Introduction

The decrease in forest area has occurred globally in the last decades, with a loss of 178 Mha between 1990 and 2020, leaving to cover 31% (4.06 billion ha) of the total land area (Sarre, 2020). Tropical forests are the vastest among other regions, accounting for 45% of the global forest area and contributing to 200-300 Pg C from its living trees, equivalent to one-third of carbon in the atmosphere (Mitchard, 2018; Sarre, 2020). Reducing the deforestation rate of tropical forests is essential to mitigate climate change and preserve worldwide biodiversity (Buizer et al., 2014; Gullison et al., 2007; Strassburg et al., 2012). On the other hand, developing countries, including Indonesia, still rely on forests for economic growth and to meet the people’s needs from the forests (Nerfa et al., 2020; Sunderlin et al., 2005). These circumstances lead to the emergence of community-based forestry, allowing the local community to manage and utilize forest resources to improve their lives without neglecting the sustainability of forests themselves (Gilmour, 2016). In Indonesia, social forestry, also known as community-based forestry, is defined as a sustainable forest management system in the State or privately-owned forest areas implemented by local or indigenous communities as the main actors to improve their welfare, environmental balance, and socio-cultural dynamics (Ministry...
of Environment and Forestry, 2021). This system can be in the form of village forest, community forest, forest community crop, Adat (customary) forest, and forestry partnerships. Through social forestry, communities have legal access to utilize the State’s forest area for timber and non-timber plantations (Ministry of Environment and Forestry, 2022).

Considering the importance of social forestry for economic growth and the sustainability of forests, the Indonesian government has targeted to increase the area of social forestry to 12.7 Mha by 2021 (Maryudi, 2017; Rakatama and Pandit, 2020). As of October 2022, 5.1 Mha, or about 4.7% of the state’s forest area has been legalized for social forestry (Directorate General of Social Forestry and Environmental Partnerships, 2022).

Reportedly, the deforestation rate declined in the forest under the village forest scheme of social forestry in Kalimantan and Sumatera, Indonesia, even though biophysical and anthropogenic factors influence the performances and differ in terms of time and space (Santika et al., 2017). Social forestry under the community forest scheme also led to the reduction of forest cover loss in Lampung province, although the deforestation rate was below the designated conservation and protection forests (Putraditama et al., 2019).

Using remote sensing data, Sadono et al. (2020) found that community involvement in social forestry could even help restore tree coverage through a rehabilitation activity included. The forest condition was monitored through multi-temporal Landsat images with a temporal gap between 4–9 years (Sadono et al., 2020). The availability of Landsat images since the seventies allows dense time-series analysis over a certain area (Umarhadi et al., 2022). The dynamic change of vegetation can be monitored by observing the spectral trajectory of an individual pixel over time (Yang et al., 2018). Taking advantage of prolonged Landsat data acquisition, Kennedy et al. (2010) have developed LandTrendr (Landsat-based detection of Trends in Disturbance and Recovery) that creates line segments to obtain spectral trajectories of objects based on annual image observation. LandTrendr can detect forest change, both gain and loss, with the attributes consisting of the change time, magnitude, and duration. This algorithm has been widely applied to various cases, including mining activity (Diamini and Xulu, 2019; Sari et al., 2022; Xiao et al., 2020; Yang et al., 2018), wetlands (de Jong et al., 2021; Fu et al., 2022; Sari et al., 2022), croplands (Zhu et al., 2019), and general forest monitoring (Shen et al., 2022; Yin et al., 2022).

This study aimed to identify the trends of forest change using the LandTrendr approach, taking a case study in a social forestry area in Pati, Indonesia. Further, it was intended to understand the dynamic change of forests where local communities are primarily involved in the management.

MATERIALS AND METHODS

Study area

The study area is located in a social forestry area of Pati consisting of two Forest Farmer Communities (Kelompok Tani Hutan [KTH]), i.e., KTH Sukobubuk Rejo and KTH Patiayam Rejo. The two KTH areas in the remainder of this article are called KTH Pati social forestry area. The Ministry of Environment and Forestry designated this area as a production and limited-production forest. The permission for the social forestry area is regulated by the decree of the Minister of Environment and Forestry through (SK. 4967/MENLHKPSKL/PKPS/PSL.0/7/2018), which was issued on 27th July 2018 (Ministry of Environment and Forestry, 2019). Before that, the intercropping practice was implemented earlier, followed by community-based forest management (Widjayanti, 1989). In the study area, community-based forest management was initiated in 2002 by establishing a forest village community institution that cooperates with Perum Perhutani who is the authority to manage the area (Pranoto, 2020).

