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INTRODUCTION 

The productivity of farming depends on the selection of 

physical and chemical properties of soil, selection of 

seed, a good amount of plant photosynthesis, plant 

diseases, etc. Among these serious factors of farming, 

the soil factors should consider more seriously to get 

more productivity. A farmer should have the minimum 

knowledge about the soil texture and select the best 

suitable soil for cultivation. If a farmer does not know 

about the soil type and its texture, it may reduce the 

overall productivity of farming. The soil texture depends 

on the percentage of sand, silt, and clay in the soil. 

Light soil contains more sand than clay but heavy soil 

contains more clay than sand. So, the basic component 

of soil is clay and sand. All types of soil textures may 

not be good for all types of farming, such as sandy, 

sandy loam, and loam are good for citrus farming, but 

silty soil is not good for citrus farming (Yu et al. 2006). 

A specific soil is always good for a specific type of 

farming. Soil experts help farmers to identify the texture 

of the soil using modern laboratories or by viewing the 
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visual texture of the soil. Modern techniques such as 

hydrometer and pipette are not cost-effective and they 

require the United States Department of Agriculture 

(USDA) triangle for the final soil texture analysis

(Barman and Choudhury, 2019). These techniques de-

mand expertise and time. These are serious issues 

from the farmer's point of view. To overcome these is-

sues, the paper presents a soil texture analysis system 

using lightweight Convolution Neural Network (CNN) 

architectures from Smartphone images.   

The application of different machine learning tech-

niques for soil texture classifications has already been 

focused on earlier. Sun et al. (2004) used the Gabor 

wavelet frame with 4 scales and 6 orientations to classi-

fy the 3 soil texture classes. They captured the soil im-

ages using a digital camera with a single-camera set-

ting. Extracting soil attributes using Digital Elevation 

Model  (DEM) from the high-resolution soil map, Zhao 

et al. (2009) reported the Artificial Neural Network 

(ANN) to classify the clay and sand soil with an accura-

cy of 88% and 81%, respectively. The performance of 

the Support Vector Machine (SVM) classifier for sand, 

silty, and peat soil classification was reported by  Srun-

itha and Padmavathi (2016). Mengistu and Alemayehu 

(2018) from Euthopia reported a hybrid approach to soil 

texture analysis by using ANN with an accuracy of 

89.7% for 7 different types of soil texture with the co-

occurrence texture analysis. A study was reported in 

china for 3-class soil classification by Wu et al. (2018) 

using SVM, ANN, and Decision Tree (DT) with an accu-

racy of 79.4%, 99.2%, and 66.1%, respectively. In 

2020, de Oliveira Morais et al. (2020) used Support 

Vector Regression (SVR) and Linear Regression (LR) 

for soil texture analysis. Among all the traditional meth-

ods, the use of the SVM classifier (Barman & 

Choudhury, 2019; Srunitha& Padmavathi, 2016; Wu et 

al., 2018) was more in soil texture classification.  

Researchers also focused on CNN in soil texture classi-

fication along with the traditional machine learning 

methods, but the applications are very limited. In 2019, 

Riese and Keller (2019)reported using CNN with an 

accuracy of 72% for classifying 4 different types of soil 

texture.Anandan(2021) extracted 84 different soil attrib-

utes by applying the  Particle Swarm Optimization 

(PSO) based CNN architecture on the Lucas dataset. 

Wadoux (2019) also investigated the Lucas dataset for 

soil mapping. 

It was noticed that the researchers used either a public 

soil dataset or captured the soil images using a high-

end digital camera. These methods were not cost-

effective from the farmer's point of view. To reduce the 

system cost and benefit farmers, the present study re-

ports Smartphone image-based soil texture analysis 

using lightweight CNN so that the investigated model 

can easily load in a Smartphone application for the 

easy use of farmers. The studied system forwards the 

contributions towards digital farming using deep learn-

ing techniques as i) A robust digital soil image dataset 

was prepared using a Smartphone in a natural light 

condition, ii) Two types of CNN models were reported 

for sand and clay soil texture analysis and iii) Computa-

tional performance of the MobileNet and Self Convolu-

tion Neural Network (SCNN) were evaluated and re-

ported to select the best model for soil texture analysis. 

