In vitro evaluation of antimicrobial and anticancer potential of *Artemisia absinthium* growing in Kashmir Himalayas

Mohammad Ashaq Sofi
Department of Biomedical Engineering, Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai-600119 (Tamil Nadu), India

Anima Nanda*
Department of Biomedical Engineering, Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai-600119 (Tamil Nadu), India.

Mohd Abass Sofi
Department of Chemistry, Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai-600119 (Tamil Nadu), India

Touseef Sheikh
Department of Clinical Biochemistry, Govt Degree College for Women, Anantnag, 192101 (Jammu and Kashmir), India

Gulzar Ahmed Rather
Department of Biomedical Engineering, Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai-600119, India.

*Corresponding author. Email: animanandabiomed@gmail.com

Article Info

https://doi.org/10.31018/jans.v14i3.3619

Received: June 17, 2022
Revised: August 5, 2022
Accepted: August 10, 2022

How to Cite

Abstract

Herbal medicines are an important and growing part of International pharmacopeia. Research and testing enhance our understanding of their medical properties, making them a safer alternative or preferable option to allopathic medication. Plant-derived pharmaceuticals are gaining popularity due to the belief that “green medicine” is safer and more trustworthy than expensive synthetic drugs. This study aimed to evaluate the antimicrobial and anticancer potential of the methanolic leaf extract of *Artemisia absinthium* against human lung cancer A549 cell line by well diffusion method and MTT assay, respectively. The *A. absinthium* leaf extract showed the highest activity against *Enterococcus faecalis* (20 ± 0.7 mm), and *Escherichia coli* (18 ± 0.8 mm), followed by *Pseudomonas aeruginosa* (16 ± 0.6 mm), *Candida albicans* (14 ± 0.9 mm) and *Staphylococcus aureus* (13 ± 0.8 mm), with MIC values 128, 128, 128, 256 and 256 µg/mL respectively. The methanolic extract of *A. absinthium* showed significant (p ≤ 0.05) cytotoxicity against the A549 cancer cell line with an IC_{50} value of 36.8 µg/mL. The present study’s findings give strong evidence for using the methanolic leaf extract of *A. absinthium* as an effective ethnomedicinal agent and a possible candidate for treating various human diseases and a potent bioactive agent in anticancer medications.

Keywords: *A. absinthium*, Antimicrobial activity, cytotoxic activity, Kashmir Himalayas, Medicinal plants

INTRODUCTION

Plants have played an important role in sustaining and improving the quality of human life for millennia. Furthermore, plants were and continue to be a rich source of innovative therapeutic agents for treating a wide range of primary health care illnesses. Numerous studies demonstrate that natural compounds can treat complicated disorders (Newman and Cragg, 2020; Zaki et al., 2021; Lautie et al., 2020). In cancer therapy, medicinal plants contribute to anticancer medications that limit tumor progression without any adverse effects (Iqbal et al., 2017; Huang et al., 2021). As a result, plants are still being studied worldwide for their anticancer potential. Additionally, microbial infections are seen as a worldwide danger. Despite the fact that pharmaceutical corporations have released several novel antibiotics, microbial resistance has grown (Murray et al., 2022). As a result, more attention is being paid to medicinal plants as a possible source of novel antimicrobials (Vaou et al., 2021).
Artemisia absinthium L (Asteraceae) is a well-known medicinal herb commonly known as wormwood. It is native to Eurasia and North Africa. In India, it is found in Kashmir Valley. Traditionally A. absinthium has been used to treat gastritis, gastric pain, indigestion, splenomegaly, hepatomegaly and hepatitis. It has also been documented to have antihelmintic, anticarcinogenic, neuroprotective, analgesic, hepatoprotective and antidepressant activity (Sofi et al., 2022; Szopa et al., 2020; Ahamad, 2019; Jahangir et al., 2019). Therefore, the present study reports the therapeutic validation of the A. absinthium plant, particularly with antimicrobial and anticancer effects.

