
522

Journal of Applied and Natural Science 5 (2): 522-534 (2013)  JANS

Evapotranspiration mapping for agricultural water management: An overview
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Abstract: Evapotranspiration (ET) is an essential component of the water balance. Any attempt to improve water
use efficiency must be based on reliable estimates of ET, which includes water evaporation from land and water
surfaces and transpiration by vegetation. ET varies regionally and seasonally according to weather and wind
conditions. Remote sensing based agro-meteorological models are presently most suited for estimating crop
water use at both field and regional scales. Numerous ET algorithms have been developed to make use of remote
sensing data acquired by sensors on airborne and satellite platforms. The use of remote sensing to estimate ET is
presently being developed along two approaches: (a) land surface energy balance (EB) method and (b) Reflectance
based crop coefficient and reference ET approach. The reported estimation accuracy varied from 67 to 97% for daily
ET and above 94% for seasonal ET indicating that they have the potential to estimate regional ET accurately.
Automated contours are not confined to specific pre-determined geographic areas (as in MLRA), require less time
and cost.  The spatial and temporal remote sensing data from the existing set of earth observing satellite platforms
are not sufficient enough to be used in the estimation of spatially distributed ET for on-farm irrigation management
purposes, especially at a field scale level (~10 to 200 ha). However, research opportunities exist to improve the
spatial and temporal resolution of ET by developing algorithms to increase the spatial resolution of reflectance and
surface temperature data derived from K1VHRR/Landsat/ASTER/MODIS images using same/other-sensor high
resolution multi-spectral images.
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INTRODUCTION

Evapotranspiration (ET) has been long been recognized
as the most important process that plays an essential
role in determining exchanges of energy and mass
between the hydrosphere, atmosphere and biosphere.
ET is an essential component of the water balance. Any
attempt to improve water use efficiency must be based
on reliable estimates of ET, which includes water
evaporation from land and water surfaces and
transpiration by vegetation. ET varies regionally and
seasonally.  Understanding these variations in ET is
essential for managers responsible for planning and
management of water resources. At a field scale, ET can
be measured over a homogenous surface using
conventional techniques such as Bowen ratio (BR), eddy
covariance (EC) and lysimeter systems. However, these
systems do not provide spatial trends (or distribution) at
the regional scale especially in regions with advective
climatic conditions. Remote sensing based agro-
meteorological models are presently most suited for
estimating crop water use at both field and regional scales.

Numerous ET algorithms have been developed to make
use of remote sensing data acquired by sensors on
airborne and satellite platforms. The use of remote sensing
to estimate ET is presently being developed along two
approaches: (a) land surface energy balance (EB) method,
and (b) Reflectance based crop coefficient (generally
denominated Kcr) and reference ET approach where the
crop coefficient (Kc) is related to vegetation indices
derived from canopy reflectance values.
Land surface energy balance (EB) method: It uses
remotely sensed surface reflectance in the visible (VIS)
and near-infrared (NIR) portions of the electromagnetic
spectrum and surface temperature (radiometric) from an
infrared (IR) thermal band. It convert satellite sensed
radiances into land surface characteristics such as
albedo, leaf area index, vegetation indices, surface
emissivity and surface temperature to estimate ET as a
‘‘residual’’ of the land surface energy balance equation:
LE =Rn- G- H
Where, Rn is the net radiation resulting from the budget
of short and long wave incoming and emitted radiation
respectively, LE is the latent heat flux from
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evapotranspiration, G is the soil heat flux, and H is the
sensible heat flux (all in W m–2 units). LE is converted to
ET (mm/h or mm /day) by dividing it by the latent heat of
vaporization and an appropriate time constant.
Accurate estimates of H are very difficult to achieve,
mainly when Ts is used instead of To and when
atmospheric effects and surface emissivity are not
considered properly. In such cases, H prediction errors
have been reported to be around 100 W m–2 (Cha´vez
and Neale 2003). Consequently, more recent EB models
differ mainly in the manner that H is estimated. These
models included the two-source model (SEBAL, SEBI),

where the energy balances of soil and vegetation are
modeled separately and then combined to estimate total
LE.
Reflectance based crop coefficient (Kcr) and reference
ET approach: R and NIR reflectance measurements are
used to compute a vegetation index (NDVI, SAVI), and
the vegetation index is then used in place of calendar
days or heat units to drive the crop coefficient. The
reference ET is then computed using local meteorological
measurements of incoming solar radiation, air temperature,
relative humidity or dew temperature, and wind speed.
(Rouse et al., 1974).

