Standardization of optimum melatonin concentration for drought tolerance at germination and early development stage in rice (CO-54)

R. Megala
Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore - 641003 (Tamil Nadu), India

M.K. Kalarani
Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore - 641003 (Tamil Nadu), India

P. Jeyakumar
Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore - 641003 (Tamil Nadu), India

N. Senthil
Center for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore – 641003 (Tamil Nadu), India

R. Pushpam
Department of Rice, Tamil Nadu Agricultural University, Coimbatore - 641003 (Tamil Nadu), India

M. Umapathi
Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore - 641003 (Tamil Nadu), India

*Corresponding author. E mail: kalarani.mk@tnau.ac.in

How to Cite

INTRODUCTION
Drought is a major problem worldwide because of changing climate and constrained water resources. Constant global climate changes worsen the scenario and limit crop growth and yield. More than 23 million hectares of rainfed rice cultivation in Asia is affected by drought (Kumbhar et al., 2015). Hence, the need to develop various drought tolerance, escape and adaptation strategies to cope with the diminishing water supplies is becoming increasingly important (Pandey and Sukla, 2015). Rice, being widely grown under flooded conditions, exhibits various morphological changes in response to drought (Henry et al., 2016). The sensitiv-
Seed germination is a complex plant life cycle process involving breaking radicles through the seed coat. It is a crucial developmental stage referring to the uptake of water by the seed and resulting in protrusion of the radicle (Bewley et al., 1997). It is a multifaceted process regulated and coordinated by various cellular, metabolic and molecular events (Rajjou et al., 2004). Drought stress influences the plant’s morphological, physiological, and biochemical processes. Seed germination is very susceptible to drought stress. It can be classified as a critical period to estimate the survival rate of plants under adverse environmental conditions. Seed germination is the initial point of a plant’s life cycle where the plant gets exposed to the external environment. Improper seed germination directly affects growth and yield. Hence, germination has its own ecological and economic significance (Weitbrecht et al., 2011). Plant hormones are important signaling molecules that respond to environmental changes in seed germination. Phytohormones, mainly Gibberellins (GA) and abscisic acid (ABA), play a vital role in seed germination and early seed establishment. Hence, the imbalance of GA synthesis and ABA catabolism greatly affect seed germination and seedling growth. Therefore, it is crucial to improve seed germination in rice under drought. Melatonin, an indoleamine compound, plays an important role in plant stress defense. In plants, the tryptophan-derived compound was first identified in some edible plants like cucumber and tomato in 1995. Zhang et al. (2014) reported that melatonin plays an important role in plant stress defense mechanisms mainly related to abiotic stresses such as drought, radiation, extreme temperature, and heavy metal stress. It is also involved in plant growth and development mainly in stress-affected developmental transitions including seed germination, flowering, fruiting, and senescence. Moreover, the effect of melatonin on seed germination is dose-dependent, where lower concentrations promote seed germination, while higher concentrations of melatonin inhibit or do not affect seed germination (Hernandez-Ruiz et al., 2004). Melatonin was hypothesized as a plant growth hormone by Hernandez-Ruiz et al., 2004. A study on cucumber proved that melatonin application could refuse the PEG stress and showed a positive influence on the promotion of seed germination (Zhang et al., 2013). The studies of Umapathi et al. (2018) illustrated that exogenous melatonin at optimum concentration could counteract the cadmium toxic effect and enhance tomato seed germination and seedling characteristics. Seed germination involves the dynamic balance of synthesis and transport of Abscisic acid (ABA) and gibberellins (GAs) (Steven et al., 2011). GAs promote seed germination, break dormancy and initiate subsequent seedling growth. Under water deficit conditions and during seed germination, ABA levels increase. Studies have proved that exogenous melatonin application regulates seed germination by elevating the level of GAs and reducing ABA content during the early development stage (Xiao et al., 2019). Despite several prior theories suggesting melatonin exogenously might encourage seed germination under drought conditions (Meng et al., 2014; Zhang et al., 2012). There is not much information available on the morphological and physiological processes that melatonin infers to reduce drought stress. Additionally, little is understood about how melatonin affects the physiology and microstructure of the epidermis during drought stress, as well as how rice seeds germinate. Henceforth, in this study, the optimum concentration of melatonin that is potential enough to alleviate the adverse impacts of drought stress in rice at germination and early development stage is evaluated.