MATERIALS AND METHODS 

About the dataset 

The paddy fields of the west Guwahatiregions, Assam, 

India, were selected for the study. A total of 576 soil 

samples were collected using a Smartphone. A mini-

mum of 200m distance between the two sample collec-

tion sites was maintained to get the different soil imag-

es. The soil samples were collected from the 6 inches 

depth of the soil surface and kept ready for image ac-

quisition using a single Redmi Smartphone camera. 

The images were captured in wet and dry humid condi-

tions to make the variations in the images (Fig. 2). All 

the images were photographed in natural light by main-

taining18 inches distance between soil samples and 

the camera lens in a vertical position with the help of 

the Easy Measure mobile application.  

In parallel, the textures of the soil samples were ana-

lyzed using the hydrometer. The meter was calibrated 

using a solution of sugar (28 grams) and distilled water 

(176 grams) (Barman and Choudhury, 2019). After the 

calibration, the fraction of sand, silt, and clay was deter-

mined using the equations (1-3), and finally, the actual 

texture of the soil was calculated using the USDA trian-

gle. Four types of soil textures, i.e. sandy (289 soil 

samples), clay (291 soil samples), sandy clay (6 soil 

samples), and loamy sand (2 samples)were reported in 

the hydrometer test. As the number of sandy and clay 

soil samples was more than silty and sandy clay in dry 

and wet humid conditions, this research considered 

only these two classes of soil for classification. The 

sandy soil was labelled as 0, whereas the label of the 

clay soil was 1. 

% Clay Portion = Hydrometer readings at 6hrs, 52 min* 

100/wt of soil sample                                             Eq. 1 

% Silt Portion = Hydrometer readings at 40 sec*100/wt 

of soil sample-% of clay                                         Eq. 2                                                          

% Sand portion = 100%-%Silt-%Clay                    Eq. 3                                           

In Fig.1, the blue points in the triangle denote the sand, 

whereas the yellow points denote the clay soil. The 

green and red points denote the sandy clay and loamy 

sand. Due to very few soil samples being in the loamy 

sand and sandy clay category, the entire soil dataset 

was highly imbalanced. So the images of these two 

categories were not considered in training and testing. 
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Preprocessing of soil images 

A smartphone camera with default camera settings was 

used to photograph the images (Barman et al., 2018). 

The camera recorded the images of the soil in a high 

dimension (3120x4160). The images were reduced to a 

new size of 224X224 because the high-dimensional 

images take more processing time than the low-

dimensional images. Since the dataset contained a 

limited number of images, it was augmented to in-

crease the number of training and testing samples of 

soil by considering the following steps. 

Steps for soil image augmentation: 

Step 1: Tale a loop i=1 to 36 and do 

Step 1.1: Rescale the soil image by 1. /255 

Step 1.2: Rotate the soil image by keeping the rotation 

range = 40 

Step 1.3: Consider the Horizontal Flip=True 

Step 1.4: Perform the Width and Height Shift Range of 

the soil image =0.2 

Step 1.5: Consider the shear and zoom range of the 

soil image =0.2 

Step 1.6: Consider the Fill Mode of the soil image 

='nearest' 

Step 2: End 

After the augmentation, a total of 13095 images were 

generated for the entire soil dataset. (Fig. 3) where 

6555 images were in Clay and 6540 images were in 

sand class. Out of the 6555 images of clay, 3225 imag-

es were dry clay soil and 3330 images were wet clay 

soil. Like, a total of 3420 images of sand were dry 

sandy soil, and 3120 images of sand were wet sandy 

soil. The division of training and testing sets of the soil 

dataset is presented in Table 1. 