Fig.1. Mean ET by MLRA for (a) long-term (1951-1980) (b) water-year 1984 (Source: Church et al., 1995).

Fig.2. (a) Automatically contoured ET for 1951-1980 (b) Manually contoured ET for 1951-1980 (Source: Church et al., 1995).
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With time advancement, different approaches were
adopted by different scientist. Some of the approaches
are as follow:
Maps of regional evapotranspiration and runoff/
precipitation ratios in the northeast United States:
Church et al. (1995) compare ET in the NE United States
for a long-term period (1951-1980) and for water-year 1984
(WY84). Water-year 1984 is of additional interest because
it was a particularly wet year that followed a normal-to-
wet year and thus represents conditions more extreme
than long-term normal. They compute ET from the water

balance equation and (in one case) modeled estimates of
precipitation. We have mapped ET in three different ways.
1. Major land-use resource areas (MLRA)
2. Automated contouring procedure in association with
modeled estimates of precipitation from PRISM
(Precipitation-elevation regressions on independent
slopes model)
3. Manually contoured the variables
MLRA mapping: MLRA were created using
physiographic and land use/cover characteristics that
have been found to be important to evapotranspiration.

Fig. 3. Map of the global radiation (Rg) (Source: Najjar et al., 1981).

Fig. 4. Daily piche evaporation (Ep) at 20 sites (Source: Najjar et al., 1981).
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Fig. 5. Map of ETP according to Brochet and Gerbier’s formula (Source: Najjar et al., 1981).

Fig.6. Distribution of monthly ETo values (Source: Merkoci et al., 2010).
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A general pattern of greater ET values in the more
southerly regions is evident (Fig.1). This pattern is due
directly to the warmer temperatures in those areas indeed;
our computed values of ET show a strong linear positive
relationship to temperature. In cases where data
availability is low, it may be acceptable to rely on the
regional boundaries prescribed by MLRA. It allows
freedom to exercise informed interpretation that leads
usually to a more ‘satisfying’ (from the point of view of a
mapper) spatial representation of patterns in the source
data.
Automated and manual contour mapping: Church et al.
(1995) produced contour maps generated using
automated computational procedures. For our automated

contour mapping approach, we used precipitation
estimates from the model PRISM. PRISM specifically
developed for the purpose of estimating precipitation in
areas of significant orographic influence by subdividing
mountainous landscapes into a mosaic of individual
topographic facets. It uses a digital elevation model
(DEM) and develops regression equations. Calculated
ET and interpolated the values across the grid using an
inverse distance-weighting algorithm and lastly created
the contour maps by linear interpolation.
They first plotted the estimated ET values (determined
as for the MLRA mapping) at their corresponding sites
on a base map and then overlaid this map on an elevation
contour map and drew ET contours using elevation

Fig.7. Monthly distribution of ET
R
 (Source: Merkoci et al., 2010)

Fig.8. Annual distribution of deficit evaporation (“E) (Source: Merkoci et al., 2010)
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(assuming ET decreases with elevation). We then
digitized the contours and entered them into a geographic
information system (GIS) from which we produced the
final maps.
In all cases, less ET in the cooler and more mountainous
regions is clearly apparent (Fig.2). It is also apparent that
the greater degree of spatial detail is incorporated into
our contoured maps, especially the manually contoured
maps. When enough data are available to allow relatively
accurate contouring, this approach may be preferable.
Automated contouring have several advantages-
Contours are not confined to specific predetermined
geographic areas (e.g. MLRA in our case).
Require substantially less time and cost than manual
contouring
Disadvantages of manual mapping
It may be biased (i.e. the mapper has an incorrect model).
2. It requires relatively more time and subjective expertise.
Measurement and mapping of potential
evapotranspiration in a small mountainous watershed:
Najjar et al. (1981) estimated potential evapotranspiration
(ETP) by using Brochet and Gerbier’s formula (1972)
ETP = mRg + nEp
Where m and n are tabulated coefficients depending on
season, latitude and shelter type, and where the variables
are the global solar radiation Rg and the Piche evaporation
under shelter Ep. By mapping Rg and Ep, calculate Daily
ETP.
In the small Ringelbach watershed (36 ha), in the Vosges
Mountains (France), gives a good estimation of ETP,
enables us to understand better the hydrologic behaviour
of any mountainous watershed.
The global radiation computed for July 2, 1981, a sunny
anticyclonic day has been shown in Fig. 3. This map
reflects well the main topographic features of the
watershed. A maximum radiation arrives on S or SSE
versant with heavy slope, minimum on WNW versant.
The bottom of the small valley stands out between the