MATERIALS AND METHODS

Plant material
A laboratory experiment was conducted at the Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, in April 2021. Newly released rice variety CO 54 seed material was used in this experiment.

Standardization of drought stress using polyethylene glycol
Healthy seeds were surface sterilized with 0.1% Mercurochile (HgCl₂) for 2-3 min and then washed thoroughly with distilled water. Germination assays were performed on sterilized 10 cm diameter plastic Petri dishes with one layer of blotting paper. Each plate containing an optimum number of seeds and polyethylene glycol 6000 (PEG 6000) was used to impose artificial drought stress on the seeds of rice CO 54. The blotting papers were moistened with 10 mL of different concentrations of PEG 6000 solution (-0.2, -0.3, -0.4, -0.5, and -0.6 MPa) and only with distilled water (Control) and incubated at room temperature (25-30 °C). The experiment was laid out in a completely randomized block design with six levels of drought stress and three replications. From each treatment as well as the replication, 10 seeds were used to assess the germination percentage. The seed germination rate was monitored regularly and, after 14 days, identified the optimal PEG-6000 concentration.

Standardization of optimum melatonin concentration for drought tolerance
In CO 54 rice variety, the drought stress was created...
by using polyethylene glycol (PEG 6000). Based on the trial mentioned above, a concentration of 0.5 MPa PEG 6000 was chosen. Seeds were soaked overnight with different concentrations of about 0 (control), 50, 100, 150, 200, and 250 µM of melatonin. Petri dishes were sterilized using 0.01 percent HgCl₂ and 70 percent ethanol and finally washed with distilled water. Pre-soaked seeds (10 seeds) of each melatonin concentration were placed on blotting papers which were moistened with PEG6000 (-0.5 MPa) in each petri dish separately. A control lacking melatonin treatment and an absolute control without PEG-6000 was also maintained. The petri dishes were kept in the laboratory at room temperature (25-30 °C). The seeds were allowed to germinate in petri dishes and moistened periodically with -0.5 MPa of PEG solution at regular intervals. The experiment was performed with three replications.

Germination percentage
The number of germinated seeds was recorded daily (24 h intervals) for up to 14 days. When the radical and plumule reached a minimum of 2 mm in length, those seeds were counted as germinated seeds and it was calculated by using the formula and expressed as a percentage.

\[
\text{Germination percentage} = \frac{\text{Number of germinated seeds}}{\text{Number of seeds kept for germination}} \times 100 \quad \text{Eq. 1}
\]

Shoot length
Seedlings from each replication were randomly taken and shoot length was measured on the 14th day from the collar region to the longest leaf tip and expressed in cm.

Root length
Root length of rice seedlings was measured on the 14th day from the stem base to the longest root tip of the seedlings and expressed in cm.

Vigor index
The vigor index of the seedlings was calculated using the following formula proposed by Abdul-Baki and Anderson (1973).

\[
\text{vigor index} = (\text{Shoot length} + \text{Root length}) \times \text{Germination percentage} \quad \text{Eq. 2}
\]

Promptness index and Germination stress index
Promptness index (PI) and germination stress index (GSI) was calculated using the method developed by Sapra et al. (1991) and Bouslama and Schapaugh (1984) respectively.

\[
P_I = \left(\frac{\text{nd}2(1.4) + \text{nd}4(1.2) + \text{nd}6(1) + \text{nd}8(0.8) + \text{nd}10(0.6) + \text{nd}12(0.4) + \text{nd}14(0.2)}{\text{nd}2(4.6)} \right) \quad \text{Eq. 3}
\]

Where, nd2, nd4, nd6, nd8, nd10, nd12 and nd14 denote the percentage of germinated seeds after 2, 4, 6, 8, 10, 12 and 14 days after sowing, respectively. Germination stress index = PIS/PINS x 100 \quad \text{Eq. 4}

Where PIS is PI under drought stress situations and PINS is PI under normal condition.