KTH Pati social forestry area covers 1,934 ha, including 1,464 households within the area. The present study used an indicative area that the management unit had categorized. It covers an area of 1,450 ha, situated within the geographic coordinates of 6°43’59”–6°46’45” S and 110°56’4”–110°59’2” E as shown in Fig. 1. A variety of plants were cultivated by the community including Sengon (Albizia chinensis), Balsa (Ochroma pyramidale), Mango (Mangifera indica), Avocado (Persea americana), Petai (Parkia speciosa), Ambarella (Spondias dulcis), and Jackfruit (Artocarpus heterophyllus).

Image collection and pre-processing

Multispectral Landsat imageries from the launch of Thematic Mapper (TM) to Operational Land Imager (OLI) provide the longest series of earth observations since the 1980s with a consistent spatial resolution at 30 m and comparable spectral specifications (Wulder et al., 2022). The Landsat archive data are made publicly accessible on Google Earth Engine (GEE) in which data acquisition, pre-processing, and main LandTrendr processing were performed in this study (Kennedy et al., 2018).

This study used Landsat 5 TM, Landsat 7 ETM+ (Enhanced Thematic Mapper Plus), Landsat 8 OLI, and Landsat 9 OLI with an observation period between 1996 and 2022. Image filter was applied to only include images acquired within June–September to diminish seasonal vegetation change. All images are in Level 2 surface reflectance after being processed with the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) algorithm for Landsat 5–7 and the Land Surface Reflectance Code (LaSRC) algorithm for
Sensor-to-sensor harmonization was performed using the equations by Roy et al., (2016) to minimise the spectral differences. The medoid filtering technique was used to generate the most representative pixel in a year composite by choosing the pixel value having the smallest sum of squared differences between the median values of a certain band and across bands (de Jong et al., 2021).

We then transformed the pixels to Normalized Burn Ratio (NBR) to construct the pixel-level of time-series observation. The bands used in NBR, i.e., short-wave infrared 2 and near-infrared, have a strong complementary power for forest disturbance detection, making this index sensitive to forest disturbance (Cohen et al., 2018). NBR is classified as a ratio index, thus it can minimize the spectral noises from the local topography (Umarhadi and Danoedoro, 2020). The NBR equation is as follows (García and Caselles, 1991):

\[
\text{NBR} = \frac{\text{NIR} - \text{SWIR2}}{\text{NIR} + \text{SWIR2}} \quad \text{Eq. 1}
\]

where NIR denotes the near-infrared band and SWIR2 denotes the short-wave infrared band of the corresponding pixel. The images of NBR index are shown in Fig. 2.

LandTrendr processing

This study applied LandTrendr algorithm implemented on Google Earth Engine, referring to Kennedy et al. (2018). LandTrendr algorithm employs a temporal segmentation method on the values of the derived vegetation index that will generate the information on vegetation loss and gain of the forest. LandTrendr algorithm comprises six stages, i.e., 1) noise-induced spikes removal (residual clouds, snow, smoke, or shadows), 2) potential vertices identification using regression approach, 3) trajectories fitting, 4) model simplification, 5) the best model determination based on the p-value for the F-statistic, and 6) segmentation results evaluation (Kennedy et al., 2010). The parameters used for the processing are presented in Table 1.

Both forest loss and gain were generated separately. For this study, we selected the greatest change scenario. Thus, the final results represent the biggest disturbance within the observation period. A magnitude filtering was applied to consider the changes in NBR value more than 0.1. The changes in an area of about a half hectare (0.54 ha) or 6 pixels of Landsat image were taken into account for the minimum mapping unit. The processing results were the duration, magnitude, and occurrence year of vegetation loss and gain. Fig. 3 depicts the illustration of temporal segment attributes in the case of forest loss indicated by the decline of spectral value. In contrast, forest gain was determined by the increase in spectral value in the following year(s).