MATERIALS AND METHODS

Chemicals
Dulbecco's Modified Eagle Medium (DMEM) was purchased from Gibco (USA). Fetal Bovine Serum (FBS), 0.25 % trypsin-EDTA and Antibiotic Antimycotic Solution (100×) with 10,000 units Penicillin, 10 mg streptomycin and 25 μg/mL amphotericin B were purchased from Sigma-Aldrich (St. Louis, MO, USA). While 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) was purchased from Sisco Research Laboratories Pvt Ltd (SRL chemicals), India. All consumables and cell culture wares, including tissue culture flasks and 96 well plate were purchased from Tarsons, India. Mueller Hinton Agar (MHA) and methanol were purchased from HiMedia Laboratories Pvt. Ltd (Mumbai). The rest of the chemicals were procured locally of cell culture grade.

Collection of Plant material
The Artemisia absinthium plant was collected from the Dakum area of Anantnag, Jammu and Kashmir, India, at an altitude of 2438 meters above sea level (Figs. 1 and 2). The identification and authenticity process of the plant was completed in the Kashmir University (CBT-botany) vide voucher specimen number 2837-KASH Herbarium. The leaves of the plant were shade dried in hygienic conditions for at least fifteen days. After that, the leaves were crushed into a coarse powder in an electrical grinder machine and packaged carefully for further processing.

Extraction process
A simple maceration process was employed for the extraction of the plant material. 10 g of coarse powder...
was mixed with 100 mL of methanol in a 250 mL flask and the mixture was kept in a shaker for 24 h. This was followed by filtration of the reaction mixture using Whatman filter paper No.1. The filtrate collected was left for evaporation of the solvent to obtain a concentrated mass. The procedure was repeated three times to get the desired quantity and quality of the sample for further analysis (Ben et al., 2018).

Antimicrobial activity
The extract was evaluated for antimicrobial activity against gram-positive *Staphylococcus aureus* ATCC 25923 and *Enterococcus faecalis* ATCC 29212; gram-negative strains *Pseudomonas aeruginosa* ATCC 15442 and *Escherichia coli* ATCC 11229; and *Fusus Candida albicans* ATCC 10231 using a well diffusion method. Mueller Hinton Agar (MHA) was prepared and poured into sterile Petri plates. These nutrient agar plates were inoculated within 24 h. bacterial suspension by swabbing sticks to produce a lawn of bacterial growth. Wells of 6mm were cut with the help of a sterile cork borer and different micro volumes, 25 µL, 50 µL, 75 µL, and 100 µL from 10 mg/mL stock solution were added to newly-created wells. Amphilox, Ciprofloxacin and Fluconazole were used as a positive control for gram positive, gram-negative bacteria and fungus, respectively. Dimethyl Sulfoxide (DMSO) was used as a negative control. The zone of inhibition was calculated in mm. The minimum inhibitory concentration (MIC) value in µg/mL was determined using the broth dilution method in 96 well plates described below. The results were calculated after 24 h. of incubation.

Determination of the MIC by dilution technique method
The experiment was conducted in flat bottomed 96 well plate using the methods described by (Gabrielson et al., 2002). First, 5µL of 12 hour old test pathogens were introduced to 10 wells containing 100 µL of serially diluted concentrations of *Artemisia absinthium* leaf extract (512, 256, 128, 64, 32, 16, 8, 4, 2 and 1 µg/mL). The plates were incubated at 37°C for 24 h, followed by adding 10 µL of freshly prepared MTT (5 mg/mL) to all wells. After 2 h. of incubation at 37°C, 100 µL of DMSO (Dimethyl Sulfoxide) solution was applied as the solubilizing agent. The color transition was visually observed, and the mixture was kept in a shaker for 24 h. This was followed by filtration of the reaction mixture using Whatman filter paper No.1. The filtrate collected was left for evaporation of the solvent to obtain a concentrated mass. The procedure was repeated three times to get the desired quantity and quality of the sample for further analysis (Ben et al., 2018).