Fresh weight and dry weight
Seedlings were randomly picked from each replication and the fresh and dry weights were recorded. The fresh weight of the seedling was measured and those seedlings were kept in a hot air oven at 70°C for 48 hours. Later their dry weight was recorded and expressed as mg seedling⁻¹.

Plant height stress index and root length stress index
Plant height stress index (PHSI) and root length stress index (RLSI) were estimated on 14th day by using the formula stated by Ellis and Roberts (1981) and expressed as a percentage.

\[
\text{PHSI} (%) = \frac{\text{Plant height stress plant}}{\text{Plant height of controlled plant}} \times 100 \quad \text{Eq. 5}
\]

\[
\text{RLSI} (%) = \frac{\text{Root height stress plant}}{\text{Root height of controlled plant}} \times 100 \quad \text{Eq. 6}
\]

Statistical analysis
Data analysis was done as suggested by Gomez and Gomez (1984). The collected data on various germination traits, presented with means and standard errors by ANOVA were analyzed using SPSS 13.0 (Version 133, LEAD Technologies Inc.) software. The germination percentage, shoot and root length, fresh and dry weight were graphed using Origin Pro 9 software. Principal component analysis (PCA), influenced by different melatonin treatments, was carried out using R software.

RESULTS AND DISCUSSION

Germination percentage
Drought stress during germination leads to poor crop establishment in soybean (Liu et al., 2020). In present study, drought stress significantly (p≤0.05) reduced the germination of rice CO 54 in control (when compared to absolute control. Melatonin is identified as a promising agent for enhancing seed germination. Irrespective of the concentration, melatonin treatment had a significant progressive effect on germination under drought. The germination percent was found to be maximum in absolute control (93%) and least in the control treatment (34%) (Fig. 1). Among the treatments with different concentration of melatonin, 200 µM treated seeds showed the maximal effect on germination percentage of 74 %, whereas, when the melatonin concentration was increased to 250 µM, the germination percentage began to decrease (53 %) over the control treatment.
These results were relevant to the cucumber research outcomes of Zhang et al. (2013). The germination rate improved upon exogenous melatonin application in cucumber seeds by 9.5 per cent compared to the PEG-mediated drought-induced seeds. The mechanism includes a decrease in ABA levels and an increase in active GAs such as GA3 and GA20 by melatonin treatment, thereby promoting seed germination under stress conditions (Hai-Jun et al., 2015). Another possible mechanism is that melatonin pre-treatment may increase the water uptake and enhance the energy supply to the seed. Posmyk et al. (2008) studies revealed that a higher concentration of melatonin was found to inhibit seed germination in red cabbage while a lower dose increased the germination rate by 17%. Likewise, a 100 µM concentration of melatonin in oat plants positively impacted germination rate, survival rate, potential, and index (Gao et al., 2018).

Shoot length
The physiological mechanisms of melatonin are similar to auxin, which aids in seedling growth and development under drought stress (Huang et al., 2019). The shoot length of rice seedlings was substantially reduced with respect to drought stress. Whereas the shoot length varied significantly among the treatments ranging between 4.27 to 8.23 cm (Fig. 2 & 3). The reduced shoot length in control may be due to inhibition of cell division, leading to stunted plant growth under drought-stress conditions (Hossain et al., 2020). However, the melatonin pre-seed treatment, with 200 µM and 250 µM of melatonin had a higher shoot length of 8.23 cm and 7.60 cm, respectively. Similarly, Melatonin application increased the seedling length of kidney beans by 1.6 times more than the control (Chen et al., 2009). This positive role of melatonin has also been established in transgenic rice plants (Kang et al., 2010).