 

Soil texture classification using mobileNet 

The concept of transfer learning of CNN is broadly 

used in different interdisciplinary areas. In transfer 

learning, a pre-trained model is used to extract the fea-

tures of the images and then the images are classified. 

In this study, the features of the soil images were  

extracted using the MobileNet V2, and then the soil 

Fig. 1. USDA soil triangle for consideration of soil texture  

Fig. 2. Some of the samples of a) Sandy Soil and b) Clay Soil collected from the west Guwahati region of Assam 

Fig. 3. Some examples of the augmented soil images  
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images were classified by finetuning the model. The 

finetuning of MobileNet V2 was implemented using the 

tensor flow Hubin the Google Collab environment. 

Along with the actual structure of MobileNet V2, two 

dense layers and two dropouts were added to the mod-

el. The first dense layers consisted of 512 hidden neu-

rons with the Relu Activation function. The dropouts 

were added to reduce the possible overfitting of the 

model and also to reduce neuron co-adaptation during 

the learning process. The first dropout was used to drop 

40% of the total hidden neurons before the first dense 

layer. The second dropout was also used to drop 20% 

of neurons before the final dense layer. The final dense 

layer classified the two classes of soil texture with two 

hidden neurons and a sigmoid activation function. With 

the help of the ADAM optimizer, the MobileNet was 

compiled for 15 epochs because the ADAM combines 

stochastic gradient descent (SGD) with momentum and 

RMSProp.The SGD with momentum uses the faster 

convergence towards minima and the RMSProp of AD-

AM considers the exponential moving average. The 

present study considered a learning rate of 0.001 for 

the compilation and the losses were calculated using 

the binary cross-entropy loss. For model learning, the 

hyperparameters presented in Table 2 were consid-

ered. The algorithmic step of the MobileNet V2 

(finetuned) is presented below (Fig. 4). 

 

Soil texture classification using SCNN 

In the present study, a new model, i.e. SCNN, was in-

troduced to classify the soil texture. For the training and 

testing, 11785 images of soil were used in training and 

1310 images were used in testing (Table 1). For train-

ing purposes, the images were again resized into a di-

mension of 100x100 from a dimension of 224X224 to 

reduce the processing time. The SCNN model (Fig.6) 

was compiled by considering the hyperparameters de-

fined in Table 4. The model was trained for 10 epochs 

with a learning rate of 0.003 and a batch size of 32. 

The present study uses different learning rates and 

epochs for SCNN because the learning process of 

SCNN was different from MobileNet CNN. The algorith-

mic structure of MobileNetwas more complex than the 

SCNN, only it fits well with a lower learning rate than 

the SCNN. With this learning process, a total of 

33,878,394 parameters were evaluated, and the learn-

ing steps are defined below.   

RESULTS AND DISCUSSION 

The results of both MobileNet CNN and SCNN are pre-

sented in Table 6 and Table 7. Table 6 represents the 

training and testing accuracies of the MobileNet CNN 

per epoch, whereas Table 7 represents the training and 

testing accuracies of the SCNN per epoch. 

Table 6 shows that the training and testing accuracies 

of the MobileNet were more than 90% from epochs 1 to 

15. The model performed well in soil classification. The 

model maintained 90% accuracy in all epochs (Fig. 6). 

