

Research Article

# Leaf photosynthesis and yield response of winter green gram (*Vigna radiata*) to high temperature and elevated $CO_2$ in the soil plant atmosphere research (SPAR)

| <ul> <li>M. Guna*<sup>©</sup></li> <li>Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore (Tamil Nadu), India</li> <li>SP. Ramanathan</li> <li>Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore (Tamil Nadu), India</li> <li>S. Kokilavani</li> <li>Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore (Tamil Nadu), India</li> <li>M. Djanaguiraman</li> <li>Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore (Tamil Nadu), India</li> </ul> | Article Info<br>https://doi.org/10.31018/<br>jans.v14i3.3755<br>Received: July 8, 2022<br>Revised: August 19, 2022<br>Accepted: August 25, 2022 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>K. Chandrakumar</b><br>Department of Renewable Energy, Tamil Nadu Agricultural University, Coimbatore<br>(Tamil Nadu), India                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                 |
| V. Geethalakshmi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                 |
| Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore<br>(Tamil Nadu), India                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                 |
| *Corresponding author. Email: hawkgunams@gmail.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                 |

## How to Cite

Guna, M. *et al.* (2022). Leaf photosynthesis and yield response of winter green gram (*Vigna radiata*) to high temperature and elevated CO<sub>2</sub> in the soil plant atmosphere research (SPAR). *Journal of Applied and Natural Science*, 14(3), 985 - 989. https://doi.org/10.31018/jans.v14i3.3755

#### Abstract

Legumes play an important role in India's food security, inflation rate and export values. Climate variability might significantly affect the growth, development and yield of legume crops in various regions of the globe. The present study investigated the long episodes effect of high temperature and  $CO_2$  and ambient conditions on leaf photosynthesis and yield attributes of green gram (*Vigna radiata*) using soil plant atmospheric research (SPAR). Green gram was grown under high day temperature (HDT) (day maximum temperature + 3°C) and elevated  $CO_2$  (600ppm) (HDT and eCO\_2), high day and night temperature (HDNT) (day maximum temperature + 3°C) and elevated  $CO_2$  (600ppm) (HDT and eCO\_2) and ambient conditions. Leaf photosynthesis, stomatal conductance, transpiration rate and chlorophyll index were significantly (p=0.05) increased by 25%, 24.1%, 23% and 4.6%, respectively, under HDT and eCO\_2 from 30 to 45 DAS (days after sowing) in comparison with ambient and HDNT and eCO\_2. The significant increase in number of flowers shed per plant increased under HDNT and eCO\_2 by 13% during 45 to 60 DAS. The increase in the number of pods per plant and grain yield per plant under HDT and eCO\_2 during 30 to 45 DAS. These studies indicated a significant increase in leaf photosynthesis and yield of green gram under HDT and eCO\_2 at flower initiation to pod development stage (30 to 60 DAS) followed by HDNT and eCO\_2 and ambient condition. Overall study indicated that increasing temperature and CO<sub>2</sub> would increase the biomass and yield of the green gram.

**Keywords:**\_Elevated CO<sub>2</sub>, Green gram, High day and night temperature, High day temperature, Soil plant atmosphere research (SPAR)

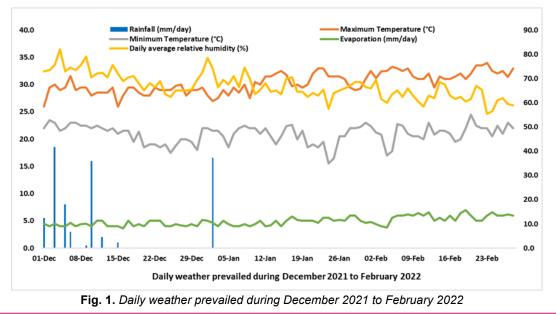
## INTRODUCTION

Climate projections show that increasing global temperature and  $CO_2$  will affect future pulses production positively or negatively depending on geographical location. Temperature and  $CO_2$  are important factors that decide crop growth and development. Current  $CO_2$  is projected to increase from 420 ppm to 550 to 730 ppm by the

This work is licensed under Attribution-Non Commercial 4.0 International (CC BY-NC 4.0). © : Author (s). Publishing rights @ ANSF.