Vigor index
The vigor index is a product of germination percentage and seedling length. The positive effects of melatonin as seed treatment are attributed to seed development, quality, crop growth, and yield (Zhang et al., 2014).

Table 1. Effect of melatonin treatments on stress indices

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Vigor index</th>
<th>Promptness index</th>
<th>Germination Stress Index</th>
<th>Root length stress index</th>
<th>Plant height stress index</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 : Absolute control</td>
<td>1135.56cd</td>
<td>79.33a</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T2 : Control</td>
<td>760.00a</td>
<td>39.43b</td>
<td>64.29a</td>
<td>132.63d</td>
<td>73.14c</td>
</tr>
<tr>
<td>T3 : Melatonin of 50 µM</td>
<td>1021.78d</td>
<td>46.09a</td>
<td>78.57d</td>
<td>143.68cd</td>
<td>82.86a</td>
</tr>
<tr>
<td>T4 : Melatonin of 100 µM</td>
<td>1184.00c</td>
<td>50.87d</td>
<td>85.71c</td>
<td>145.26cd</td>
<td>96.00d</td>
</tr>
<tr>
<td>T5 : Melatonin of 150 µM</td>
<td>1166.00c</td>
<td>51.28d</td>
<td>78.57d</td>
<td>156.32bc</td>
<td>102.86c</td>
</tr>
<tr>
<td>T6 : Melatonin of 200 µM</td>
<td>1910.22a</td>
<td>64.83b</td>
<td>100a</td>
<td>193.16a</td>
<td>141.14a</td>
</tr>
<tr>
<td>T7 : Melatonin of 250 µM</td>
<td>1548.44b</td>
<td>59.92c</td>
<td>92.86b</td>
<td>162.11b</td>
<td>130.29b</td>
</tr>
<tr>
<td>Mean</td>
<td>1246.57</td>
<td>55.97</td>
<td>83.33</td>
<td>155.53</td>
<td>104.38</td>
</tr>
<tr>
<td>SE(d)</td>
<td>131.268</td>
<td>1.890</td>
<td>3.512</td>
<td>16.096</td>
<td>6.686</td>
</tr>
<tr>
<td>C.D.</td>
<td>5.955</td>
<td>4.092</td>
<td>7.736</td>
<td>5.754</td>
<td>3.561</td>
</tr>
</tbody>
</table>

Data on the same row with different superscript (a, b, c) are significantly different at p < 0.05.
Drought stress eventually leads to a reduction in the vigor and productivity of the crop. Melatonin pre-treatment showed a discernible effect on root and shoot length and it was reflected in the vigor index. Accordingly, the maximum vigor index of 1910.22 was recorded in 200 µM melatonin-treated seeds while 250 µM melatonin-treated seeds had a comparatively lower vigor index of 1548.44 (Table 1). Exogenous melatonin application can mitigate the adverse effect of drought stress by improving the physiological and growth traits of plants (Debnath et al., 2019). The results obtained were in corroboration with the findings of Aguilera et al. (2015), who reported that priming cucumber seeds with melatonin, elevated the endogenous melatonin content and contributed to the mobility of nutrients to the metabolic site of germinating seeds thereby improving the seedling quality. Likewise, the vigor index and germination potential of cotton seeds were enhanced upon treatment of melatonin in lower concentrations thereby promoting seed germination (Xiao et al., 2019).

Promptness index and Germination stress tolerance index

The promptness index is a summary assessment of the impact of stress on crop growth and development. The promptness index showed a significant ($p \leq 0.05$) difference between control and melatonin treatments in rice (Table 1). Apart from absolute control, a significant result was observed in melatonin pre-treatment. 200 µM melatonin-treated seeds had a moderately higher promptness index of 64.83, followed by 250 µM melatonin-treated seeds (59.92). Similar to the conclusions of the present study, melatonin application enhanced seedling emergence performance in pepper seeds alleviating the negative impacts of chilling stress (Korkmaz et al., 2017). This positive effect may be due to the melatonin-induced elevation in antioxidants.