two well-contrasted versants. The gobal radiation can
double in size from one point to another within the
watershed: the extreme values are 1,997 and 4,021 J/cm2/
day.
Piche evaporometers were implanted at 20 sites in the
Ringelbach watershed chosen along some transects,
which are representative of the main topographic features
of the watershed. Daily Piche evaporation (Ep) measured
on July 2, 1981, in these 20 sites has been represented in
Fig. 4. It reflects well the topoclimatic structure of the
watershed. The evident increase of Ep with increasing
altitude reveals in fact how strong is the influence of the
air humidity and wind patterns on the Piche evaporation:
Ep increases if wind (w) increases and humidity (h)
decreases. The Ep variations are linear along each versant,
but variation rates depend on the orientation of the
versants.
The ETP map determined for July 2, 1981 (Fig. 5), which
is rather similar to the Rg map: the radiative term is indeed
always much more important than the advective one.
Maximal ETP is found on the Geisberg versant which has
a high Rg (facing S and SSE) and a high Ep (dry slope).
The wet valley (low Ep) has an intermediate ETP because
of an intermediate Rg. Moreover, the relative contribution
of advective processes to ETP appears to be very variable
into the watershed.
This mapping procedure, which is physically based and
easy to apply, provides us a good tool for estimating
ETP at different scales of space and time from a few point
measurements.
Mapping evapotranspiration by meteorological element
in the territory of Albania (South east Europe): Albania
is a complicated and complex natural area in Europe as a
result of its specific physical-geographical conditions: a
mountainous region, typical Mediterranean climate, a
particular hydrographical system, etc. Merkoci et al.
(2010) classified Albanian territory into three areas: (I)-
Field areas (II)-Hilly areas (III)-Mountainous areas.
Potential Evapotranspiration (reference evapotrans-
piration) ETp, Real Evapotranspiration - ET

R
, Evaporation

Deficit -  E. Reference (Potential) Evaporation – ET0 is
calculated by various methods such as: Turc, Penman,
Thornthweit, Penman Monteith, Equation FAO56
Penman-Monteith. The values of ETo, calculated by
different ways, result similar to be each-other (Fig.6).
These values are relatively similar, to the results of the
direct experimental observed method (the Lushnja
stations), the difference about –  ETo = ±5÷10%.
Therefore, the average monthly Reference
Evapotranspiration differs from about ET0 = 10 to 40mm
in January, the coldest month of the year, to about ET0 =
120 to 170mm in June, the hottest month, referring to
FAO56 Pennman-Monteith and ASCE Penman Monteith.
Real Evapotranspiration (ET

R
) is by different methods,

 

Fig. 9. Complementary relationship between AAET and PPET
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Fig.10. Method used to adjust Morton’s average annual AAET

to match the water balance AAET (Source: Chiew et al., 2002)

Fig.11. Spread of average annual values of various ET
variables (Source: Chiew et al., 2002).

Fig.12. Comparison between simulated actual evapotranspiration (ETact) and satellite derived evapotranspiration (ET Metric)
(Source: Droogers et al., 2010).

result relatively similar to each other. At the same time,
these are relatively similar to the results of water balance
method (difference about –  ET

R
 = ±5-10%). The monthly

distribution of the real evapotranspiration values
according to the Thornthwait method haven been
graphically represented in Fig. 7.
Deficit evaporation   E is computed as the difference (  E
= ETo – ET

R
).   E in Albanian varies about  E = 425 to

450mm on the coastal area to   E = 150 to 200mm in the
mountains. The annual distribution of pluviometric deficit
“E in Albania has been represented in Fig. 8, wherein it is
evident that during the June-September period ETp is
greater than the rainfalls, consequently there is shortage
of water-supply. The opposite happens during the
October-May period when the rainfalls are greater than

evapotranspiration, consequently there are excessive
rainfalls.
Evapotranspiration maps for Australia (Fig. 16)
Over the continent of Australia, ET is more than 90% of
precipitation. Chiew et al. (2002) mapped
evapotranspiration variables: Areal actual evapotran-
spiration (AAET), Areal potential evapotranspiration
(APET) and Point potential evapotranspiration (PPET).
Mean monthly solar global exposure data derived by
satellite radiance observations are used for the ET
computations because solar global exposure is very
sparsely observed in Australia. Morton’s (1983)
complementary relationship AAET model is used to
estimate the ET variables.
AAET + PPET = 2 APET

