (Kyriakidis et al. 2021), (Bassetti et al. 2022), indicating a high prevalence of antibiotic resistance, which was employed in the present study’s antibiotic resistance profiling, which revealed that the majority of the clinical isolates were resistant to all antibiotic devices used. Multidrug resistance in bacteria may occur because it assembles several genes, each of which codes for drug resistance. Resistance (R) plasmids are frequently the site of this resistance. Also changed target structure, enzymatic inactivation, increased expression of genes encoding for multidrug efflux pumps, etc., may also be responsible for the MDR (Eliopoulos et al., 2008); Dey et al., 2022); Huang et al., 2022). On the other hand, the variation in antimicrobial resistance among different species depended on the sample type and its sources, such as urine, blood, or respiratory samples (Al Hamdan et al., 2022; Aldrazi et al., 2020).

Given the rise in antibiotic resistance, a quest for alternative inhibitory drugs is necessary. Medicinal plants have long been employed for treating infections; natural substances derived from plants, such as cinnamic acid, used for treating infectious diseases for ages, are one of the efficient alternative sources. Cinnamic acid's antimicrobial and anti-biofilm activity indicated the lowest MIC range (125μg/mL) against the tested isolates. Natural hydroxycinnamic acid, along with sinapic acid, ferulic acid, and caffeic acid, is a member of the class of chemicals known as phenolic compounds. These bioactive molecules have been identified as phenolic antioxidants (Kikuzaki et al., 2002). The analyses presented above revealed the magnitude of the issue posed by MDR to A. baumannii. Over the last decade, research efforts have focused on exploring natural remedies and products as alternative antimicrobial solutions to combat MDR isolates.

Cinnamic acid has been shown to have significant antimicrobial effects against many bacteria, including food-borne pathogens, standard isolates, and clinical iso-

Table 2. Showing minimum inhibitor concentrations of cinnamic acid

<table>
<thead>
<tr>
<th>Serial dilutions</th>
<th>Cinnamic acid</th>
<th>1/2</th>
<th>1/4</th>
<th>1/8</th>
<th>1/16</th>
<th>1/32</th>
<th>1/64</th>
<th>1/128</th>
<th>1/256</th>
<th>1/512</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std. Error of Mean</td>
<td>1000μg</td>
<td>0.089</td>
<td>0.078</td>
<td>0.088</td>
<td>0.090</td>
<td>0.088</td>
<td>0.088</td>
<td>0.088</td>
<td>0.088</td>
<td>0.088</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>0.008950</td>
</tr>
</tbody>
</table>

Table 3. Multidrug-resistant treated with cinnamic acid

<table>
<thead>
<tr>
<th>Statistical</th>
<th>Biofilm formation</th>
<th>Treated with cinnamic acid</th>
<th>P-Value</th>
<th>P-value summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>1.301</td>
<td>0.09667</td>
<td>0.0236</td>
<td>*</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>0.1133</td>
<td>0.01550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Std. Error of Mean</td>
<td>0.06542</td>
<td>0.008950</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* = significant (P < 0.05).
lates (Guzman 2014). In the present study, the mean minimum effective dose (MED) of cinnamic acid against multidrug-resistant (MDR) bacteria was 125 μg/ml. This is significant as it suggests that cinnamic acid may effectively treat MDR infections. This finding is consistent with the previous study that has shown cinnamic acid to be effective against MDR bacteria (Sherif et al. 2021), which found that MICs of cinnamic acid ranged from 101 to 167 μg /ml. One interesting finding of the present study was that cinnamic acid effectively reduced the formation of biofilms associated with multidrug-resistant (MDR) bacteria. This is significant because biofilms can make it difficult to treat infections with antibiotics. Different phenolic compounds, like as derivatives of cinnamic acid, exhibit a range of mechanisms that contribute to their ability to inhibit biofilm forming bacteria. Many investigations have explored the antimicrobial, antibiofilm, and wound healing effects of cinnamic acid. These studies have shown that cinnamic acid possesses antimicrobial properties against Gram-positive bacteria and can disrupt biofilms formed by Staphylococcus epidermidis. Consequently, cinnamic acid shows promise as a safe treatment option for skin wound infections (Mingoa et al., 2022). A new research study has shown that cinnamic acid effectively hindered the formation of biofilms in K. pneumoniae (Hussein et al., 2022). One suggested mechanism suggests that phenolic compounds may target the peptide glycan within the bacterial cell wall, thereby influencing their ability to inhibit biofilm formation (Bali et al., 2019). Furthermore, another suggested mechanism potentially inhibits N-acyl homoserine lactones (AHLs)-mediated quorum sensing (Zhang et al. 2020). In the fact, these compounds demonstrate antioxidant properties, which can suppress the production of reactive oxygen species (ROS), consequently impeding the expression of key genes involved in regulating biofilm formation (Ong et al., 2018).

Conclusion

For first time, this research showed that cinnamic acid inhibited biofilm forming bacteria. Notably, Cinnamic acid (sub-MIC) demonstrates no adverse impact on the cell viability of MDR-bacteria, suggesting a reduced risk of developing drug-resistant strains. Moreover, the in vitro evidence further supports cinnamic acid’s antagonistic activity against biofilm formation. Collectively, these findings highlight Cinnamic acid as a novel and promising anti-virulence agent for controlling infections caused by MDR bacteria.

Conflict of interest

The authors declare that they have is no conflict of interest.

REFERENCES

Chen, Lihua, Haixia Li, Haichu Wen, Binyu Zhao, Yuja Niu, Qianqian Mo & Yong Wu (2020). Biofilm Formation in Acinetobacter baumannii Was Inhibited by PAβN While It Had No Association with Antibiotic Resistance. Microbiologyopen 9(9),e1063.

Najeeb, Laith Mushit, Safaa Abed Latif Al Meani, Ali Hazim Abdulkareem, Zyad Hameed Fahad & Mohammed

