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Review Article 

INTRODUCTION 

In recent history, the total arable land area has dimin-

ished because of the population pressure and soil deg-

radation by the industrial revolution and modern life-

style. Lavish human activities have assisted the difficul-

ties of atmospheric pollution by toxic metals (Singh et 

al., 2013; Shahid et al., 2017). Due to the quick expan-

sion of factories and metropolitan regions, a broad 

range of pollutants like organic/inorganic compounds 

and heavy metals (HMs), etc., are regularly spreading 

in the environment (Ram et al., 2019) with eventual 

harmful impacts on biological entities (Sharma et al., 

2019; Hashem et al., 2020; Saleem et al., 2020a). 

Among these heavy metals, chromium (Cr) is a well-

known pollutant and carcinogen that is fatal for plants 

and animals (Sharma et al., 2020). Effects of Cr de-

pend upon plant species, valance state, amount, and 

time of its exposure (Hose et al., 2016). It exists in vari-

able oxidation numbers starting with Cr2- to Cr6+. Both 

forms (Cr3+) and (Cr6+) are prevalent and have more 

reliable oxidation numbers in the biosphere (Shahid et 

al., 2017; Singh and Prasad, 2019). The reactive oxy-

gen species (ROS) generation, followed by oxidative 

stress, is the primary harmful effect of chromium in 

plants. Several investigations have suggested that Cr 

induces oxidative cellular damage directly via the Fen-

ton reactions (Gomes et al., 2017; Yu et al., 2018; Pa-

tra et al., 2019) and indirectly by affecting the activities 

of the enzymes (Ahmad et al., 2020; Sharma et al., 

2020; Wakeel et al., 2020). Phytotoxic effects due to 

overproduction of ROS under Cr stress have been doc-

umented in Brassica napus L. (Gill et al., 2015), Triti-

cum aestivum L. (Ali et al., 2015), and Chenopodium 

quinoa Willd (Scoccianti et al., 2016). The occurrence 

of Cr3+ in a small fraction supports the metabolism of 

Abstract 

Chromium (Cr) is a non-biodegradable heavy metal that persists long in aquatic and terrestrial ecosystems and enters the food 

chain. It is cytotoxic even at low concentrations and reduces the yield of plants. Plants also have cellular mechanisms to man-

age the accumulation of metal ions inside the cell to diminish the possible injury from non-essential metal ions. This paper re-

views current information on plant response to Cr, a key environmental pollutant. The harmful effects together with absorption, 

transfer, and aggregation of Cr are discussed. The roles of the cell wall, plasma membrane, and plant microbes as the primary 

hindrances for Cr ingression into the cell, along with sequestration and compartmentalization process, have also been dis-

cussed. Cr-generated oxidative injury is also regarded as the main deliberated effect of Cr toxicity.  It interferes with NADPH 

oxidases (plasma membrane) and the electron transport chains, which develop electron leakage. Some genes related to Cr 

stress in plants get expressed, and suppression produces protective effects by activating the signal transduction pathways. The 

expression of genes like BnaCnng69940D and BnaC08g49360D is increased, which is involved in protein kinase activity, signal 

transduction, and oxidoreductase activity. The increased mRNA levels of Cr stress response proteins, including HSP90-1 and 

MT-1, have been reported in the Brassica napus plant. The stressed environment around the plants may stimulate the biosyn-

thesis of phytochelatins and metal-binding proteins, which have a protective role in plant’s growth and development.   

Keywords: Abiotic stress, Chromium, Heavy metals, Oxidative stress, Phytochelatins  

How to Cite 

Yadav, P. et al. (2022). A review on regulatory control of chromium stress in plants. Journal of Applied and Natural  Science,  14

(4), 1204 - 1224. https://doi.org/10.31018/jans.v14i4.3824   

https://doi.org/10.31018/jans.v14i4.3824
https://doi.org/10.31018/jans.v14i4.3824
https://doi.org/10.31018/jans.v14i4.3824


 

Yadav, P. et al. / J. Appl. & Nat. Sci. 14(4), 1204 - 1224 (2022) 

sugars and lipids. The Cr3+ form responded more to-

ward expressed genes in roots than in shoots (Feng et 

al., 2019). Cr stress also raised the levels of proteins in 

plants that are important for intracellular membrane-

bound organelles, nitrile hydratase activity, cytoskeleton 

protein binding, and stress responses (Gill et al., 2016). 

The crop plants absorb oxidized states of HMs (Cr, Pb, 

Cd, As, Hg, Ni), which lead to toxicity and reduction in 

nutrient content. So, there is a need for critical analysis 

of toxic HMs (Cr) and successfully developing efficient 

techniques for removing HMs from food chains. 

 

Heavy metals’ toxicity 

HMs (heavy metals) are classified as essential metals 

(Co, Fe, Mn, Mo, Ni, Zn, Cu, Mg) used as micronutri-

ents in the biological system and non-essential metals 

(Pb, Cd, As, Cr, Hg) having no role as nutrients, both 

types toxic even at very low concentrations (Maleki et 

al., 2017). Essential and non-essential HMs, when pre-

sent in high concentrations, give rise to critical diseases 

in all living beings. The chief toxic HMs released from 

industries are copper, zinc, chromium, lead, nickel, ar-

senic, mercury, and cadmium (Mehdipour et al., 2015). 

These HMs are derived from the combustion of fuel, 

industrial effluents such as stain and fabric production, 

laminating debris, cycles and supplementary segments, 

welding and excavation operations, metal plating, waste 

matter treatment plants, chemical fertilizers, and gar-

bage dumps (Zeng et al., 2017) and affect water and 

soil ecosystem. The uptake of HMs by plants depends 

on environmental factors such as pH of the soil and 

organic matter, metal relevance, water, air, and plant 

species (Shen et al., 2017). The solubility of HMs ele-

vates under oxidizing environment (↓pH) because of 

their ionic configuration, while in a reducing environ-

ment (↑pH), their distribution declines due to less solu-

bility (Lena and Rao, 1997). In plants, toxicity is associ-

ated with the decrease in photosynthesis, nutrient as-

similation, root damage, and, ultimately, plant death (Ali 

et al., 2011; Gill et al., 2015; Zaheer et al., 2015). Differ-

ent HMs have different sites of action within the plant 

due to differences in their solubility, transport, and 

chemical reactivity. HMs are highly reactive due to vari-

able oxidation states and cause toxicity at the cellular 

and molecular levels. HMs bind firmly to oxygen, nitro-

gen, and sulfur atoms (Nieboer and Richardson, 1980) 

due to free enthalpy of the product and retard functions 

of necessary elements in biological- molecules, includ-

ing pigments and enzymes (Ali et al., 2013) by binding 

with cysteine residues of enzymes, which inhibits soil 

enzyme activity or sulfhydryl groups of structural pro-

teins (Hall, 2002). They also arrest functional groups of 

main cellular molecules (Hossain et al., 2012). HMs 

stress results in nutrient deficiency, oxidative stress, 

metabolic agitation, and genetic disorders in plants. A 

higher concentration of HMs stimulates the formation of 

excess methylglyoxal, free radicals (O2∙
− and OH∙−), and 

reactive oxygen species (Hossain et al., 2012; Sytar et 

al., 2013). So, to survive against these harmful metals, 

plants have developed intricate methods to regulate the 

absorption and aggregation of metals.  There are differ-

ent procedures of metal tolerance in plants, the general 

mechanism involved in different HMs tolerance is de-

scribed in Fig. 1. 