Table 2. Eigen value, variability % and cumulative % of germination traits among the melatonin treatments

<table>
<thead>
<tr>
<th>Trait</th>
<th>Principal component 1</th>
<th>Principal component 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germination Percentage</td>
<td>-0.454</td>
<td>-0.170</td>
</tr>
<tr>
<td>Shoot length</td>
<td>-0.289</td>
<td>0.496</td>
</tr>
<tr>
<td>Root length</td>
<td>0.060</td>
<td>0.622</td>
</tr>
<tr>
<td>Vigor index</td>
<td>-0.261</td>
<td>0.527</td>
</tr>
<tr>
<td>Promptness index</td>
<td>-0.474</td>
<td>-0.027</td>
</tr>
<tr>
<td>Fresh weight</td>
<td>-0.463</td>
<td>-0.133</td>
</tr>
<tr>
<td>Dry weight</td>
<td>-0.447</td>
<td>-0.206</td>
</tr>
<tr>
<td>Eigen values</td>
<td>4.411</td>
<td>2.489</td>
</tr>
<tr>
<td>Variability (%)</td>
<td>63.010</td>
<td>35.550</td>
</tr>
<tr>
<td>Cumulative (%)</td>
<td>63.010</td>
<td>98.570</td>
</tr>
</tbody>
</table>

The germination stress tolerance index is an integrated calculation that indicates a higher level of tolerance to drought by using the promptness index and their data is presented in Table 1. A significant ($p \leq 0.05$) variation was observed in the GSI between control and melatonin treatments. The least GSI value was observed in control (64.29) and the highest GSI value was noticed in 200 µM melatonin-treated seeds (100.00). Nevertheless, an increase in melatonin concentration did not produce more effect on the GSI of 250 µM melatonin-treated seeds (92.86). From this, it is concluded that the optimum level of 200 µM melatonin concentration could enhance the tolerance of rice seedlings to drought stress. The key mechanism of stress tolerance involves crosstalk between melatonin and other phytohormones like gibberellin, auxin, cytokinin and ABA (Tiwari et al., 2020). Chen et al. (2009) reported that a lower dose of melatonin stimulated seed germination and root growth faster than a higher concentration. Mel-
atonin pre-treatment as foliar application, seedling and root dipping treatments regulated germination, osmoregulation and photosynthesis in plants under drought stress conditions (Li et al., 2018, Liang et al., 2019). These changes may be attributed to the upregulation of ABA catabolism genes and GA biosynthetic genes resulting in a rapid decrease in ABA and an increase in GA respectively (Zhang et al., 2014). Zhang et al. (2019) and Khan et al. (2020) stated that under abiotic stress conditions, melatonin elevates gibberellic acid synthesis and content.

Fresh weight and dry weight

Melatonin acts as a regulatory factor in seed germination and energy metabolism (Zhang et al., 2017). Fresh and dry weight was measured, and the data is presented in Fig. 4. The results revealed a significant (p<0.05) difference between the control and melatonin treatments. Melatonin application progressively reduces the inhibitory effect of PEG-induced drought stress on germination and it was imitated in the fresh weight of rice seedlings. Among the treatments, the control seedlings had the least fresh and dry weight of 0.06 g and 0.04 g, respectively. Maximum fresh and dry weight was recorded in absolute control seedlings (0.198 g and 0.175 g). Seedling fresh and dry weight was gradually increased in a dose-dependent manner (50-200 µM) up to 0.095 g and 0.126 g respectively but the higher concentration of melato-
tonin (250 µM) significantly reduced the fresh and dry weight of seedlings (0.121 g and 0.090 g). The overall results give proof that the exogenous application of melatonin played a vital role in biomatter production. These results are in consistence with a previous study by Bai et al. (2020), who articulated that melatonin seed treatment improves the fresh weight of cotton in a dose-dependent manner. This enhancement effect of melatonin may be attributed to the cell division and up-regulation of genes responsible for DNA replication (Hernandez-Ruiz et al., 2004). The results were in corroboration with the findings of Wei et al., 2014 where the seed treatment of melatonin in soybean resulted in higher plant growth, development and yield. Gao et al., 2018 reported that, melatonin treated oat seedling showed improved fresh weight, dry weight, stem thickness and phenotype under drought stress. In Moringa olfera, melatonin had a beneficial effect by improving the foliage yield, fresh and dry weight of shoots and leaves under water limited conditions (Sadak and Ahmed 2020).