The average training accuracy for the model consider-

ing all epochs was 98.63%, with an average testing 

accuracy of 99.62% (Table 6). The model's losses were 

very few from epochs 1 to 15 (Table 6). The model's 

average training and testing loss were 0.0.03848 and 

0.01078 (Table 6). These values indicated that the 

model was neither overfitted nor under fitted. The best 

performance of theMobileNet was achieved at epoch 

15 with a training loss of 0.0194, training accuracy of 

Fig. 4. Block diagram of MobileNet V2 finetuned for soil texture classification 

Original 

Soil  

Image 

Augmented 

Soil image 

Clay Image 

after augmen-

tation 

Numbers of 

Dry and Wet 

Clay Soil 

Sandy Image 

after augmen-

tation 

Numbers of 

Dry and Wet 

Sandy Soil 

Training 

(90%) 

Testing 

(10%) 

576 13,095 6555 
3225 Dry 

3330 Wet 
6540 

3420 Dry 

3120 Wet 
11785 1310 

Table 1. Ratio of training and testing set after augmentation of soil samples 
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Parameters Purpose Value 

∞ Learning rate or Step Size 0.001 

β1 Average gradients decay rate 0.9 

β2 Average gradients decay rates 0.999 

ε0 Positive constant to ignore the ‘division by 0’ error 10−8 

Epoch The number of the cycle for training 15 

Batch Size To Control the accuracy of the error gradient 32 

Optimizer To optimize the Model during error estimation  ADAM 

Table 2. Hyperparameters of MobileNet CNN  

Layer Output Parameter 

MobileNet V2 layers (Sandler et al. 2019) (None, 1280) 3.4 million (34, 00,000) 

Dropout (None, 1280) 0 

dense_1 (Dense) (None, 512) 655872 

Dropout (None, 512) 0 

dense_1 (Dense) (None, 2) 1026 

Table 3. Model summary of finetune MobileNet2 for soil texture classification 

Fig. 5. Block diagram of SCNN for soil texture classification 

Parameters Purpose Value 

∞ Learning rate or Step Size 0.003 

β1 Average gradients decay rate 0.9 

β2 Average gradients decay rates 0.999 

ε0 Positive constant to ignore the ‘division by 0’ error 10−8 

Epoch The number of the cycle for training 10 

Batch Size To Control the accuracy of the error gradient 32 

Optimizer To optimize the model during error estimation ADAM 

Table 4. Hyperparameters of SCNN for soil texture classification 

Layer Output Parameter 

conv2d_1 (Conv2D) (None, 98, 98, 32) 896 

max_pooling2d_1 (None, 49, 49, 32) 0 

conv2d_2 (Conv2D (None, 47, 47, 64) 18496 

max_pooling2d_2 (None, 23, 23, 64) 0 

flatten_1 (Flatten) (None, 33856) 0 

dense_1 (Dense) (None, 1000) 33857000 

dense_2(Dense) (None, 2) 2002 

Table 5. Model summary of SCNN for soil texture classification 
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99.26%, testing loss of 0.0091, and testing accuracy of 

99.62%. The average training time of the model was 

167.8s. Riese and Keller(2019) introduced Lucas CNN, 

Lucas Resnet, and Lucas Coord CNN to classify the 

soil texture on hyperspectral data. Since the Lucas soil 

dataset demanded a 1-D CNN classifier, they used the 

1-D CNN model to classify 4 numbers of soil textures 

with71%, 72%, and 73% accuracies in Lucas CNN, 

Lucas Resnet, and Lucas Coord CNN, respectively. 

Anadan (2021) also reported 97% accuracy in the Lu-

cas dataset for soil texture analysis using PSO-based 

CNN. In the present study, a smartphone soil dataset 

was used to classify the soil texture with an accuracy of 

99.62% using the lightweight MobileNet CNN. Mengistu 

and Alemayehu (2018) determined 7 texture properties 

of the soil and classified the same using ANN with an 

accuracy of 89.7%. They captured the images of the 

soil by using a digital camera. The present study report-

ed more accuracy than the accuracies of the investiga-

tion of Mengistu and Alemayehu (2018) because they 

focused only on the 7 different texture features which 

may miss some of the important features of the soil 

images.  