end of the 21<sup>st</sup> century. The average global temperature has increased by 1.1°C compared to pre-industrial era and is projected to increase global average temperature from 2.2 to 4.5°C (IPCC report 2021). Green gram is a plant species in the legume family. The annual vine has fluffy brown pods and yellow flowers. It is a short-lived legume crop mostly cultivated as a fallow crop in a rice rotation. Green gram increases the nitrogen content of the soil similar to other leguminous pulses. A study conducted in controlled chambers reveals that an increase in average temperature from 19 to 26°C and 660 ppm CO<sub>2</sub> during the entire crop period increased the seed mass and grain yield in legume crop (Vadez et al., 2012). (Qiao et al., 2019) reported that excessive high temperature and CO<sub>2</sub>, within the range of 29 to 36°C and 660ppm, reduced grain yield and biomass. In general, C3 crops in the absence of biotic and abiotic stresses, will be able to capitalize on increased CO<sub>2</sub> concentration and consequently improve their growth and development. High-temperature stress above 40°C would cause flower shedding and grain yield and reduce the yield by 36 percent in green gram (Bourgault et al., 2017). Photosynthesis is an important process that will contribute to many aspects that affect the crop yield, including pod set percent and biomass. Heat stress (36/16°C) is most sensitive during the flowering stage resulting in a significant reduction in grain yield due to the fully sterility of flowers of legume crops (Falconnier et al., 2020). In addition, high temperature stress (35/19°C) is highly sensitive to the grain filling stage and shortened the crop duration, reducing the seed weight (Farooq et al., 2017). Elevated CO<sub>2</sub> alone increases the biomass and yield of legume crops by 18 to 25 percent (Kimball. 2016). Controlled chamber studies results show that the growth and development of bean was increased by 21 percent upto 700ppm elevated CO<sub>2</sub>. Most of the earlier studies conducted either

with only elevated  $CO_2$  or temperature alone. It is important to understand the combined impacts of elevated temperature and  $CO_2$  in predicting the effects of climate change on crop yield. This will permit agrometeorologists to develop some adaptations for future agricultural production. The objective of the present study was to investigate the interaction effects of elevated  $CO_2$  and temperature on growth and development of green gram.


#### MATERIALS AND METHODS

#### Location

The experiment was conducted between December 2021 to February 2022 under ambient conditions and inside the Soil Plant Atmosphere Research (SPAR) chamber available in agro climate research centre, Tamil Nadu Agricultural University, Coimbatore (11.013251° - N, 76.939725° - E). The daily weather data with respect to maximum and minimum temperature (°C), average relative humidity (%), rainfall (mm) and evaporation (mm/day) prevailed during the winter season from December 2021 to February 2022 were collected from SPAR automatic data logger and Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore (Fig. 1).

#### **Growth conditions**

The SPAR system contains plexi glass chamber 2 x 1.5 metres in cross section and 2.5 metres height where the crop is being grown. It also includes an air conditioner, as well as other required devices like a humidifier and dehumidifier, installed on a sturdy steel frame made of plexi glass with a 6 mm thickness. The software named EMCON (environment control), were used to stimulate the required and accurate levels of temperature and CO<sub>2</sub> inside the SPAR unit.



#### Treatment details

The pot culture experiment was laid out in CRD (Completely Randomized Design) with three replications. The stress was: (i) High Day Temperature (ambient day maximum temperature+3°C) and elevated CO<sub>2</sub> (600ppm) (HDT and eCO<sub>2</sub>) and (ii) High Day and Night Temperature (ambient maximum and minimum temperature+3°C) and elevated CO<sub>2</sub> (600ppm) (HDNT and eCO<sub>2</sub>). The experiment was designed based on the stress with 11 treatments replicated thrice viz., T1: control (ambient condition), T<sub>2</sub>: HDT and eCO<sub>2</sub> imposed from 1 to 15 DAS (Days After Sowing), T<sub>3</sub>: HDT and eCO2 imposed from 16 to 30 DAS, T4: HDT and eCO2 imposed from 31 to 45 DAS, T5: HDT and eCO2 imposed from 46 to 60 DAS, T<sub>6</sub>: HDT and eCO<sub>2</sub> imposed from 61 to 70 DAS, T7: HDNT and eCO2 imposed from 1 to 15 DAS, T<sub>8</sub>: HDNT and eCO<sub>2</sub> imposed from 16 to 30 DAS, T<sub>9</sub>: HDNT and eCO<sub>2</sub> imposed from 31 to 45 DAS, T<sub>10</sub>: HDNT and eCO2 imposed from 46 to 60 DAS, T<sub>11</sub>: HDNT and eCO2 imposed from 61 to 70 DAS. The pots were treated with RDF (Recommended dose of fertiliser) (25kg N + 50kg  $P_2O_5$  + 25kg  $K_2O$  + 40kg S)/ ha and appropriate measurements were taken for pest and disease control during the crop season in accordance with the TNAU crop production guide. During the experimental period, the pots were maintained at 100 percent field capacity and biometric data was recorded 15 days interval from the date of sowing.