CHROMIUM TOXICITY IN HIGHER PLANTS  

Chromium is a nonessential toxic HM possessing no 

role in plant metabolism (Hussain et al., 2018). It is the 

21st most common element in the earth's crust (Ertani 

et al., 2017). The agency for toxic substances and dis-

ease registry and the international agency for research 

on cancer (ATSDR and IARC) have declared it the first 

cancer-causing agent and positioned it as seventh out 

of twenty top dangerous substances (oh et al., 2007; 

Brasili et al., 2020). The source of chromium pollutants 

on earth is mainly anthropogenic activities like tanning, 

smelting, mining, textile dyes, pigments, ceramic glaz-

es, refractory bricks, utilization of inorganic manures, 

insecticides, etc. (Fig. 2) (Tseng et al., 2019;  Sanjay et 

al., 2020).  

Both the Cr oxidation states (Cr3+ and Cr6+) show differ-

ent chemical effects, toxicity, translocation, and climatic 

response (Choppala et al., 2018). Cr6+ is reported as 

more dangerous due to greater solubility, carcinogenici-

ty, mobility, and oxidizer of cellular components result-

ing in low yield of plants (Ertani et al., 2017; Singh and 

Prasad, 2019). The transformation and absorption of Cr 

in plants are regulated by its oxidation number, concen-

tration, soil pH, and plant species (Babula et al., 2008; 

Gomes et al., 2017). Gill et al. (2016) revealed that B. 

napus, cultivar ZS 758, had a powerful metabolism and 

was more resistant to Cr toxicity. The toxicity of Cr for 

crops in the nutrient solution is about 0.5–5.0 mg mL−1, 

while for soil, 5-100 mg/g and 0.1 to 117 µg L−1 in fresh 

water. Plants cannot uptake Cr directly from the soil 

(Singh et al., 2013), so its uptake occurs along the wa-

ter and essential metal carriers such as Fe, S, and P 

 Fig. 1. General mechanism involved in different HMs  

tolerance (Kumar et al., 2016) 
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due to structural similarity (Farid et al., 2017; Shahid et 

al., 2017; Zhao et al., 2019). Cr stress causes Fe and N 

deficiency by inhibiting the plant's root Fe3+ reductase 

(Barton et al., 2000), nitrate reductase (Zou et al., 

2009), and nitrogenase enzymes (Sessitsch et al., 

2002). The symptoms of Cr injury in plants are limiting 

in plant growth or biomass (Danish et al., 2019), necro-

sis and chlorosis (Gupta et al., 2017), seed germination 

(Sultana et al., 2020), and wilting, etc. (Ahmad et al., 

2020). However, such symptoms are not uniform, even 

in cultivars of the same plant. E.g., according to Gill et 

al. (2014), Zheda 622 was more sensitive to Cr than ZS 

758, Zheda 619, and Zy 50 cultivars in B. napus. As 

chromium stress increases in plants, some changes in 

the shape and size of cellular organelles occur. In 

leaves of B. napus during Cr stress, an increase in size 

and quantity of starch grains, plastoglobuli, damaged 

thylakoid membranes, immature nucleoli, and mito-

chondria were observed, while roots showed enlarged 

vacuoles, damaged cell walls, and cell membranes, an 

increased number of mitochondria and size of the nu-

cleolus as well as plasmolysis (Gill et al., 2014). 

Cr toxicity has been manifested to cause decreased H+ 

ATPase function of cell membrane because of its bind-

ing capability with essential metal carrier channels 

(Sahid et al., 2017). The Cr+6 form alters membrane 

function by oxidizing the membrane biomolecules, 

which triggers oxidative degradation of lipids (Shahid et 

al., 2017; Sharma et al., 2020) and disturbs chloroplast 

structure by degradation of enzyme - delta-

aminolaevulinic acid dehydratase (Dey and Paul, 

2016). A new Cr-responsive protein (CL2535.Contig1 

All) was observed in Brassica napus during the Cr tox-

icity study (Gill et al., 2016).   

Chromium mobilization, uptake, and transport 

The biological availability of metals depends on their 

solubility and binding capacities to soil particles 

(Cristaldi et al., 2017). Acidification of rhizosphere and 

root exudates such as malate, citrate, amino acids, 

etc., increase metal aggregation in plant roots (Kaur et 

al., 2018; Khanna et al., 2019). The uptake of Cr from 

the soil in plants depends upon plant species, types of 

root secretion, the surface area of the root (Ertani et 

al., 2017), soil pH, salinity, soil electrical conductivity 

(Islam et al., 2016), availability of soluble salts, soil 

redox potential, the quantity of organized material, tem-

perature and the concentration of Cr and its oxidation 

state (Boechat et al., 2016; Gomes et al., 2017; Shen 

et al., 2017). Metal aggregation becomes low at high 

soil pH due to the complex formation with organic mat-

ter and oxides. Microorganisms also have prominent 

effects on metals because they secrete metabolites 

that bind with metals to enhance their translocation in 

the rhizosphere of plants (Chen et al., 2014). Cr is a 

non-essential toxic HM with no specified transporter for 

its absorption in plants (Singh et al., 2013). Its uptake 

occurs with water and essential elements. The plant 

roots can absorb both forms of Cr (Cr+3 and Cr +6). 

The uptake of Cr (III) is a passive process occurring at 

the cation inter-change spot of the cell wall without en-

ergy requirement (Shanker et al., 2005; Babula et al., 

2008), while absorption of Cr (VI) occurs actively 

through plasma membrane carriers of essential ele-

ments such as sulfate (Singh et al., 2013; Shahid et al., 

2017; Singh and Prasad, 2019). Cr also interferes with 

the uptake of Fe, S, N, K, Mg, Na, Ca, Zn, Mn, and P 

(Gomes et al., 2017; Zhao et al., 2019). Zaheer et al. 

(2019) reported that Cr toxicity causes decreased ac-

             Fig. 2. Source of chromium and its entry into plants (Singh et al., 2013) 
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cumulation of Zn in all portions of Spinacia oleracea L. 

plant. The transformation ratio of Cr3+ and Cr6+ from 

roots to shoots is also different. Skeffington et al. 

(1976) noticed that extra Cr was transferred from roots 

to shoots when Cr6+ treatment was given instead of 

Cr3+. Cr can undergo an oxidoreduction reaction spon-

taneously in different earth circumstances (Shahid et 

al., 2017). Wei et al. (2016) described that organic car-

bon matter reduces Cr (VI) to Cr (III). The chromium 

uptake mechanism and toxicity are shown below (Fig. 

3). 