Along with MobileNet, the present study also classified 

the sand and clay soil by using SCNN. The model per-

formance is presented in Fig. 7. Table 6 shows that the 

training accuracies of the SCNN model were more than 

90% from epochs 1 to 10. The testing accuracies of the 

SCNN decreased by 99.69% to 97.71% from epochs 5 

to 6. At epoch 6, the training accuracy of the SCNN 

was 99.49% (Table 6). It was noted that the model was 

slightly overfitted at epoch 6. But the overfitting was 

reduced with the increasing of epochs. The average 

training accuracy of the SCNNconsidering all epochs 

was 98.60%, with an average testing accuracy of 

98.25% (Table 7). Again, the loss curve (Fig. 7) shows 

that the losses of the model were very less from epoch 

1 to 10, but testing loss slightly increased at epoch 7. 

The average training loss of the SCNN model was 

0.03897, with an average testing loss of 0.05101 (Table 

6). The best performance of the model was found at 

epoch 10 with a testing accuracy and loss of 99.85% 

and 0.0028, respectively. At epoch 10, the training loss 

of SCNNwas 0.0006 with a training accuracy of 100%. 

The average training time of the model was 273.2s.  

From the results described above of MobileNet and 

SCNN, it is reported that the average performance of 

the evaluated models was more than the result of the 

investigations of Riese and Keller (2019). Wu et al. 

(2018) reported the application of SVM for soil texture 

classification, but their results were less than the re-

sults of the present investigation. Chung et al. (2010) 

reported 96% accuracy in digital camera-based soil 

texture classification. Swetha et al. (2020) reported a 

maximum of 98% accuracy for the classification of 3 

soil textures using CNN. The models of the present 

Epoch Training Loss Training Accuracy 
Testing 

Loss 

Testing 

 Accuracy 

Training Time 

(in Sec) 

1 0.0729 0.9421 0.0192 0.9924 174 

2 0.0393 0.9868 0.0155 0.9950 171 

3 0.0308 0.9894 0.0125 0.9950 171 

4 0.0341 0.9569 0.0092 0.9973 171 

5 0.0249 0.9907 0.0106 0.9947 170 

6 0.0227 0.9918 0.0095 0.9970 170 

7 0.0202 0.9923 0.0089 0.9966 170 

8 0.0154 0.9936 0.0137 0.9958 170 

9 0.0230 0.9902 0.0108 0.9977 170 

10 0.200 0.9936 0.0085 0.9973 168 

11 0.0188 0.9943 0.0082 0.9977 164 

12 0.0179 0.9940 0.0095 0.9970 163 

13 0.0181 0.9927 0.0073 0.9973 162 

14 0.0197 0.9935 0.0092 0.9973 162 

15 0.0194 0.9926 0.0091 0.9962 161 

Average 0.03848 0.9863 0.01078 0.996287 167.8 

Table 6. Accuracy and loss of Mobile Net V2 CNN for soil texture classification 
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Epoch Training Loss Training Accuracy 
Testing 

Loss 

Testing 

 Accuracy 

Training Time 

(in Sec) 

1 0.2315 0.9113 0.1039 0.9595 284 

2 0.0578 0.9786 0.0950 0.9706 279 

3 0.0180 0.9942 0.0070 0.9992 280 

4 0.0095 0.9970 0.0139 0.9943 266 

5 0.0062 0.9978 0.0116 0.9969 267 

6 0.0169 0.9949 0.0702 0.9771 266 

7 0.0216 0.9944 0.0148 0.9977 286 

8 0.0132 0.9962 0.1870 0.9328 270 

9 0.0144 0.9957 0.0039 0.9985 267 

10 0.0006 1.000 0.0028 0.9985 267 

Average 0.03897 0.98601 0.05101 0.98251 273.2 

Table 7. Accuracy and loss of SCNN for soil texture classification  

Fig. 6a). Accuracy and b) loss of MobileNet V2 for soil texture classification 

Fig. 7. a). Accuracy and b) loss of SCNN for soil texture classification 

Model Class Precision Recall 

MobileNet CNN 
Clay 99.69 99.69 

Sand 99.69 99.69 

SCNN 
Clay 99.84 99.84 

Sand 99.84 99.84 

Table 8. Precision and recall of the soil texture classification 
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study evaluated by calculating the classification's preci-

sion, recall, and confusion matrix are mentioned in Ta-

bles 8 and 9. 

