Effect of foliar application of GA₃, ethrel and copper sulphate on flowering behaviour and sex ratio of Jatropha curcas L.

Paresh Gayakvad*, D.B. Jadeja and S. Bhalawe

Department of Silviculture and Agroforestry, ASPEE College of Horticulture and Forestry, Navsari Agricultural University, Dandi Road, Navsari-396450 (Gujarat) INDIA

*Corresponding author. E-mail: pareshforest@gmail.com

Received: April 4, 2014; Revised received: May 23, 2014; Accepted: June 5, 2014

Abstract: Effect of various plant growth substances viz., GA₃ (25, 50,100 ppm), ethrel (1500, 2000, 2500 ppm), copper sulphate (0.1, 0.2, 0.5%) as foliar spray treatment applied during January to October was studied at 15 days intervals. The flowering behaviour and sex-expression of Jatropha curcas was investigated during in randomized block design (RBD) at the College Farm, Navsari. Looking to the results, it was noticed that GA₃ 50 ppm resulted in increased number of inflorescence per plant (31.25), number of flower per inflorescence (76.87), number of male flowers (23.22) and female flowers (24.22) in J. curcas. The Male: Female flower ratio was the lowest at 14th spray stage under majority of treatments indicating increased number of female flowers which is ultimately reflected by increased fruit and seed yield of J. curcas.

Keywords: Flowering and male/female ratio, J. curcas, Plant growth regulators

INTRODUCTION

Jatropha curcas is a perennial deciduous shrub belonging to the family Euphorbiaceae, which probably originated in Central America and is widely distributed in the tropics and subtropics (Makkar and Becker, 2009). Jatropha seed content is about 30-40% oil, which is an ideal feedstock for producing biodiesel (Sunil et al., 2008). At present, however, seed yield of Jatropha is poor and insufficient for the biodiesel industry (Sanderson, 2009; Divakara et al., 2010). As a cross-pollinated shrub, Jatropha is monoecious and produces male and female flowers in the same inflorescence (Liu et al., 2008). Normally, female flowers initiate at the centre of inflorescences and are surrounded by a group of male flowers (Jongschaap et al., 2007). Occasionally bisexual (hermaphrodite) flowers occur (Dehgan and Webster, 1979). Each Jatropha inflorescence is composed of 100–300 flowers and yields approximately 10 or more ovoid fruits (Kumar and Sharma, 2008). One of the most likely reasons for poor yield is that Jatropha has few female flowers resulting from a very low female-to-male flower ratio, which, depending on the genotype, is about 1:29–1:13 (Raju and Ezradanam, 2002; Tewari et al., 2007). Thus, increasing the number of female flowers seems critical for the improvement of Jatropha seed yield. Studies of exogenous applications of various plant growth regulators (PGRs) and analysis of endogenous phytohormones showed that PGRs play important roles in floral development (Krizek and Fletcher, 2005; Irish, 2009; Santner et al., 2009). GA₃ application has been shown to increase inflorescence meristem activity and promote floral initiation in several species (Kiba and Sakakibara, 2010). In the present investigation, we studied the application of plant growth regulators such as GA₃, ethrel and copper sulphate their role in enhancing the flowering variation in male: female flower ratio J. curcas L.

MATERIALS AND METHODS

Study site: The experimental site is located at 20°-95° North latitude and 75°-90° East longitude at an altitude of 10 meters above mean sea level. The experiment site i.e. Forestry farm, Navsari Agricultural University, Navsari (Gujarat, India) is located three kilometers away in the west from Navsari and 12 kilometers away in the east from Arabian seashore, the historical place 'Dandi'.