After absorption by root hairs or binding to the cell wall, 

Cr is transported mostly through the plant xylem (Hayat 

et al., 2012). When Cr6+ moves across the endoderm 

via symplast, it is reduced to Cr3+ by root reductases 

and accumulates in root apoplast or vacuoles of root 

cortex cells (Shanker et al., 2005; Hayat et al., 2012), 

or it is transported through the xylem by symplastic 

system distributed in the cytoplasm of cortical cells 

(Mongkhonsin et al., 2011). After uptake into the root 

symplasm, further movement of metals into the xylem 

occurs through three stages: segregation of metals in 

root cells, simplistic transfer towards stele, and delivery 

within the xylem. Basically, the maximum Cr in plants is 

accumulated in the root system, followed by stems, 

leaves, and seeds (Tiwari et al., 2009). Ahmad et al. 

(2020) reported that Brassica oleracea L. germinated 

during Cr (VI) treatment demonstrated the highest ag-

gregation of Cr in roots and least in flowers. The pas-

sage of metals in the xylem from the root to the stem 

mostly occurs along with transpiration, which creates a 

tension for the movement of water and solutes upwards 

(Taiz and Zeiger, 2002). In the leaves, metals are 

transferred along with membrane transport proteins. 

Roots are the first plant organs to contact Cr, affecting 

them more than shoots (Zhao et al., 2019). At low Cr6+ 

concentration, the root showed more injury because 

Cr6+ has significant potential to penetrate the plant-root 

system and cross the endodermis via symplast for re-

duction and retention in the root cortex cells (Shanker 

et al., 2005). The apoplast of the root cortex is freely 

permeable for solutes, but further on, the endodermal 

layer of the cell wall serves as an obstacle for apo-

plastic diffusion.  

 

Oxidative stress and ROS generation by chromium 

Plants are immobile, so they are susceptible to various 

environmental stress like drought, HMs, temperature, 

salinity, etc. Stress conditions can interrupt plants' ROS 

equilibrium (Zaheer et al., 2019; Saleem et al., 2020c). 

The production of ROS such as superoxide free radi-

cals (O2•‾), hydroxyl radicals (OH−), hydroperoxyl radi-

cals (HOO•), the paramagnetic singlet oxygen (1O2), 

nitrogen oxide radical (NO), hydrogen peroxide (H2O2), 

hypochlorous acid (HOCl) segments (Turkan et al., 

2018) and cytotoxic compounds like methyl glyoxal 

(MG) is an unavoidable effect of metal toxicity in plants 

(Singh et al., 2016; Singh and Prasad, 2019). ROS re-

sult from metabolic pathways like photosynthesis and 

respiration and are produced in plant organelles such 

as chloroplast, mitochondria, peroxisomes, glyoxy-

some, and cytosol (Chen et al., 2017; Abbas et al., 

2018). Cr directs excess ROS in plants by interfering 

with NADPH oxidases (plasma membrane) and the 

electron transport chains, which develop electrons leak-

age to an oxygen molecule (Singh and Prasad, 2019; 

Smirnoff and Arnaud, 2019). In plants, the concentra-

tion-dependent dual function of ROS is known. When 

                  Fig. 3. Chromium uptake and its toxicity in plants (Shanker et al., 2005) 
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present at the basal level, they act as signalling mole-

cules and manage the plant growth process (Mittler, 

2017; Waszczak et al., 2018). The higher level of ROS 

triggers the destruction of macromolecules and a de-

cline in plant growth (Qi et al., 2019). The basal level of 

ROS is attained during the non-stress condition by 

equilibrium and a complicated antioxidant enzymatic/

non-enzymatic support system (Shahid et al., 2014; 

Kushwaha et al., 2019). The vital antioxidant enzymes 

are superoxide dismutase (SOD), catalase (CAT), pe-

roxidase (POD), ascorbate peroxidase (APX), glutathi-

one reductase (GR), glutathione peroxidase (GPX), 

single dehydroascorbate reductase (MDHAR), dehy-

droascorbate reductase (DHAR) and glutathione S-

transferase (GST) (Kabir, 2016). Saleem et al. (2020d) 

and Mallhi et al. (2019) reported dual action of antioxi-

dant enzymes in Hibiscus cannabinus L. and castor 

bean, respectively: minimal metal tension enhances the 

antioxidant enzyme activities, whereas elevated metal 

tension diminishes the action of antioxidant enzymes. 

During high-stress conditions, equilibrium is not main-

tained between the ROS formation and anti-oxidative 

systems, which causes oxidative stress and, finally, the 

destruction of the plant (Sharma et al., 2012; Xie et al., 

2019). The response of antioxidant enzymes depends 

not only on the level of Cr supplied but also on plant 

species and their developmental phase. Pandey et al. 

(2005) observed that in B. juncea during Cr6+ treatment, 

SOD action diminished and APX action elevated in root 

and leaves parts of the plant (under 5 days of disclo-

sure) but reduced later (15 days of disclosure). Cata-

lase action remained unaffected in the roots but elevat-

ed in the leaves, while GR action was also elevated in 

both leaves and roots. 

   Although ROS has harmful effects on the plant sys-

tem, sometimes it also acts as a signaling molecule. 

Smirnoff and Arnaud (2019) reported that H2O2 act as a 

signaling molecule when present in a low amount and 

evoke signal transduction in plant tissues during metal 

stress. The H2O2 activates a cascade of signals (Van 

Breusegem et al., 2008) that create ROS surge within 

the cells, transferred and stored in various parts (Mittler 

et al., 2011). Yildiz et al. (2013) showed that in B. na-

pus, H2O2 contributes to Cr tolerance by ameliorating 

antioxidant enzymes action, chlorophyll, thiol content, 

stimulation of metallothionein protein (BnMP1), and 

reduced oxidative degradation of lipids. The overview 

of oxidative stress generated through Cr toxicity is giv-

en in Fig. 4. Redox-active metals such as Cr, Cu, and 

Fe induce oxidative stress in plants through Haber–

Weiss, and Fenton reactions, which significantly pro-

mote ROS and interrupt the equilibrium among prooxi-

dant and antioxidant proportions. These metals have 

an unpaired electron in their orbitals, enabling them to 

accept or donate a single electron. This electron can be 

transferred to the ground state oxygen molecule and 

thus generate ROS (Houri et al., 2020). Chromium pro-

duced oxidative stress (Sharma et al., 2019; Kushwaha 

and Singh, 2020; Wakeel et al., 2020) via Haber–Weiss 

cycle and Fenton reactions like other heavy metals 

such as Cd and Pb, which reduce glutathione pool and 

increase prooxidant response. Different reports of the 

oxidative response to Cr stress revealed in higher 

plants are listed in Table 1. 