The precision of the clay class was 99.69 in MobileNet 

CNN. It means that 99.69% of the clay data was per-

fectly classified. Again recall (99.69) denotes the num-

ber of positive clay class predictions out of all positive 

clay soil images. With a recall value of 99.69, the preci-

sion of the sand class using MobileNet CNN was 99.69. 

Again, with a precision of 99.84, the recall value of clay 

was 99.84 in the case of SCNN classification. The per-

formance of the MobileNet and SCNN evaluated by 

using the unnormalized confusion matrix is given in 

Table 9. The confusion matrix presented the perfectly 

classified texture of the soil (sand and clay). It showed 

that out of 646 testing clay images, 644 images were 

perfectly classified as Clay and 2 images were misclas-

sified as sand. Again, with the misclassification of 2 

images, 662 images were perfectly classified as sand 

using MobileNet. In SCNN, a total of 645 images were 

perfectly classified as clay and 1 image was misclassi-

fied as sand. Using SCNN, out of 664 images of sand, 

663 images were perfectly classified as sand, whereas 

1 image was misclassified as clay. The comparative 

analysis of the different related works on soil texture 

classification is presented in Table 10. 

Conclusion 

The present study presents an image-based soil tex-

ture analysis to classify the soil images using CNNs. 

The images were captured using an android mobile 

phone camera within West Guwahati Region. Earlier 

reported, soil texture estimation methods were time-

consuming and needed expertise. The present worked-

out system takes a few seconds to classify the soil tex-

Model Soil Type Clay Sand 

  
MobileNet CNN 

Clay 644 2 

Sand 2 662 

SCNN Clay 645 1 

Sand 1 663 

Table 9. Confusion Matrix of the soil texture classification  

Author(s) 
 Soil    

Class 
Features Algorithm Accuracy 

Riese and Keller, (2019) 4 Deep CNN 74% 

Wu et al. (2018) 3 
  

DEM 
Multi SVM 

0.794 (Clay) 

0.992(Loam) 0.661 

(Sand) 

Mengistu and Alemayehu, (2018) 6 Texture BPNN 89.7% 

Honawad et al. (2017) 
Not  

Defined 
Color Similarity Check Not Calculated 

Srunitha and Padmavathi, (2016) 7 Color, texture Multi SVM 60.9% 

Guang et al. (2015) 7 DEM Multi SVM 96.67% 

Vibhute et al. (2015) 5 Texture Multi SVM 71.78 % 

Shenbagavalli and Ramar, 

(2011) 
5 Color Convolution Not Calculated 

Chung et al. (2010) 13 Color LR 48% 

Zhao et al. (2009) 2  DEM ANN 
88% (Clay) 

81%. (Sand) 

Bhattacharya and Solomatine, 

(2006) 
3 Boundary Energy ANN 91% 

Zhang et al. (2005) 2 Texture HMM and ML 100 

Sun et al. (2004) 3 Texture MVG 91% 

(Swetha et al. 2020) 3 
  

Texture 
RF and CNN 

clay (97% -98%) 

sand (96%-98%) 

silt (62%-75%) 

Soil_Net (SCNN) 2 Deep Feature CNN 99.62 

Soil_Net (MobileNet) 2 Deep Feature CNN 98.85 

Table 10. Comparative analysis soil texture analysis 
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ture. Both the applied models, MobileNet and SCNN 

are acceptable due to low time consumption, low cost, 

and accurate result analysis. The present method does 

not require any expertise in the field. The results can be 

considered a replica of the traditional soil texture analy-

sis method. The method can be directly used for tex-

ture classification before farming.  
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