Climate and weather: The climate of South Gujarat is typically tropical characterized by fairly hot summer, moderately cold winter and warm humid monsoon. Generally monsoon in this region commences in the second week of June and retreats by the end of September. Pre-monsoon rains in the last week of May or in the first week of June are not uncommon. Most of the precipitation is received from South West monsoon, concentrating in the months of July and August. Average annual rainfall of this region is about 1431 mm. The winter season sets usually towards the end of October. The lowest temperature of the season is recorded either in December or January (10 to 23.8 °C) and hence these two months are the coldest months of the season. From February onwards, the temperature starts rising and reaches the maximum in the month of May. Thus, May is the hottest month of the summer season.
Preparation of solution of growth substances: Gibberellic acid (GA) at three different concentrations of 25 ppm, 50 ppm and 100 ppm were used. Solutions were prepared by dissolving GA in small volume of isopropyl alcohol and final volume was made up with demineralized water after adjusting pH to 7.5–7.8. A few drops of surfactant were added to the solution. Plants sprayed with demineralized water containing only surfactant were considered as control. The selected time of spray was early morning hours and spraying was initiated from the time foliar bud emerged. Each inflorescence received three sprays of equal volume of solution at an interval of 15 days (Makwana et al., 2010). Ethrel at three different concentrations 1500, 2000 and 2500 ppm were applied. Solution prepared taken Ethrel 0.15, 0.20 and 0.25 ml was measured individually and final volume was made 1 liter by adding distilled water. Ethrel used as 40 percent aqueous solution (Joshi et al., 2011). Copper sulphate 1, 2 and 5 g was weighed on electronic balance and diluted by distilled water to make up to 1 litre of the solution and made 0.1, 0.2 and 0.5 ppm stock (Hirayama and Alonso, 2000).

Method adopted for foliar spray: The foliar application of respective treatment, were applied using a hand sprayer (Ganesh Pvt. Ltd). First spray was applied at leaf less stage and afterwards at every 15 days intervals during the morning hours. Both the surface of leaves and apical meristem were fully moistened. Each inflorescence received three sprays of equal volume of solution at an interval of 15 days. Ten plants were taken per treatment. Total number of flowers and sex ratio were calculated 1 week after the last spray whereas fruit yield was measured one month after the last spray. Test and control plants were tagged with appropriate labels to follow flower development till about one and half months.

Statistical analysis: The data obtained from field trials during the course of the present investigation were analysed statistically by using the random block design (RBD) with the standard mean error (SEm) and critical difference (CD) was evaluated at 5% level of significance. All the experiments were carried out taking three replicates for each treatment (Panse and Sukhatme, 1967).

RESULTS AND DISCUSSION

Exogenous GA has been shown to promote the switch from vegetative growth to flowering in a variety of plants. Most species in which applied GA can induce flowering are long-day or cold-requiring plants, and many of these normally grow as rosettes under noninductive conditions (Zeevaart., 1991). Love et al. (2009) demonstrated that ethylene was an endogenous regulator of meristem growth in Poulus. Both applied and ectopically produced ethylene stimulated xylem growth by means of cambial cell division. It has been shown by Arteca and Arteca, (2007) that different plant parts of Arabidopsis thaliana varied in copper sulfate (CuSO₄) induced ethylene production, inflores-
In all of the foliar application of PGRs influences on number of inflorescence per plant was positive up to 13th spray stage. However, after 14th spray no significant effect on number of inflorescence per plant was discernible though statistically the number was more in each treatment. Application of GA3 (50, 25 and 100 ppm) and ethrel (2500 ppm) induced plant cell division and increased number of inflorescence per plant as compared to other exogenous application. (Fig. 1) At this stage maximum percent increase over control was seen in GA3 50 ppm (119.06%) which was followed by GA3 25 ppm (112.92%) and GA3 100 ppm (97.28%) respectively. The maximum number of inflorescence per plant found during 9th to 10th spray of GA3 50ppm with value (2.99 to 23.66%) followed by ethrel 2500 ppm (21.78%), GA3 100 ppm (20.53%), GA3 25 ppm (19.11%), ethrel 2000 ppm (19.11%) and least in control (13.11%). Maximum percentage increase over control seen in GA3 50ppm with (119.06%) during 13th spray followed by GA3 25 ppm (112.92%); GA3 100 ppm (97.28%), ethrel 2500 ppm (93.91%) and least in CuSO4 0.10 ppm (48.08%). Ethrel 2500 ppm was next to GA3 100 ppm with a value of (93.91%) and number of inflorescence per plant from 9th spray day to 14th spray days found maximum in GA3 50 ppm (31.25 and 97.39%) which followed by ethrel 2500 ppm (28.19 and 77.49%) and GA3 100 (27.55 and 70.18%) respectively. Similar work GA at 50 and 100 ppm resulted in an increase in total number of flowers per inflorescence because the levels of GA and auxins were monitored in these plants. Amongst other biochemical changes brought about by GA and Ethrel application was a pronounced change in endogenous level of Auxin and GA during the initial stages of inflorescence development. However, it has also been reported that spray of GA3 50 ppm, Ethrel 500 ppm induces the flower inflorescence in Ridge guard (Hilli et al., 2008).