Validation

An accuracy assessment was conducted to evaluate the LandTrendr results by validating the year of change using the temporal segmentation and visual image interpretation of Landsat images and Google Satellite

Table 1. Defined segmentation parameters for LandTrendr algorithm

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum segmentations</td>
<td>6</td>
</tr>
<tr>
<td>Spike threshold</td>
<td>0.9</td>
</tr>
<tr>
<td>Vertex count overshoot</td>
<td>3</td>
</tr>
<tr>
<td>Prevent one-year recovery</td>
<td>True</td>
</tr>
<tr>
<td>Recovery threshold</td>
<td>0.25</td>
</tr>
<tr>
<td>p-value threshold</td>
<td>0.05</td>
</tr>
<tr>
<td>Best model proportion</td>
<td>0.75</td>
</tr>
<tr>
<td>Minimum observations needed</td>
<td>6</td>
</tr>
</tbody>
</table>

Fig. 1. Study area located in KTH Pati social forestry area, Indonesia; Alphabetical block unit is assigned to simplify the actual name for the analysis
images where available. We used TimeSync tools to clip the corresponding sample area and display the trajectory of NBR throughout the observation period (Cohen et al., 2010). A total of 150 sample points were stratified-randomly selected: every 75 samples for vegetation and agriculture, respectively. Confusion matrices were then created to quantify the accuracy of the maps.

RESULTS AND DISCUSSION

Area of forest change

LandTrend algorithm resulted in three main results consisting of duration, magnitude, and year of change on loss and gain, respectively (Fig. 4). As shown in the maps and Table 2, in total, we identified forest loss covering an area of 453.97 ha, while the forest gain covered 494.18 ha. The greatest area encountered loss is in Block S, with an area of 107.65 ha or about half (53%) of the block area. It was followed by Blocks T (68.47 ha), H (57.56 ha), F (55.34 ha), and G (40.82 ha). Based on the loss magnitude, Blocks B, D, and P exhibit the highest average loss magnitude, i.e., 585, 407, and 405, respectively. However, the loss in Block B only covered quite a small area (0.06 ha). Similar to the loss, the two blocks of the fastest vegetation gain area occurred in Blocks T (79.19 ha) and S (69.52 ha). The vegetation gain is more distributed over the whole study area compared to the loss with the least area in Block I (3.20 ha). Nevertheless, the mean gain magnitudes in all blocks ranged between 171 and 256, except for Block D, which reached 340. Block D managed to have the highest percentage of the gain area (69.62%), followed by Blocks N (63.11%), M (56.61%), and P (54.17%).

Time scale of forest change

Fig. 5 depicts the extent of forest change in terms of time. More than half of vegetation loss and gain occurred in 1997, with a percentage of 51.48% (234.45 ha) and 61.84% (340.18 ha) of the total loss and gain, respectively. Since the beginning of our observation period, the forest change might be affected by the economic crisis 1997 in Indonesia, causing intensive logging in the study area. It can be seen in Fig. 6 that the loss magnitude in 1997 was relatively higher. Conversely, although the area of gain is also broad in 1997, the magnitude is not above average.

In 1998, at the beginning of the reformation era after the fall of the Soeharto political regime, forests were generally directly benefited by the communities; thus encroachment inside the forest area was inevitable (Nawir and Rumboko, 2007). The present results proved that a forest area of 172.80 ha was deforested during 1999–2003 (Fig. 5). From 2004 to 2016, the changes were relatively stable. The most recent forest loss was identified in 2017–2018 with a loss of 31.95 ha. As shown in Fig. 4, most losses occurred in Block D. This block was intended for the forest plantations by the authority. Therefore, it showed a positive trend from 1997, yet after around 20 years, the plantations were harvested.