Plant height, stress index and Root length stress index

The role of melatonin as a growth promoter was illustrated in etiolated Lupinus albus (Hernandez-Ruiz et al., 2004). Similar to IAA, exogenous application of melatonin at micromolar concentrations, induced active growth of hypocotyls. In contrast, they exhibit an inhibitory effect at higher doses. The results of our experiment revealed that a significant (p≤0.05) difference exists between the melatonin treatments (Table 1). The values of PHSI and RLSI ranged between a maximum of 141.14-73.14 in PHSI and 193.16-132.63 in RLSI at a dose of 50-250 µM melatonin treatment and the control treatment. The PHSI and RLSI of 200 µM melatonin pre-treatment has significantly (p≤0.05) higher than those of all other treatments. This indicates that the ideal level of melatonin concentration can promote the PHSI and RLSI than the high concentration of melatonin treatment. Root length is a vital trait against any abiotic stress and in general, varieties with longer roots can cope with abiotic stress (Leishman and Westoby, 1994). Melatonin positively regulates root growth (Sharif et al., 2018). These positive effects in regards to shoot, root and total dry matter production are due to the reduction in intercellular pH and cell wall loosening induced by melatonin, which is responsible for the cell wall elongation and expansion in lupin (Arnao and Hernandez, 2007).

Principal component analysis (PCA) of seed germination and growth traits in rice as influenced by melatonin treatments

Principal component analysis was used to determine variability among each germination trait. The first two components in the PCA with eigen values greater than 1 contributed 98.57 percent to the variability (Table 2). Principal component 1 with an eigen value of 4.41 and Principal Component 2 with eigen value of 2.48 contributed 63.01 percent and 35.55 percent to total variability respectively. For the first principal component root length (0.060) contributed positively to 63.01 percent of the total variability. The second principal component accounted for 35.55 percent of the total variation and had high contributing characteristics observed in shoot length (0.496), root length (0.622), and vigor index (0.527).

Since the first two components contributed to nearly 98.57 percent of total variation the rest of the components can be neglected. Hence, the biplot was constructed with principal components 1 and 2. X and Y axis show principal component 1 and principal component 2, which explains 63% and 35.6% of the total variance, respectively. It is thus possible to notice that among the melatonin treatments, T6 (200 µM melatonin) and T7 (250 µM melatonin) performed the best (Fig. 5). When considering the contribution of each measured variable, it is possible to distinguish that root length, shoot length, and vigor index had the most significant impact on the imposed treatments.

Conclusion

In conclusion, rice variety CO 54 was very sensitive to drought stress. The study has substantiated that, with the varying levels of water stress, seed germination and early seedling development were adversely affected. Irrespective of the concentration, melatonin was able to ameliorate the negative impacts of drought stress on rice seedlings. However, prime germination percentage, shoot, and root length, fresh and dry weight, vigor index, promptness index, germination stress index, shoot and root length stress index were recorded when the seeds were treated with 200 µM melatonin concentration. This was the optimum melatonin concentration for drought stress tolerance at germination and early development stage in rice. Additionally, the study also revealed that melatonin at higher concentrations (250 µM) had an inhibitory effect on seed germination and seedling growth and development of rice.

Conflict of interest

The authors declare that they have no conflict of interest.

REFERENCES