Rakesh Kumar et al. / J. Appl. & Nat. Sci. 5 (2): 522-534 (2013)

∆ 

∆ 

∆ 



530

The complementary relationship considers that changes
in the availability of water for AAET
respond in a complementary way to changes in the PPET
(Morton, 1983). It states that under normal conditions,
the sum of AAET and PPET is equal to twice the APET
(Fig.9).
Under dry conditions, there is no water to evaporate and
AAET = 0 and PPET is at its maximum rate. As water
becomes available, AAET increases. This increase in
AAET causes the over passing air to become cooler and
more humid (reducing the vapour pressure deficit at a
point), producing an equivalent decrease in the PPET.
Finally, when the soil water has increased sufficiently,
the values of AAET and PPET converge to that of the
APET. The APET therefore depends only on the
meteorological conditions, while the AAET and PPET
also depend on the soil water availability in the
surrounding area.

In Morton’s model, the PPET is estimated by energy and
vapour transfer equations
PPET = R

T
 -   f

T
 (Tp – T)

PPET = f
T
 (es – ea)

Where R
T
 - net radiation at air temperature, T - air

temperature, Tp - equilibrium temperature, es - saturation
vapour pressure at air temperature, ea - actual vapour
pressure,  - heat transfer coefficient and f

T
 - vapour

transfer coefficient.
APET is estimated by modified Priestley-Taylor equation
APET = 1.26 (1 +   p /   p)-1 R

T

Where   - psychrometric constant, p - atmospheric
pressure,  p- slope of saturation vapour pressure on
temperature curve at equilibrium temperature and R

T
 -

net radiation at equilibrium temperature.
Morton’s model appears to underestimate winter ET and
overestimate summer ET. To obtain more realistic ET
estimates for the maps, the three average monthly ET
variables estimated using Morton’s model are adjusted.
Morton’s average annual AAET estimates are then
adjusted by the difference between the two lines in Fig.
10. The method therefore adjusts the mean of Morton’s
AAET series at a given rainfall to the mean of the water
balance AAET series at the same rainfall, whilst
preserving the variance.
Following the above adjustment, there are still some
locations where the average annual AAET exceeds the
average annual rainfall or appears to be too low. Where
this occurs, the average annual AAET is set to an
arbitrarily defined lower or upper limit. One of three
methods is used to adjust Morton’s estimate of average
monthly AAET depending on the average annual rainfall.
Where the average annual rainfall is greater than 600
mm, the monthly AAET is scaled upwards or downwards
by the adjustment applied to the annual AAET. Where
the average annual rainfall is less than 400 mm, the

Fig.13. Typical example of optimization results: reduction in
RMSE (a), changes in parameters (b) and performance of
optimization (c) (Source: Droogers et al., 2010).
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Fig.14. (a) RMSE as a function of the observation interval, (b) Parameter error as a function of the observation interval and
(c) Irrigation application as a function of observation interval. Lines indicate two times standard deviation based on a moving
interval of 5 days (Source: Droogers et al., 2010).

Rakesh Kumar et al. / J. Appl. & Nat. Sci. 5 (2): 522-534 (2013)
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monthly AAET is set to equal the monthly rainfall. Where
the average annual rainfall is between 400 and 600 mm, a
weighted average (as a linear function of rainfall) of the
above two methods is used. The average monthly and
annual ET variables interpolated to produce gridded data.
The elevation, latitude and longitude are used as the
explanatory variables. The gridded data are then imported
into the Arc/Info GIS engine and mapped using the map
creation tools within the GIS software suite.
The average annual PPET values at the 60 stations are
similar to the average annual class (Fig. 11). A pan
evaporation (for high ET values, PPET is slightly lower
than pan evaporation). The average annual APET values
are similar to the average annual Priestley-Taylor ET and
reference crop ET values. It provides suggestions on
where they can be used.
Estimating actual irrigation application by remotely
sensed evapotranspiration observations: To assess
irrigation application amounts, Droogers et al. (2010) used
actual ET observed by satellites in southern Spain. It is
based on three main tools applied to one irrigated field
SEBAL (Surface Energy Balance Algorithms for Land)
was applied to assess the actual ET based on Landsat
remote sensing images. SWAP (soil–water–atmosphere–
plant) estimate daily actual ET based on prevailing
conditions of particular field. Using PEST (Parameter
estimation) program, SWAP input were adjusted to obtain
the same actual ET as observed from the satellite. The
derived input for SWAP can be considered as a
representation of the real irrigation applications.
Output of a SWAP run are plotted in Fig. 12, based on
realistic estimates of four times a pre-irrigation value of
25mm, and 0.95 for the stress threshold value. Clearly
three crop stages can be observed during the growing
season. At the beginning of the growing season the actual
evapotranspiration is substantially lower than potential