Yildiz et al. (2013) studied the participation of H2O2 in 

the signalling process, due to which the expression 

level of antioxidant enzymes SOD, CAT, APX, and 

POD varied in B. napus plant under different Cr con-

centrations. Cr treatment increased lipid peroxidation in 

Vigna radiata (Gautam et al., 2020), B. oleracea 

(Ahmad et al., 2020), Maize (Anjum et al., 2017), and 

H. annus (Farid et al., 2020). SOD, APX, CAT, and GR 

                Fig. 4. Oxidative stress generated through Cr toxicity (Sharma et al., 2020) 
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activities vary according to Cr concentration and plant 

species (Yilmaz et al., 2017; Kushwaha and Singh, 

2020). In B. napus and G. max, Cr increased glutathi-

one content while activities of antioxidative enzyme 

SOD, APX, CAT, and GR increased or decreased ac-

cording to Cr concentration and growth stage of the 

plant (Zaheer et al., 2020). In leaves and roots of H. 

annuus and B. oleracea, 10 mg/100μM Cr concentra-

tion increased the action of antioxidants CAT, SOD, 

APX, and POD, whereas enzymatic activities were sup-

pressed at 20 mg/200 μM (Ahmad et al., 2020; Farid et 

al., 2020). Rai et al. (2004) and Gautam et al. (2020) 

reported that during Cr stress, protein content dimin-

ished while antioxidant enzymatic activities (SOD, 

GPX, and CAT), polyphenol content enhanced in Oci-

mum tenuiflorum and V. radiata plants, respectively. In 

T. aestivum, antioxidative enzyme activities (SOD, 

POD, CAT, and APX) in leaves and roots were de-

creased with increasing concentration (between 25 and 

100 mg/kg) of Cr (Seleiman et al., 2020). Mallhi et al. 

(2020) reported that Cr stress generated oxidative inju-

ry in the leaves and roots of H. annuus plants due to 

the production of H2O2. During Cr treatment, the action 

of SOD and CAT increased in both roots and leaves, 

while GST activity was inhibited in P. sativum, S. Lyco-

persicon, and S. melongena (Kushwaha and Singh, 

2020). Several experiments have been done under 

various stresses that clearly show the potential role of 

aminolevulinic acid in combating oxidative stress. Gill et 

al. (2015) administered 5-aminolevulinic acid to find 

lessened oxidative stress in Brassica napus (ZS 758, 

Zheda 622) under Cr stress by promoting antioxidant 

enzyme activities (SOD, POD, CAT, APX, GR) and the 

expression of their associated genes. Gene’s transcript 

levels were amplified by 77,76,177, 63 and 51 % in 

cultivar ZS 758 and 37, 25, 113, 47 and 22% in Zheda 

622, respectively. The ALA is the ordinary ancestor of 

tetrapyrroles and helps in the growth regulation of 

plants. It has a role in photosynthesis and is well known 

for conserving plant development, cell turgidity, en-

hancing ALA content, and diminishing Cr concentration 

(Gill et al., 2015). Gill et al. (2016) demonstrated that 

plant hormone salicylic acid could increase tolerance in 

B. napus to Cr stress via enhancing the reactive oxy-

gen scavenging by promoting enzymatic antioxidant 

activities, related gene expression, secondary metabo-

lism, and cell structural alterations and transcript levels 

of particular stress-related proteins. Chromium and 

other related HMs cause significant damage to cellular 

organelles, mainly endomembrane, chloroplast, and 

mitochondria, as transport occurs across these mem-

branes. Cr disrupts the organelles of plant cells by en-

hancing the size of starch grains and the number of 

plastoglobuli, causing damage to the chloroplast and 

Chromium concen-

tration 

Expo-

sure time

(days) 

Plant species 
Antioxidant enzymes 

modified 
References 

100 µM 21 
Solanum lycopersi-

cum L. 

SOD, CAT, APX, GR, 

GST, GS, γ-GCS 
Alamri et al., (2020) 

0, 25,50,100 mg/kg 90 Basella alba L. POD, SOD, CAT Zewail et al., (2020) 
5, 10, 20 mg/kg 56 Helianthus annuus L. POD, SOD, CAT, APX Farid et al., (2020) 
0, 10, 100, 200 µM 28 B. oleracea L. SOD, CAT, POD Ahmad et al., (2020) 
30, 60, 90, 120, 150 

µMol L-1 
110 Zea mays L. 

SOD, POD, CAT, APX, 

GPX, GR 
Anjum et al., (2017) 

0, 2, 8, 16 mg/ L 3 Oryza sativa L. 

SOD, CAT, POD, APX, 

GR, GPX, MDHAR, 

DHAR 

Fan et al., (2020) 

25 µM 7 

S. lycopersicum L., 

Pisum sativum L. and 

Solanum melongena 

L. 

SOD, CAT, GST 
Kushwaha and Singh, 

(2020) 

250 µM 7 Vigna radiata 

POD, CAT, SOD, GR, 

APX, DHAR, PPO, GST 

and GPX 

Gautam et al., (2020) 

250 µM 17 Ricinus  communis L. POD, SOD, CAT, APX Qureshi et al., (2020) 

0, 25, 50, 100 mg/L 80 T. aestivum L. CAT, APX, SOD, POD Seleiman et al., (2020) 

100 μg 

  
21 

S. lycopersicum L. 

and S. melongena L. 
SOD, CAT, GST Singh et al., (2020) 

SOD- Superoxide dismutase, CAT- Catalase, APX- Ascorbate peroxidase, POD- Peroxidase, GST- Glutathione S-transferase, GR- 

Glutathione reductase, PPO- Polyphenol oxidase, DHAR- Dehydro-ascorbate reductase, MDHAR- Mono dehydro-ascorbate reductase, 

GPX- Glutathione peroxidase, GS- Glutathione synthetase, γ-GCS- γ-Glutamyl cysteine synthetase, mg- Milligram, kg- Kilogram, µM- 

Micromolar, µg- Microgram, L- Liter 

Table 1. Reports of the oxidative reaction to Cr stress revealed in higher plants 
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mitochondrion structures (Gill et al., 2016).   

 

Chromium accumulation and detoxification 

The accumulation of metal in plants depends upon its 

uptake capacity, intracellular binding sites, concentra-

tion, the affinity of the chelating agent, and transloca-

tion activities (Lopez Luna et al., 2009). Cr accumulates 

in the root by binding with the cell wall through function-

al groups like amino, phosphate, thiol, carboxyl, etc. 

(Eggs et al., 2012) and immobilization in vacuoles 

(Sinha et al., 2018) or root exudates (malic acid, amino 

acid) (Kaur et al., 2018; Khanna et al., 2019). Sobariu 

et al. (2017) described that Lepidium sativum accumu-

lâtes Cr in the roots due to ion immobilization in va-

cuoles. Chromium accumulation in plants has effects 

on gene functions too.  Gill et al. (2017) found that Cr 

stress increased the expressions of BnaA08g16610D, 

BnaCnng 19320D, and BnaA08g00390D genes in B. 

napus. These genes encoded proteins that bound nu-

cleic acid and transition metal ions and protein kinase 

and phosphotransferase activities. 