Types of flower (male/female) per plant: The number of female flowers significantly increased by application of GA3 50ppm after 10th and 11th application. The female flowers ranged between 3.92 to 4.92 in GA3. This was followed by ethrel 2000 ppm with (3.82 to 4.44), GA3 100 ppm with (3.67 to 4.01) and least in control (2.91 to 2.79) (Fig. 3). Also male flower increased by GA3 and Ethrel application at 13th and 14th spray stages. Along with observed that the number of male flowers higher than female flower. The number of male flowers is maximum in GA3 50 ppm with 10th (86.22) and 11th (96.23) spray after that gradually increase number of male flowers followed by Ethrel 25000 ppm (84.35) in 10th spray, GA3 100 ppm (82.43) and least in control (55.33). However, numerically maximum numbers of male/female flowers were recorded from GA3 50 ppm (94.75/4.01) treated plant after fourteen applications. It might be due to increase level of gibberellins in plants might have increase in flowering through rapid cell elongation and cell division process. This leads to greater accumulation of carbohydrates owing to more photosynthesis, which result in to increase of flowering. Wijaya et al. (2009) reported that the total average number of female flowers per inflorescence increased in J. curcas produces flowers in racemose inflorescences with dichasial cyme pattern. The flowers are unisexual. The average number of male flowers per inflorescence varied from 78 to 291, with a mean of 159.9 ± 37.51 while the number of female flowers per inflorescence varied from 2 to 20, with a mean of 7.9 ± 2.82. However, in rainy season phenological clock of J. curcas like dry forests appears to set during the interphase of winter and summer enabling the community to take full advantage of the rainy season for productivity and recruitment of seeds, while the period of food availability to pollinators and seed predators varies in high number of female flowers in Jatropha accessions (Ghosh and Singh, 2008).

Number of male/female flower sex ratio: This effect was clearly reflected in male:female ratio (Fig. 4). Foliar application of different treatments significantly impacted the ratio from 10th to 14th application among all the treatments CuSO4 0.10 ppm (25.64) exhibited an increase where as all other treatments exhibited a reduction followed by Ethrel 1500 ppm (24.37), GA3 100 ppm (22.46) and least in control (19.30) in 10th...
spray after that 12th and 13th spray found maximum male/male sex ratio in GA, 50 ppm with (28.06 and 27.58) but after 14th spray found maximum male/ female sex ratio in CuSO4 0.20 and 0.50 ppm with (26.20 and 27.66). Similar work has been reported by Chaudhary et al. (2006) in that the application of plant growth regulators is beneficial for overall development of the plant and increasing the yield of the J. curcas plants. It is suggested that higher concentration of Ethrel (i.e. 150 ppm) was found to promote morpho-physiological development, increase female flower development leading to feminization, decrease in male-female ratio, resulting in an improved yield of the plants expressed as an increase in both fruit and seed yield of J. curcas. Raju and Ezradanam, (2002) and Tewari, et al. (2007) reported that low female-to-male flower ratio, which, depending on the genotype, is about 1:29–1:13 in J. curcas. We observed that the ratio of male to female flowers we observed ranged from 13:1 to 26:1. These results are similar to those obtained by (Tewari, 2007 and Divakara et al., 2010) and (Chang-wei et al., 2007) who observed in their report that this ratio varies and changes drastically from 13:1 to 108:1 with the fall in temperature. The total average numbers of female (eight) and male (one hundred and sixty) flowers is comparable to the result in J. curcas.

Conclusion

From the foregoing it was concluded that exogenous application of GA3, ethrel as well as Copper sulphate by way of foliar spray were effective in improving the yield of J. curcas L. However, the most pronounced effects were seen in GA, 50 ppm followed by Ethrel 2000 ppm and GA3 100 ppm. The effect was mediated via increased number of inflorescence, increased number of flower per inflorescence, increased number of male as well as female flowers, ultimately leading to increased fruit and seed yield of J. curcas.

REFERENCES