Fig.15. Comparison of K1VHRR clear sky eight-day ET (0.08)
with MODIS AQUA ET over agro-ecosystems during Rabi
growing season in Indian subcontinent (Source: Bhattacharya
et al., 2010).

evapotranspiration as the crop is not yet fully developed.
The figure indicates that the model simulated the
observed satellite actual evapotranspiration well, based
on the assumed pre-irrigation and stress threshold value.
Optimization was performed algorithm as explained
before. Two parameters (pre-irrigation and daily stress
irrigation threshold values) were optimized by using the
PEST program. A total of 15 optimization steps were taken,
requiring 84 model calls. After these 15 optimization steps
the process terminated because relative parameter
changes were less than 0.01 and no further improvement
could be expected. A steady reduction in RMSE during
the first seven optimization steps, followed by a
somewhat more irregular pattern in RMSE improvement
is shown in Fig. 13 (a). The two parameters being
optimized: pre-irrigation amount and stress threshold
value reflect a similar pattern. During the initial phase of
optimization the parameters follow a more or less linear
pattern towards the optimum value.
The two parameters being optimized: pre-irrigation
amount and stress threshold value, reflect a similar pattern.
During the initial phase of optimization the parameters
follow a more or less linear pattern towards the optimum
value. The overall objective of this research is to see
whether actual irrigation applications can be observed
using a combination of actual evapotranspiration and
model optimization. Observation intervals of actual
evapotranspiration between 1 and 40 days have been
used in the optimization process. It is indicated from the
Fig. 13 that there is a clear trend in the RMSE (between
actual evapotranspiration observed and the actual
evapotranspiration simulated) with increasing
observation intervals. As long as observation intervals
are more frequent than 15 days, the RMSE is constant at
a value of around 0.15mm (is less than 4% error). At
intervals longer than 15 days RMSE increases and the
model is less accurate in simulations of observed actual
evapotranspiration.
It is clear from Fig. 14 that the parameter error is relatively
low provided the observation interval is within 15 days
(with the exception of day 11). Beyond this, parameters
cannot be accurately optimized. Similar as to the RMSE,
the parameter error is relatively small for some interval
days. However, given the overall variation, these small
parameter errors are probably coincidental. The real
irrigation obtained using the forward SWAP simulation
was 600mm. The results from Fig. 14(c) indicates that
independently to the observation interval, all obtained
irrigation applications, with the exception of one, are
within 500–700mm. There is however a clear trend which
indicates that if the observation interval is shorter than
15 days, irrigation applications can be assessed at an
accuracy of about 95%. If observations are less frequent
than these 15 days accuracy decreases to about 85%.