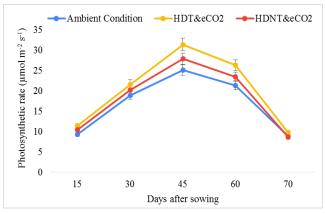
# Leaf physiological measurements and yield attributes

An LI-COR 6400XT portable photosynthesis system was used to monitor the leaf-level gas exchange measurements (photosynthesis, stomatal conductance and transpiration rate) on the tagged leaf of each replication (LI-COR, Lincoln, NE, USA). The gas exchange measurements were taken between 10-12 AM (measured using LICOR 6400XT), both ambient (415 ppm) and elevated CO<sub>2</sub> (600ppm) conditions. A chlorophyll meter [Soil Plant Analysis Development (SPAD); Model 502,

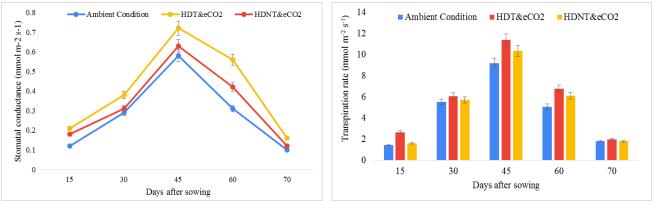
60 Ambient Condition HDT&eCO2 HDNT&eCO2 50 40 50 40 50 10 0 15 30 45 60 70 Days after sowing

Fig. 2. Effect of ambient and elevated temperature and  $CO_2$  enrichment on Chlorophyll content (SPAD unit) in green gram

Spectrum Technologies, Plainfield, IL, USA] was used to measure the chlorophyll content and expressed in SPAD units. The yield attributes *viz.*, number of flowers shed per plant, number of pods per plant, grain yield (g/plant) and biomass (g/plant) were recorded after the harvesting of the crop.


#### Data analysis

The data were statistically analysed using statistical software SPSS 16.0 (SPSS Inc., Chicago, IL). Mean and standard deviation for all values were calculated and the significant differences between mean values were evaluated using the Least Significant Difference (LSD) at a 5 per cent probability level, as suggested by Gomez and Gomez (1984).


# **RESULTS AND DISCUSSION**

The day time exposure (HDT and  $eCO_2$ ) significantly (p=0.05) increased the chlorophyll content (SPAD value) compared to ambient as well as HDNT and  $eCO_2$  conditions (Fig. 2). An increasing trend in chlorophyll index was observed from 15 to 45 DAS (days after sowing) and thereafter it starts declining. The similar research findings are reported by AbdElgawad *et al.* 2015 who stated that high temperature and  $CO_2$  stress decrease chlorophyll degradation and enrich the chlorophyll content.

Similarly, the leaf photosynthesis, stomatal conductance and transpiration rate were significantly (p=0.05) increased by day time exposure (HDT and  $eCO_2$ ) followed by both day and night exposure (HDNT and  $eCO_2$ ) and ambient conditions. Mean stomatal conductance was increased to 47.2% by HDT and  $eCO_2$ compared with the ambient condition. Overall, leaf photosynthesis rate increased from 15 to 45 DAS and it started decreasing thereafter. On average, the HDT and  $eCO_2$  and HDNT and  $eCO_2$  increased 19% and 7.2%, respectively compared with ambient conditions. HDT and  $eCO_2$  and HDNT and  $eCO_2$  increases the



**Fig.3.** Effect of ambient and high temperature and  $CO_2$  enrichment on photosynthetic rate (µmol  $m^{-2}$  s<sup>-1</sup>) in green gram



**Fig. 4.** Effect of ambient and elevated temperature and  $CO_2$  enrichment on stomatal conductance (mmol  $m^{-2} s^{-1}$ ) in green gram

**Fig. 5.** Effect of ambient and high temperature and  $CO_2$  enrichment on transpiration rate (mmol  $m^{-2} s^{-1}$ ) in green gram