 

Plant microbes’ interactions in Cr metabolism 

Plant growth-promoting rhizobacteria (PGPR) are the 

plant integrated free-living, earth-born bacteria that se-

crete distinct metabolites such as organic acids, sidero-

phores (main metal chelating agents), exo-

polysaccharide (EPS), hydrogen cyanide (HCN), bio-

surfactants, antibiotics and amplify the plant growth by 

minimizing the plant injury induced by living 

(microorganisms generated injury) and non-living (HM 

caused plant injury) components. These metabolic 

compounds can switch the mobility (chelation, precipi-

tation, immobilization), the ionic position of metals in-

cluding Cr, Fe, Hg, Se, and Mn (acidification, oxida-

tion), and change the injurious dynamic configuration 

into a non-injurious static configuration (Ma et al., 

2011). These increase the plants' phyto-remediation, 

phyto-stabilization, and phyto-volatilization capabilities 

(Ahemad, 2019). Microorganism inoculations can im-

part an alternative method of removing HMs from the 

soil. Karthik et al. (2017) revealed that inoculation by 

rhizobacteria Serratia (Srivastava and Thakur 2012) 

helped in the reduction and immobilization (decrease 

mobility and toxicity) of Cr (VI) by intricate methods 

such as ion-exchange, complexation, and coprecipita-

tion. These rhizobacteria are established around the 

plant by the leakage of plant chemicals, amino acids, 

proteins, and antibiotics to cause a reduction of HMs 

toxicity. PGPR can be categorized, depending on their 

Plant species Metal Family Bioaccumulation References 

Zea  mays L. Cr Poaceae 2538 mg/kg Naseem et al. (2015) 

Nymphaea spontanea Cr Nymphaeaceae 2,200 mg/kg Choo et al. (2006) 

Pteris vittate Cr Pteridaceae 5717 mg/kg Wang et al. (2012) 

Salvinia natans Cr Salviniaceae 5,200 mg/kg Dhir et al. (2009) 

Nopalea cochenillifera Cr Cactusaceae 25263 mg/kg Adki et al. (2013) 

Brassica napus Cr Brassicaceae 306.1 mg/Kg Brunetti et al. (2011) 

Prosopis juliflora Cr Fabaceae 372.13 mg/kg Shukla et al. (2011) 

Thlaspi caerulescens Cr Brassicaceae 3,400 mg/kg 
Shahandeh and Hossner 

(2000) 

Urtica dioica Cr Urticaceae 12–20 mg/Kg Shams et al. (2010) 

Gynura pseudochina Cr Asteraceae 1,611 mg/Kg Mongkhonsin et al. (2011) 

Baccharis sarothroides A. Gray Cr Asteraceae 162.6 mg/Kg Haque et al. (2008) 

Helianthus annuus L. Cr Asteraceae 1,356 mg/kg Ranieri et al. (2013) 

Salix babylonica L. Cr Salicaceae 1,278.96 mg/kg Yu et al. (2008) 

Brassica juncea Cr Brassicaceae 1,640 mg/kg Diwan et al. (2010) 

Allium griffithianum Cr Amaryllidaceae 568.33 mg/kg Sajad et al. (2020) 

Azolla pinnata Cr Salviniaceae 5000-15000 mg/kg Arora et al. (2006) 

Solanum viarum Cr Solanaceae 382 mg/kg Afonso et al. (2019) 

Origanum vulgare L. Cr Lamiaceae 1200 mg/kg Levizou et al. (2018) 

Vernonia cinerea (L.) Less. Cr Asteraceae 5500 mg/kg Mohanty and Patra (2020) 

Phragmites australis Cr Poaceae 4285 mg/kg Calheiros et al. (2008) 

Prosopis laevigata Cr Fabaceae 8090 mg/kg 
Buendía-González et al. 

(2010) 

Spartina argentinensis Cr Poaceae 15.1 mg/g Redondo-Gómez et al. (2011) 

Convolvulus arvensis L Cr Convolvulaceae 2800 mg /kg 
Gardea-Torresdey et al. 

(2004) 

Leersia hexandra Cr Poaceae 1844 mg/kg Liu et al. (2011) 

Table 2. List of some Cr hyperaccumulator plants 
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utility like biofertilizers (expand the soil-nutrient accessi-

bility), Phyto-stimulators (trigger plant development by 

making plant hormones), rhizo-remediators (regulate 

the waste material proximity via metal dilution) and bi-

opesticides (manage plant pathogen and infection by 

the emission of lysing agent and biochemical com-

pounds) (Ahemad, 2019) and depends on inherent dis-

tinctiveness as root colonizer, assist plant growth, ad-

just, persist and challenge with other microbial foliage. 

PGPR stimulates plant growth in different ways, i.e., 

accelerates the soil-nutrient accessibility, triggers root 

development, cytokinesis along with expansion and 

metabolic counteraction, arrests HMs induced phyto-

toxicity, or enhances the induction of systemic re-

sistance. They also prevent oxidative damage by pro-

ducing different antioxidants and maintaining ROS pro-

portion in plants (Karthik et al., 2016). The Cr stress in 

B. napus activated a wide range of metabolic path-

ways, including vitamin B6, tryptophan, sulfur, nitrogen 

metabolism, zeatin biosynthesis, and linoleic acid pro-

duction, proline, aspartate, and glutamate (Gill et al., 

2016).  

Cr modifies microbial diversity through different meth-

ods involving microbial biomass reduction, falling off 

particular microbial populations, and switching the mi-

crobial diversity layout. Inoculation of microbes in soil 

(e.g., arbuscular mycorrhiza and rhizospheric mi-

crobes) increases the hyper-accumulator plant remedi-

ation ability by translocating heavy metal from root to 

aerial parts (Rajkumar et al., 2010; Ma et al., 2011). 

Sheng et al. (2008) revealed that inoculation of Bacillus 

sp. elevated Cd uptake in plant tissue while P. aeru-

ginosa boosted the uptake of Cr and Pb in maize plants 

(Braud et al., 2009). These microbes increase the bio-

remediation capacity of the plants and accelerate the 

tolerance limit of metal toxicity via nutrient recycling, 

conservation of earth layout, and managing infection. 

They have the capability to uptake the metal (Cr) by 

different methods, including adsorption, bioconversion, 

bio-sorption, bio-accumulation, biomineralization, pre-

cipitation, complexation, alkalization, bio volatilization, 

bio-leaching, and decomposition that assist the plants 

in mitigating their cytotoxicity (Karthik and Arulselvi, 

2017). Moreover, Gill et al. (2016) discovered that Cr 

inhibits KEGG pathways in B. napus, including stil-

benoid, diarlyheptanoid, gingerol production, limonene, 

and pentose degradation as well as glutathione metab-

olism in ZS 758, while ribosome and glucosinolate bio-

synthesis in Zheda-622. Rhizobium inoculations also 

increase the glutathione reductase action in P. sativum 

during Ni and Zn treatment (Wani et al., 2008). Anjana 

et al. (2007) reported that Nostoc calcicole and Chroo-

coccus were effective Cr (VI) eliminators by biosorp-

tion. In certain microbes, bio-sorption and bio-

accumulation impart resistance to Cr6+. Flores-Alvarez 

et al. (2012) showed that in Neurospora crassa, Cr6+ 

assembled in the vacuolar complex to increase its re-

sistance. Different microbes like fungi, bacteria, algae, 

and actinomycetes reduce Cr6+ by various enzymatic 

and non-enzymatic methods (by vitamin C, H2S, cyste-

ine, mercapto groups, and GSH) (Viti et al., 2014; 

Joutey et al., 2015). Some membrane enzymes of mi-

crobes also help reduce Cr (VI) (Joutey et al., 2015; Xia 

et al., 2018). For example: in Thermus scotoductus, 

dihydrolipoamide dehydrogenase acts as a Cr6+ reduc-

er with the help of NADPH (electron donor). The over-

expression of certain microbial genes can expand the 

Cr6+ consumption power of plants. Cytokinin β-

glucosidase genes of Agrobacterium tumefaciens over-

expressed in Nicotiana lanfsdorffii while glutathione 

synthetase gene gshl of E. coli in B. juncea plant as-

similated extra Cr (VI) as compared to wild counter-

parts (Del Bubba et al., 2013; Malandrino et al., 2017).   