Rakesh Kumar et al. / J. Appl. & Nat. Sci. 5 (2): 522-534 (2013)
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Regional clear sky evapotranspiration over agricultural
land using remote sensing data from Indian geostationary
meteorological satellite: A simplified single-source
energy balance scheme was implemented by Bhattacharya
et al. (2010) to estimate regional clear sky ET using noon
midnight data acquired from Indian geostationary
meteorological satellite (Kalapana-1) sensor (VHRR)
(hereafter termed K1VHRR). The 1:1 regional scale
validation plot of K1VHRR ET with aggregated MODIS
AQUA clear sky 8-day ET for Indian agricultural land
uses is shown in Fig. 15.
The data points falling inside the blue marked area
represent inherent homogeneous agricultural patches.
But data points falling outside this area correspond to
those agricultural patches having varying level of crop
distributions producing heterogeneity. This was
determined by plotting the 2D scatters between K1VHRR
and MODIS AQUA ET over 15 agro-climatic regions
separately. It is known that the agricultural land uses are
intensive and relatively homogeneous over Indo-
gangetic belt extending from Trans Gangetic Plains
Region (TGPR) to Lower Gangetic Plains Region (LGPR)
through Upper Gangetic Plains Region (UGPR) and
Middle Gangetic Plains Region (MGPR). The
heterogeneous and ill-posed agro-ecosystems are
dominant over Western Dry Region (WDR), Gujarat Plains
and Hills Region (GPHR), Central Plateau and Hills Region
(CPHR) and Southern Plateau and Hills Region (SPHR).
The overall correlation of the validation plot was 0.8
(RMSD 26% of MODIS AQUA mean) from 52,853 paired
datasets. It is evident from this analysis that the overall
errors have been reduced in 8-day ET due to possible
elimination of spurious values in the basic datasets while
compositing.
Limitations and future challenges:
Radiometric versus aerodynamic temperature:
Radiometric temperature is sensitive to canopy structure,
vertical vegetation temperature distribution, and row
spacing and soil–vegetation component temperatures,
regardless of the type of platform used (i.e., ground,
airborne, or satellite) or sensor characteristics (i.e., band
pass response, field of view, internal calibration). When
two targets (e.g., soil and vegetation) at different
temperature levels are viewed by the sensor, equality of
radiometric and aerodynamic temperature should not be
expected (Norman et al., 1995).
Spatial and temporal resolution: There is usually a trade-
off between spatial (i.e., pixel size) and temporal (i.e.,
repeat frequency) resolution for satellite platforms. e.g.
Landsat 5 has a repeat cycle of 16 days with 30–120 m
spatial resolution compared with daily coverage of
MODIS with 250– 1,000 m. The spatial resolutions of
thermal bands are often coarser than other wavelengths
such as visible, NIR and SWIR (Shortwave-Infrared). For

example, MODIS provides thermal images at 1,000-m
resolution compared with 250-m resolution for images
acquired in other bandwidths on the same satellite
platform. The ET maps derived from remote sensing data
acquired by satellite-based sensors with daily coverage
are useful in agricultural regions. Limited research has
been done to evaluate the scale influences on the
estimation of ET using multiple aircraft and satellite
sensors. One main drawback at present with microwave
data is that the spatial resolutions of passive microwave
sensors are on the order of 10–100 km limiting their use
to global scale applications. With the advent of improved
algorithms, we may be able to use active microwave
sensors that provide data at high spatial resolutions.
Data accuracy: One main drawback of existing EB
methods is that they rely on the presence of extreme Ts
(hot and cold or dry and wet) pixels in the imagery.
Without the presence of high water use crops in the
imagery, these methods may under-scale the true
potential surface temperature range, thus leading to
errors in the spatial ET estimation. Other errors with the
EB models may relate to the spatial validity of weather
station data.
Data processing time and user friendliness: To reiterate,
the usefulness of remote sensing in the estimation of
irrigation water demand will depend on the turn around
time between image acquisition and the dissemination of
derived ET information. At present, the turn around time
is anywhere from 1 to 3 weeks depending on the remote
sensing platform/sensor, algorithm utilized, and
technician’s experience/expertise on applying such
algorithms. However, for most agricultural applications,
ET maps should be delivered within hours, and almost
instantaneous (i.e., real-time) timeliness is required for
irrigation scheduling. Research should include programs
geared towards rapid processing and analysis of remotely
sensed imagery with the aid of artificial intelligence, to
make ET maps readily available to producers, researchers,
and the public by publishing daily digital ET maps over
the Internet.
Model validation: Most studies used BR and/or EC data
for development and calibration of regional scale EB
models. Measurements of latent heat flux differed by up
to 29% between BR and large, weighing lysimeters for
irrigated alfalfa during advective conditions in the
Southern High Plains of Texas (Todd et al. 2000).
Therefore, calibration of the EB models against lysimetric
measurements over irrigated and dryland conditions may
enhance their ability to estimate regional ET accurately.

Conclusions

Reliable regional ET estimates are essential to improve
spatial crop water management. Automated Contours are
not confined to specific predetermined geographic areas

Rakesh Kumar et al. / J. Appl. & Nat. Sci. 5 (2): 522-534 (2013)
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(as in MLRA), require less time and cost. ET estimation
errors associated with EB models were 2.7–35% for daily
ET and less than 6% for seasonal ET. Reflectance based
crop coefficient methods are relatively easy to use to
estimate ET compared to EB models, however, crop
coefficients require calibration for each crop type. There
are opportunities to further improve these models
through (1) developing methods for accurately estimating
canopy temperature profiles, (2) testing spatial validity
of the meteorological data. Research opportunities exist
to improve the spatial and temporal resolution of ET by
developing algorithms.
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