**Table. 1.** Effect of elevated temperature and CO<sub>2</sub> enrichment on number of flowers shed/plant, number of pods/plant, grain yield and biomass on green gram

| Treatments      | Number of flowers shed/<br>plant | Number of<br>pods/plant | Grain yield (g/<br>plant) | Biomass (g/<br>plant) |
|-----------------|----------------------------------|-------------------------|---------------------------|-----------------------|
| T <sub>1</sub>  | 29.9                             | 26.8                    | 9.53                      | 10.2                  |
| T <sub>2</sub>  | 30.1                             | 27.1                    | 9.43                      | 11.2                  |
| T <sub>3</sub>  | 32.0                             | 29.2                    | 9.67                      | 13.8                  |
| T <sub>4</sub>  | 32.1                             | 31.2                    | 11.3                      | 14.8                  |
| T <sub>5</sub>  | 31.2                             | 34.0                    | 11.9                      | 12.4                  |
| T <sub>6</sub>  | 28.1                             | 28.1                    | 10.1                      | 11.8                  |
| T <sub>7</sub>  | 28.6                             | 26.8                    | 9.65                      | 10.5                  |
| T <sub>8</sub>  | 28.0                             | 28.2                    | 9.78                      | 13.2                  |
| T <sub>9</sub>  | 33.8                             | 30.3                    | 10.6                      | 14.3                  |
| T <sub>10</sub> | 33.4                             | 32.4                    | 12.3                      | 11.6                  |
| T <sub>11</sub> | 28.2                             | 27.8                    | 10.6                      | 11.3                  |
| Mean            | 30.5                             | 29.3                    | 10.4                      | 12.3                  |
| SEd             | 0.68                             | 0.59                    | 0.24                      | 0.28                  |
| CD(P=0.05)      | 1.42                             | 1.22                    | 0.51                      | 0.59                  |

 $T_1$ : control (ambient condition),  $T_2$ : HDT and eCO<sub>2</sub> imposed from 1 to 15 DAS (Days After Sowing),  $T_3$ : HDT and eCO<sub>2</sub> imposed from 16 to 30 DAS,  $T_4$ : HDT and eCO<sub>2</sub> imposed from 31 to 45 DAS,  $T_5$ : HDT and eCO<sub>2</sub> imposed from 46 to 60 DAS,  $T_6$ : HDT and eCO<sub>2</sub> imposed from 61 to 70 DAS,  $T_7$ : HDNT and eCO<sub>2</sub> imposed from 1 to 15 DAS,  $T_8$ : HDNT and eCO<sub>2</sub> imposed from 16 to 30 DAS,  $T_7$ : HDNT and eCO<sub>2</sub> imposed from 1 to 15 DAS,  $T_8$ : HDNT and eCO<sub>2</sub> imposed from 16 to 30 DAS,  $T_7$ : HDNT and eCO<sub>2</sub> imposed from 31 to 45 DAS,  $T_{10}$ : HDNT and eCO<sub>2</sub> imposed from 46 to 60 DAS,  $T_{11}$ : HDNT and eCO<sub>2</sub> imposed from 61 to 70 DAS.

transpiration rate by 19.4% and 12.4%, respectively. The CO<sub>2</sub> fertilization impact appears to be increased under the elevated temperature, up to certain level. Zhao *et al.*, 2022 showed that photosynthetic rate of soybean increased by 60% under  $36/29^{\circ}$ C and 660ppm CO<sub>2</sub>. The photosynthetic rate and stomatal conductance of soybean whole canopy and leaves have increased by high temperature (below  $36^{\circ}$ C) and 700ppm CO<sub>2</sub> as reported by Kannan *et al.* (2019), further, they stated that maximum photosynthetic rate and stomatal conductance were observed up to midday (1000 to 1200hrs). A considerable increase in transpiration rate was also observed by Deuchande *et al.*, 2021 in common bean.

The lowest flower shed per plant was observed in ambient condition (29.9/plant) and next best treatment was HDT and eCO<sub>2</sub> and the highest flower shed was noticed when exposed to both day and night exposure HDNT and eCO<sub>2</sub>. There was a significant positive effect observed in the number of pods per plant, grain yield per plant and biomass per plant due to day time exposure (HDT and eCO<sub>2</sub>) followed by both day and night time exposure (HDNT and eCO<sub>2</sub>) compared to ambient conditions. The number of pods per plant was increased by 11.6% and 8.6%, under HDT and eCO<sub>2</sub> and HDNT and eCO<sub>2</sub>, respectively. Similarly grain yield and bio mass respectively increased by 11.1%, 10.1% and 25.5%, 19.5% for HDT and eCO<sub>2</sub> and HDNT and eCO<sub>2</sub> compared to ambient conditions. In general, CO<sub>2</sub> enrichment from 410 to 700ppm would increase the yield attributes of legumes when the temperature below optimum level (Dutta et al., 2022). The results of the present experiment corroborate with findings of Hu *et al.* (2022), who reported that higher temperature below (> $36/26^{\circ}$ C) and CO<sub>2</sub> enrichment (660ppm) increased the yield attributes of soybean like the number of pods per plant, seeds per plant, grain yield per plant by 32%, 39.5% and 37.7%, respectively.