 

Cell wall and plasma membrane in Cr interaction 

The cell wall is the first anatomical barrier protecting 

plants against biotic and abiotic stresses (Scheller and 

Ulvskov, 2010; Tucker and Koltunow, 2014). Environ-

mental abiotic stresses modify the structure and com-

position of the cell wall (Berni et al., 2019), and mainly 

the root system is affected due to direct contact with 

contaminated soil. The plant cell wall consists of poly-

saccharides (cellulose microfibrils, pectin, and hemicel-

luloses), proteins (Somerville et al. 2004), and phenol-

ics which bind with HMs and store them in the cell wall 

(Krzeslowska, 2011; Vuletic et al., 2014). The binding 

affinity of Cr ions depends on the number of functional 

groups (–COOH, –OH, and –SH) existing in the cell 

Fig. 5. Biosynthesis of PCs in plants (Sharma et al., 2016) 
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wall (Pelloux et al., 2007). The cell wall structure also 

influences the translocation within the xylem. The first 

living structure called ‘plasma membrane’ is also affect-

ed by Cr toxicity due to the production of free radicals 

(ROS), which degrade the cellular components such as 

lipid peroxidation of unsaturated fatty acids (residues of 

phospholipids) and oxidation of proteins 

(Schutzendubel and Polle, 2002). These damages 

change the structure, functions, and mobility of the 

membrane, which results in the imbalance of mem-

brane-binding enzymes in the cell and disturb the cell 

metabolism process (Yadav, 2010). The plasma mem-

brane also helps Cr tolerance by reducing their uptake 

or increasing metal efflux ions.  

 

Chromium sequestration in plant cell 

Plants have various methods at the cellular level, which 

are concerned with detoxification and help in tolerance 

to HMs stress (Hall, 2002). The accumulation of metal 

in plants depends upon its uptake capacity, intracellular 

binding sites, concentration, the affinity of the chelating 

agent, and translocation activities (Lopez Luna et al., 

2009). The addition of chelating agents can amplify the 

absorption of Cr by the plants and trigger the metal 

absorption capability of the microbial population 

throughout the plant rhizosphere. Chelates enhance 

the metal tolerance and deposition in non-

hyperaccumulator plants, including Ricinus communis 

L. (Zhang et al., 2016). When chelating agents like eth-

ylene diamine tetra acetic acid and citric acid are added 

to the earth, the solubility of metal increases because 

of the establishment of an aqueous dissolved metal 

network with the chelating agent. Organic chelates also 

ameliorate the availability of essential elements (Fe, S, 

P, Mg, Ca), which competes with Cr uptake (Bloem et 

al., 2017). Metallothioneins and phytochelatins (PCs) 

are two main classes of metal-binding proteins ob-

served throughout the plant kingdom. Overall, the se-

questration of Cr in organisms includes an attachment 

with cytosolic cysteine-rich MTs (Metallothionein’s) pol-

ypeptides along with sequestration (Sacky et al., 2014). 

These peptides are enzymatically derived and synthe-

sized when a cell is exposed to stress conditions. Their 

main role is to promote metal purification and equilibri-

um of vital micronutrients (Kneer and Zenk, 1992). PCs 

are small cysteine-rich, non-protein heavy-metal bind-

ing peptides, having a general structure (Glu-Cys)n X, 

where X is Gly, γ-Ala, Ser or Glu  (n = 2–11, based on 

living being) (Gupta et al., 2013; Shukla et al., 2013). 

Apart from the main PC families, different plant species 

have other groups of PCs like homo-phytochelatins 

(Glu-Cys)n-Ala or iso-phytochelatins (Glu-Cys)n-Glx). 

The chain length of PCs varies with plant species and 

metal type. Piechalak et al. (2002) reported in legumes 

that PCs with longer chains have a strong binding ca-

pacity to Pb as compared to those with shorter chains. 

The synthesis of PCs in plants takes place under differ-

ent stresses like heat, salinity, UV-B, herbicides, and 

HMs (Cr, Cd, As, Pb, etc.) toxicity through enzymes 

such as PC synthase (Clemens, 2006; Emamverdian et 

al., 2015) by glutathione and its homologs act as sub-

strates (Zagorchev et al., 2013). Cr bind with the en-

zyme γ-glutamylcysteinyl dipeptidyl transpeptidase (PC 

synthase) and activate it to assemble the transfor-

mation of GSH to PCs (Gharieb and Gadd, 2004). GSH 

is manufactured from its constituent amino acids in two 

steps, first, γ -ECS (γ-glutamylCys synthetase) joins 

Glu with Cys, and then GSH synthetase adds Gly to γ -

EC. The mechanism of biosynthesis of PCs in plants is 

detailed in Fig. 5. The synthesis of PCs occurs by re-

ducing the GSH pool in roots, aerial parts (Rauser et 

al., 1991), and tissue cultures (Schneider and Berg-

mann, 1995). GSH, a thiol molecule, promotes the 

plant against metal stress (Cr, Cd, As, etc.) by activat-

ing signal transduction pathways. Gill et al. (2017) dis-

covered that Cr stress, along with GSH treatment, en-

hances the expression of genes encoding protein ki-

nases like BnaCnng69940D and BnaC08g49360D that 

were involved in protein kinase activity, signal transduc-

tion, and oxidoreductase activity. Some genes also 

govern the transport over the cell membrane. But most 

of the research proposed that PCs are initially synthe-

sized in roots. The induction of PCs coupled with the 

antioxidant defense system in response to Cr stress 

suggested the combined role of PCs and antioxidants 

in conferring tolerance to accumulated Cr in B. juncea 

and, therefore, the plant's aptitude as a possible Cr 

remediator (Diwan et al., 2010). In V. radiata, there was 

lesser induction of PCs at high Cr concentration, which 

may be due to its transport to shooting or because PCs 

might have degraded due to excessive Cr accumulation 

(Harmens et al., 1993).  

       Yurekli and Kucukbay (2003) observed that in H. 

annuus during Cd stress, PCs extent in roots was 

greater than in leaves. Fidalgo et al. (2013) observed 

that in Solanum nigrum L., the productivity of PCs was 

increased in roots under copper stress which involved 

binding of excess Cu in the root and preventing its 

movement towards the shoot. Huda et al. (2017) ob-

served that the accumulation of phytochelatin and the 

OsPCS1 (phytochelatin synthase) genes were highly 

stimulated by the combined treatment of Si and Cr 

compared to Cr-stressed plants. Similarly, Mukta et al. 