As observed in Fig. 6, the duration of loss was generally shorter than the gain, with an average of 7.44 years compared to 19.18 years. This shows that overall, the

<table>
<thead>
<tr>
<th>Block</th>
<th>Loss Area (ha)</th>
<th>Magnitude average</th>
<th>Gain Area (ha)</th>
<th>Magnitude average</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>8.33</td>
<td>320</td>
<td>15.48</td>
<td>237</td>
</tr>
<tr>
<td>B</td>
<td>0.06</td>
<td>585</td>
<td>9.80</td>
<td>188</td>
</tr>
<tr>
<td>C</td>
<td>0.92</td>
<td>354</td>
<td>7.63</td>
<td>210</td>
</tr>
<tr>
<td>D</td>
<td>13.17</td>
<td>407</td>
<td>24.18</td>
<td>340</td>
</tr>
<tr>
<td>E</td>
<td>4.65</td>
<td>290</td>
<td>5.66</td>
<td>216</td>
</tr>
<tr>
<td>F</td>
<td>55.34</td>
<td>310</td>
<td>30.00</td>
<td>250</td>
</tr>
<tr>
<td>G</td>
<td>2.12</td>
<td>312</td>
<td>7.06</td>
<td>192</td>
</tr>
<tr>
<td>H</td>
<td>57.56</td>
<td>344</td>
<td>38.79</td>
<td>256</td>
</tr>
<tr>
<td>I</td>
<td>1.65</td>
<td>136</td>
<td>3.20</td>
<td>201</td>
</tr>
<tr>
<td>J</td>
<td>40.82</td>
<td>299</td>
<td>27.54</td>
<td>268</td>
</tr>
<tr>
<td>K</td>
<td>3.85</td>
<td>198</td>
<td>7.64</td>
<td>171</td>
</tr>
<tr>
<td>L</td>
<td>41.75</td>
<td>377</td>
<td>39.91</td>
<td>225</td>
</tr>
<tr>
<td>M</td>
<td>3.05</td>
<td>258</td>
<td>28.33</td>
<td>204</td>
</tr>
<tr>
<td>N</td>
<td>6.17</td>
<td>219</td>
<td>34.87</td>
<td>229</td>
</tr>
<tr>
<td>O</td>
<td>4.90</td>
<td>289</td>
<td>18.20</td>
<td>193</td>
</tr>
<tr>
<td>P</td>
<td>5.70</td>
<td>405</td>
<td>22.51</td>
<td>278</td>
</tr>
<tr>
<td>Q</td>
<td>18.38</td>
<td>364</td>
<td>16.19</td>
<td>217</td>
</tr>
<tr>
<td>R</td>
<td>9.43</td>
<td>267</td>
<td>8.48</td>
<td>183</td>
</tr>
<tr>
<td>S</td>
<td>107.65</td>
<td>344</td>
<td>69.52</td>
<td>224</td>
</tr>
<tr>
<td>T</td>
<td>68.47</td>
<td>326</td>
<td>79.19</td>
<td>281</td>
</tr>
</tbody>
</table>
recovery takes 7.44 years after loss occurred in the study area. More than half of the gain (58.82%) was ongoing at the end of the observation period in 2022. Although the mean gain magnitude was quite low, i.e., 230, the trend proved that an area of 292.32 ha showed continuous forest growth. Notably, there was no new forest gain between 2014 and 2017, yet the loss occurred in an area of 28 ha within those years. It might be due to the transition before the social forestry permit was granted.

Trade-off between forest gain and loss
By overlaying the area of loss and gain, we generated the area interchanged between gain and loss. As shown in Fig. 7a, the gain in the deforested areas previously occurred mainly from 2000 to 2003. This indicated although massive deforestation occurred in this period, as discussed earlier, the community might also contribute to the revegetation of the deforested area through the scheme of community-based forest management. Fig. 7b shows that the firstly gained forest experienced loss in 1999–2002. This graph also displays that the forest area which had been growing detected from the beginning of the observation period in Block D experienced a loss in 2017–2018.