# Conclusion

The  $C_3$  crops would produce more photosynthate and yield due to the increased temperature and  $CO_2$ . Similarly, the present investigation indicated that day, day and night exposure to elevated temperature and CO2 (600ppm) will not affect the green gram yield during winter whenever there are maximum and minimum temperatures within the range of  $38/27^{\circ}C$ .

## **Conflict of interest**

The authors declare that they have no conflict of interest.

# REFERENCES

- AbdElgawad, H., Farfan-Vignolo, E. R., De Vos, D. & Asard, H. (2015). Elevated CO2 mitigates drought and temperature-induced oxidative stress differently in grasses and legumes. *Plant Science*, 231, 1-10. https:// doi.org/10.1016/j.plantsci.2014.11.001
- Bourgault, M., Brand, J., Tausz-Posch, S., Armstrong, R. D., O'leary, G. L., Fitzgerald, G. J. & Tausz, M. (2017). Yield, growth and grain nitrogen response to elevated CO2 in six lentil (Lens culinaris) cultivars grown under Free Air CO2 Enrichment (FACE) in a semi-arid environment. *European Journal of Agronomy*, 87, 50-58. https:// doi.org/10.1016/j.eja.2017.05.003
- Deuchande, T., Soares, J., Nunes, F., Pinto, E., & Vasconcelos, M. W. (2021). Short Term Elevated CO2 Interacts with Iron Deficiency, Further Repressing Growth, Photosynthesis and Mineral Accumulation in Soybean (Glycine max L.) and Common Bean (Phaseolus vulgaris L.). *Environments*, 8(11), 122. https://doi.org/10.3390/ environments8110122
- Dutta, A., Trivedi, A., Nath, C. P., Gupta, D. S. & Hazra, K. K. (2022). A comprehensive review on grain legumes as climate-smart crops: challenges and prospects. *Environmental Challenges*, 100479. https:// doi.org/10.1016/j.envc.2022.100479

- Falconnier, G. N., Vermue, A., Journet, E. P., Christina, M., Bedoussac, L. & Justes, E. (2020). Contrasted response to climate change of winter and spring grain legumes in southwestern France. *Field Crops Research*, 259, 107967. https://doi.org/10.1016/j.fcr.2020.107967
- Farooq, M., Nadeem, F., Gogoi, N., Ullah, A., Alghamdi, S. S., Nayyar, H. & Siddique, K. H. (2017). Heat stress in grain legumes during reproductive and grain-filling phases. *Crop and Pasture Science*, 68(11), 985-1005. https:// doi.org/10.1071/CP17012
- Gomez, K.A. and A.A. Gomez, (1984). Statistical procedures for agricultural research (2 ed.). *John wiley and sons*, NewYork, 680p.
- Hu, S., Chen, W., Tong, K., Wang, Y., Jing, L., Wang, Y. & Yang, L. (2022). Response of rice growth and leaf physiology to elevated CO<sub>2</sub> concentrations: A meta-analysis of 20-year FACE studies. *Science of the Total Environment*, *807*, 151017. https://doi.org/10.1016/j.agrformet.20 21.108700
- 9. IPCC *Climate Change 2021: The Physical Science Basis* (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, in the press).
- Kannan, K., Wang, Y., Lang, M., Challa, G. S., Long, S. P. & Marshall-Colon, A. (2019). Combining gene network, metabolic and leaf-level models shows means to futureproof soybean photosynthesis under rising CO2. *in silico Plants*, *1*(1), diz008. https://doi.org/10.1093/insilicoplants/ diz008
- Kimball, B. A. (2016). Crop responses to elevated CO2 and interactions with H2O, N, and temperature. *Current opinion in plant biology*, *31*, 36-43. https://doi.org/10.1016/ j.pbi.2016.03.006
- 12. Qiao, Y., Miao, S., Li, Q., Jin, J., Luo, X. & Tang, C. (2019). Elevated CO2 and temperature increase grain oil concentration but their impacts on grain yield differ between soybean and maize grown in a temperate region. *Science of The Total Environment*, 666, 405-413. https://doi.org/10.1016/j.scitotenv.2019.02.149
- Vadez, V., Berger, J. D., Warkentin, T., Asseng, S., Ratnakumar, P., Rao, K. & Zaman, M. A. (2012). Adaptation of grain legumes to climate change: a review. Agronomy for Sustainable Development, 32(1), 31-44.
- Zhao, W., Zheng, B., Ren, T., Zhang, X., Ning, T. & Li, G. (2022). Phosphate fertilizers increase CO2 assimilation and yield of soybean in a shaded environment. *Photosynthetica*, *60*(2), 157-167. DOI: 10.32615/ ps.2021.063