(2019) revealed that calcium-mediated inhibition of Cr 

translocation from root to shoot in rice seedlings, sug-

gesting increased accumulation of phytochelatin bind-

ing Cr for vacuolar sequestration in roots. OsPCS1 

(phytochelatin synthase), OsMT1 (metallothionein), and 

OsHMA3 (P-type ATPase 3) transcripts were consider-

ably upregulated following SA supplementation under 
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Cr stress, indicating that these chelating agents may bind 

to Cr to increase its retention in roots (Huda et al., 2016). 

Heiss et al. (2003) signified that long-duration treatment 

of Cd in B. juncea resulted in greater aggregation of 

PCs in leaves than roots. In plants, PCs production, 

accumulation and movement depend upon the capacity 

of plant species to tolerate metal toxicity. Diwan et al. 

(2010) observed that at all doses of Cr treatment (50, 

100, 150, and 200µM), PCs were considerably induced 

in the roots and shoots of both plants (B. juncea and 

Vigna radiata). Rabelo et al. (2018) showed glutathione 

as a substrate for metal complexing organic molecules 

(phytochelatins PC-SH). After attachment of metal with 

phytochelatins-SH, the metal system is transported by 

transporters such as Mg ATP-dependent carrier or ATP

-binding cassette (ABC) transporter (Sytar et al., 2013) 

into vacuoles to convert toxic metal into nontoxic form 

(Song et al., 2014). Increased phytochelatins-SH during 

Cr treatment could be assessed as a compatible 

scheme of S. lycopersicum L. roots (Kushwaha et al., 

2019). The artificial incorporation of PC genes in the 

transgenic plant (Nicotiana tabacum L.) increases their 

resistance to metal stress (Postrigan et al., 2012). This 

toxic metal sequestration procedure is considered as 

the main mechanism for plants to tolerate metal toxici-

ty, including that of Cr.  

Like PCs, the MTs are naturally-occurring, intracellular 

cysteine-rich, low-molecular-weight cytoplasmic metal-

binding proteins reported in some prokaryotes, fungi, 

invertebrates, mammals, and in plant systems (Du et 

al., 2012). They were first extracted from the equine 

kidney (Margoshes and Vallee, 1957). Plants cannot 

shun abiotic stress by re-motion; plants have devel-

oped a good system of acclimation methods to survive 

with alters in their surroundings. The signal transduc-

tion pathways are more prominently active for these 

responses with mRNA levels in plants. Gill et al. (2015) 

studied B. napus (ZS 758 and Zheda 622) under Cr 

stress. The mRNA level of stress response proteins, 

including HSP90-1 and MT-1, were marked up. The 

mRNA accumulation takes place when abiotic stress 

gets started in plants. Further, Gill et al. (2017) reported 

that in B. napus during Cr stress, three MT genes 

(BnaA04g26560D, BnaA02g28130D, and BnaA02g0 

1980D) were responsible for transporting water across 

the cell membrane. Some angiospermic plants also 

encode the genes like MT genes known for transporta-

tion across the membranes of cells. The genes, namely 

BnaC01g29930D and BnaA07g14320D, were responsi-

ble for secondary active transmembrane transporter 

and protein transporter activities in B. napus under Cr 

stress (Gill et al., 2017). MT gene synthesis is affected 

by endogenous and exogenous factors like osmotic 

stress, drought, HMs, temperature, nutrient deficiency, 

the release of different hormones, tissue senescence, 

injuries, viral infections, etc. (Yang and Chu, 2011; Du 

et al., 2012). MTs have been grouped into four types in 

plants depending on their Cys arrangement (Huang 

and Wang, 2009). Although MTs are expressed all over 

the plants, different classes of MTs have been found to 

be expressed in an organ-specific or development 

stage-specific manner. Kohler et al. (2004) and Yang 

and Chu (2011) reported that MT 1 is mainly expressed 

in roots, MT 2 in shoots, MT 3 in leaves or mature fruit, 

while MT 4 more in growing seeds. OsMT1b carries 

greater biomass in roots than in shoots during Cr chela-

tion, but OsMT2c plays a bigger role in removing H2O2 

build-up in shoots than in roots in Oryza sativa (Yu et 

al., 2019). These findings imply that varied Cr specia-

tion in rice tissues caused inconsistent transcriptional 

alterations in OsMT genes, involved in distinct regulato-

ry and response pathways during Cr detoxification, 

such as metal ion chelation and ROS scavenging. Agar 

et al. (2020) noticed that the response of MT genes to 

Cr stress differed amongst different tissues. MT genes 

(MT2-1 and MT4) were downregulated in the shoots 

but increased in the roots in response to Cr stress. MT2

-1 might be a useful gene resource in Cr remediation. 

ScMT2-1-3 overexpression in sugar cane cells in re-

sponse to Cu stress shows that this gene is involved in 

Cu detoxification and storage (Guo et al., 2013). While 

Rice OsMT2b protein was discovered to exhibit ROS 

clearing capabilities (Wong et al., 2004). Each MT (1 to 

4) is divided further and termed isoforms. Hassinen et 

al. (2011) observed that MT1a or MT2b is expressed in 

the phloem while MT2a and MT3 are in the mesophyll 

cells of young leaves or root tips. Memon et al. (2001) 

divided Arabidopsis MT4 into two classes, MT4a and 

MT4b. In Arabidopsis (Grennan, 2011), different MT 

isoforms MT1a, MT2a, MT2b, and MT3 are implicated 

in copper chelation, while MT4a and MT4b act as a 

zinc binder. In barely, MT3 maintains homeostasis of 

Zn and Cu, while MT4 was involved in Zn storage 

(Hegelund et al., 2012). MTs are synthesized through 

mRNA translation (Verkleij et al., 2003) and bind to 

different metals by establishing mercaptide bonds 

among the various Cys sublimates of the proteins and 

the metal (Blindauer and Leszczyszyn, 2010). Metal-

MT complexes have low kinetic and high thermody-

namic stability as a result, tight metal-binding occurs 

(Maret, 2000). MTs have been nominated as another 

method by which plants defend themselves from stress

-generated oxidative injury (Hassinen et al., 2011; An-

sarypour and Shahpiri, 2017). These have been report-

ed to regulate cell growth, proliferation, immobilization, 

and DNA damage repair (Grennan, 2011), sequestra-

tion and detoxification of metal ions, or homeostasis of 

intracellular metal ions and their transport (Hossain et 

al., 2012; Guo et al., 2013), chelation of metal ions by 

MTs but their mechanism of action/transfer of metals-

Metallothionine system from the cytosol to the vacuole 

is not known (Yang et al., 2011; Liu et al., 2015). The 
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zinc contribution function of various metalloproteins is 

also observed (Cherian and Kang, 2006). A number of 

studies in plants reported the role of MTs in metal ho-

meostasis. Metallothionein mRNA expression research 

revealed that higher Cr availability boosted MT gene 

expression. The upregulation of the MT gene due to 

high chromium levels in the growth medium may aid 

Saccharum spp. hybrid crop resistance to Cr toxicity 

(Jain et al., 2016). While there was no significant 

change in the expression level of two chelator genes, 

OsPCS1, and OsMT1, in roots and shoots of Oryza 

sativa L. (Pokkali and BRRI 51) during Cr stress (Kabir, 

2016). Teixeira et al. (2013) showed that Cr (III) causes 

an elevation of MT2a-related transcripts in both roots 

and shoots and MT1- and MT2d-related transcripts only 

in roots, whereas Cr (VI) causes an elevation of MT2a- 

and MT2d-related transcripts only in roots. The de novo 

accumulation of the MT2c-related transcripts in shoots 

suggests that these MTs are related to the Cr homeo-

stasis in Solanum nigrum (Teixeira et al., 2013). Benatti 

et al. (2014) reported that MTs impaired variants as-

semble lesser copper in roots and shoots. Transgenic 

plants overexpressing MTs genes reduce ROS produc-

tion and increase metal tolerance (Tomas et al., 2015). 