Impact of social forestry and its role in forest change
Based on the timeline, the local community implemented the intercropping practice, and then community-based forest management was established in 2002 under the authority of Perum Perhutani. The locals were permitted to plant and utilize forest products in the forest area with a maximum of 25% profit sharing for the community (Yokota et al., 2014). With the issuance of ministerial regulation regarding social forestry, the community has been fully granted to manage the forest area since 2018. This scheme is more beneficial for the community due to the greater profit sharing for the community, referring to the Regulation of The Minister of Environment and Forestry No. 39 of the Year 2017. Pranoto (2020) reported that the people’s annual income increased to 22% after social forestry was
implemented in KTH Pati. As part of the social forestry scheme, the local community must maintain forest function by planting forest trees besides multipurpose trees and crops. The present study found that forest change can be suppressed by implementing community-based forest management (2002–2018), as also stated by Fujiwara et al. (2012). The remaining stable forest change continued as social forestry was granted in 2018 (Fig. 5). Although a positive forest gain was identified through our analysis, the implementation of social forestry has not significantly increased the forest coverage in the area. This is mainly

Fig. 4. Results of LandTrendr algorithm including duration, magnitude, and year of change of forest loss and gain. Note that the resulted magnitude is multiplied by 1,000.
because most forest farmers still prioritized crops such as corn and cassava as their primary commodity since forest and multipurpose trees take time to be harvested (Pranoto, 2020). Therefore, it is noteworthy that the forest area should be spatially monitored in the upcoming years.

Validation and method evaluation
A total of 150 sample points of vegetation loss and gain were validated by analyzing the NBR trajectories generated from LandTrendr processing and visually interpreting Landsat images and high-resolution Google Satellite images. Observing the imageries can detect the occurrence year to validate whether the sample points are experiencing the change at the correct time. Figs. 8a and 8b show the forest loss and gain confusion
matrices, respectively. Vegetation loss exhibits an overall accuracy of 78.67% which is lower than the gain (85.33%). The high inaccuracy in forest loss is shown in 1997, with 6 points incorrectly classified. This error is mainly because the p-value threshold of the regression (0.05) was not reached by the fitted trajectory, leading to the simplified straight lines for a long period starting from the beginning of the observation time (Yang et al., 2018). However, overall, the forest gain and loss estimates have met decent accuracy.

The present study applied LandTrendr algorithm using Landsat archive images, taking advantage of the prolonged observation period. However, the medium resolution (30 m) provided by Landsat images may not detect small disturbances, instead of generalisation of the given pixel size (Fu et al., 2022). The Pan-sharpening method can be employed to increase the Landsat resolution to 15 m using a panchromatic band. Nevertheless, this method can only be applied for the observation after 1999 since the panchromatic band is available in Landsat 7 ETM+ and Landsat 8–9 OLI (Amini et al., 2022). Sentinel-2 is the alternative offering higher spatial resolution (10 m for visible and near-infrared bands) with dense temporal resolution (up to 5 days). However, as the first observation of Sentinel-2 started in 2015, it limits the observation period to less than 10 years (Yin et al., 2022). Future studies can consider the employment of higher spatial resolution either derived from the pan-sharpening method or the use of Sentinel-2 images in LandTrendr algorithm.

Our trend analysis using LandTrendr algorithm can be utilized to continuously monitor social forestry’s progress. This study used the most significant change scenario by neglecting the lower magnitude changes. The lower rate changes might also happen in the past several years in the study area. Therefore, future studies should consider involving more minor changes for the analysis.

Conclusion

This study demonstrates the trend identification of forest loss and gain in KTH Pati social forestry area using time-series Landsat images during 1996–2022 based on the LandTrendr algorithm. By applying the greatest change scenario, we found that the forest gain is vaster, with an area of 494.18 ha, compared to forest loss (453.97 ha). The financial and political situation at the beginning of our observation period affected the forest condition as we observed an immense loss in 1997, followed by a loss in 1999–2003. This study detected a positive forest gain, as shown by the continuous forest growth on an area of 292.32 ha or 58.82% of the total gain area. The interchanged area was also detected by combining the loss and gain scenarios. This analysis displayed that the recovery in the formerly deforested areas mainly occurred during 2000–2003. On the other hand, the harvest of forest plantations was also detected in 2017–2018 on Block D. This indicated that the community has a role in managing social forestry areas. Although the impact of the social forestry scheme on the forest gain is yet to show a significant result, the progress can be monitored through remote sensing technology with LandTrendr method.

ACKNOWLEDGEMENTS

We thank the editor and reviewers for their valuable comments and suggestions.

Conflict of interest

The authors declare that they have no conflict of interest.
REFERENCES