Xia et al. (2012) observed that the exhibition of E. hai-

chowensis MT1 (EhMT1) in N. tabacum L. plants not 

only enhanced the intensity of transgenic N. tabacum L. 

to Cu toxicity but also diminished the production of 

H2O2 and ameliorate peroxidase activity (POD) in roots, 

accelerated tolerance of plants to reduce oxidative 

damage.  

 

Cr hyperaccumulator plants 

Depending on the metal sensitivity and metal storing 

capability, plants can be categorized into excluders 

(metal sensitive plants), indicators (insufficient metal 

transfer and its consumption), and accumulators 

(higher consumption and storing) (Khan et al., 2009). 

Plant species that can store higher levels of HMs with-

out yield reduction are known as metal hyperaccumula-

tors (Memon and Schroder, 2009). They are used in 

phytoextraction because of their high accumulation 

capability (Cristaldi et al., 2017). The higher aggrega-

tion of metal in plants involves the transfer of metals 

beyond the cell-membrane, xylem loading, and trans-

formation (rapid as well as active translocation of the 

metal to the shoot via the xylem, which is upregulated 

by transpiration) (Rees et al., 2016), detoxification and 

sequestration of metal (amino acids, organic acids or 

metal-binding peptides). The plants can be categorized 

as metal hyperaccumulators when they persist in nutri-

ents and do not exhibit any injuries even after storing 

the toxic metals. A hyperaccumulator plant can extract 

the metal at concentrations ten times higher than their 

concentrations in the soil. Also, hyperaccumulator 

plants have a shoot-to-root metal ratio >1 (Tangahu et 

al., 2011). About 721 hyperaccumulator plants (< 0.2% 

of entire flowering plants) are known. Hyperaccumula-

tion depends on the metal, plant species, and soil phys-

icochemical properties like hydrogen ion concentration, 

the extent of cation inter-change, litter, electroconduc-

tivity, etc. (Van der and Reeves, 2015). Cr hyperaccu-

mulator plants may assemble greater than 1,000 mg 

Cr/kg dry weight of plant (leaves). These plants endure 

heavy metals stress through chelation (by appropriate 

connections with substances such as PCs, MTs, etc.), 

bioprocessing by reducing agents, and sequestration 

into the cytosol as well as in vacuoles. The metal up-

take mainly depends on metal availability and the accu-

mulator. The uptake, translocation, and accumulation of 

Cr in different plant parts tell the tolerance capability of 

the plant against Cr toxicity. Mainly species of the Bras-

sicaceae family have been declared to assemble a sig-

nificant amount of Cr. Some plants like Genipa ameri-

cana (Barbosa et al., 2007), Allium griffithianum, 

Catharanthus roseus (Sajad et al., 2020), sunflower 

(Fozia et al., 2008; Farid et al., 2017),  V. radiata 

(Jabeen et al., 2015), Pluchea indica (Sampanpanish et 

al., 2006), S. nigrum, B. napus (Afshan et al., 2015; Li 

et al., 2018), sweet basil (Chand et al., 2015) and Leer-

sia. hexandra (You et al., 2014), etc., were found to be 

hyperaccumulators for Cr, while Ipomoea aquatica is a 

Cr (VI) tolerant plant with no toxicity signs up to 28 mg 

L−1. H. annuus can assemble different heavy metals 

(HMs) like As (Imran et al., 2013), Cr (Fozia et al., 

2008), Zn (Hao et al., 2012), Ni (Ahmad et al., 2011), 

Cd (Júnior et al., 2014), Cu (Lin et al., 2003) and Pb 

(Adesodun et al., 2010). P. oleracea is a Cr hyperaccu-

mulator and tolerates high Cr (VI) concentration 

through different routes, either by the manufacturing of 

proline (retain osmotic stability) or by stimulating the 

antioxidant enzymes to prevent the oxidative stress of 

the heavy metals (Singh et al., 2013; Kale et al., 2015).  

Some hyperaccumulator plants are listed in Table 2. 

The assimilation of Cr by roots is promoted by organic 

compounds (available in the secretions of roots and 

make network with Cr) (Hayat et al., 2012) and stored 

in vacuoles of root cells (Babula et al., 2008). Bluskov 

et al. (2005) observed that in B. juncea, Cr formed a 

network with small molecular mass organic acids, 

which form Cr3+ (acetate) in roots and Cr3+ (oxalate) in 

leaves. The ability of Ocimum basilicum to condense 

harmful metals such as Cr, Cd, Cu, Pb, As, Zn, and Fe 

in their different parts, makes its use for the preparation 

of teas, spices, or raw materials consumption a poten-

tial health concern (Boechat et al., 2016). 

Conclusion 

Cr pollution increases continuously, which imposes a 

serious threat to the biosphere. Although plants have 

no special carrier for Cr uptake, they compete with oth-
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er essential elements in the plant system and cause 

nutrient imbalance and leaf chlorosis. Cr can induce 

several toxic effects on plants, like low crop yield and 

nutrient starvation in vegetables and fruits. Higher Cr 

(III and IV) concentrations reduce plant growth, bio-

mass, Chlorophyll biosynthesis, uptake of essential 

elements, antioxidant enzyme activities, and increase 

ROS in the plant system. The chlorosis, necrosis, and 

wilting are stimulated by Cr uptake in plants. Cr is seri-

ously responsible for causing damage to DNA and lipid 

membranes. The Cr responsive proteins may get ex-

pressed from the functioning of MTs and HSPs genes. 

Various defence mechanisms implemented by plants 

like plant cell walls, plasma membrane, Cr sequestra-

tion, plant microbes, and chelation (PCs and MTs) are 

discussed herein.  

 

Future prospectives 

The newly expressed proteins study is important for 

abiotic stress research as Cr (VI) toxicity is fatal for 

plants. Therefore, it is necessary to recognize the pos-

sible mechanisms to diminish Cr uptake and lessen its 

harmful effects on the environment and ecosystem, 

mainly in plants. The mechanism inducing Cr toxicity at 

the proteomic and molecular levels still needs to be 

explored in detail. 
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