Extract preparation
Methanolic leaf extract of *Artemisia absinthium* was prepared in Dulbecco’s Modified Eagle Medium (DMEM) with a stock concentration of 1 mg/mL for further use in cell viability assay.

Cell viability assay
Cultured A549 cells were seeded into a flat bottom 96 well plate at a density of approximately 6×10³/well. Complete media (10%Fetal Bovine Serum in Dulbecco’s Modified Eagle Medium) was replaced with 3% Fetal Bovine Serum (FBS) in Dulbecco’s Modified Eagle Medium (DMEM) medium. The cells were treated with *A. absinthium* methanolic extract at different concentrations ranging from 5-100 µg/mL and incubated for 24 hours. Media containing drug extract was aspirated gently and replaced with a fresh serum-free medium. 10 µL of MTT reagent (5 mg/mL) was added to each well in the dark and incubated for 3-4 h. Subsequently, the MTT reagent was discarded and 100 µL of Dimethyl Sulfoxide (DMSO) was added to each well and purple-colored formazan crystals were formed. The reaction mixture was briefly agitated on an orbital plate shaker to dissolve formazan crystals, and absorbance was measured at 590 nm (with an iMark™ microplate reader (Bio-Rad)). Percentage cell viability was calculated using the following formula.

% of viability =Absorbance of treated cells with A. absinthium leaf extract /Absorbance of control cells ×100

RESULTS
Antimicrobial activity of *A. absinthium*
The *A. absinthium* medicinal plant, which is utilized for different remedies by local populations, was also tested against ATCC microbial cultures. The crude methanol extract of *A. absinthium* showed antimicrobial activity against all investigated microbial strains. The highest activity was conferred against *Enterococcus faecalis* (20 ± 0.7 mm), *Escherichia coli* (18 ± 0.8mm) and *Pseudomonas aeruginosa* (16 ± 0.6 mm), followed by *Candida albicans* (14±0.9 mm) and *Staphylococcus aureus* (13 ± 0.8 mm), with MIC values 128, 128, 128, 256 and 256 µg/mL respectively (Table 2). However, the standard drug did not show any activity against the *C. albicans*, as shown in Fig.3 and Table 1.
Anticancerous activity of *A. absinthium*.
The typical cytotoxicity of methanolic leaf extract of *A. absinthium* towards A549 was found to be significant. At the end of the experiment, the IC50 value of *A. absinthium* methanolic extract was found to be 36.8 µg/mL (Fig 4). Moreover, an increase in cytotoxicity was observed with an increase in the concentration of the *A. absinthium* extract. Based on the MTT results, it was found that the methanolic extract of *A. absinthium* exhibited significant anticancer activity against the A549 lung cancer cell line in a dose-dependent manner. The current study suggests that *A. absinthium* leaves methanolic extract has significant anticancer activity, indicating its potential use in cancer prevention and chemotherapy.

DISCUSSION

The alarming rise in the incidence of bacterial infections is presently posing a serious threat to global public health. Antibiotic resistance, and the emergence of new pathogens with the potential of rapid worldwide transmission, exacerbates the situation, fueling the hunt for new bioactive agents. There are undoubtedly many drugs currently available today to treat bacterial infections. Still, unfortunately, they all have substantial adverse side effects, limiting their usage in specific sectors of the population. As a result, there is an ongoing and pressing need to develop novel antibacterial agents with a high safety index (Aslam *et al.*, 2018; Miethke *et al.*, 2021). Taking into account the rising need for novel remedies to combat various infections caused by antibiotic resistant microbes, Artemisia L. species can act as the promising raw material for their creation. In addition, the biologically active compounds of *Artemisia* L. can neutralize individual determinants of antibiotic resistance and thereby restore the susceptibility of resistant strains to the corresponding drugs (Hrytsyk *et al.*, 2021; Liu *et al.*, 1992; Li *et al.*, 2011; Cremer *et al.*, 2015), impede the process of obtaining the antibiotic resistance (Dülger *et al.*, 1999), inhibit the formation of microbial biofilms (Hrytsyk *et al.*, 2021; Liu *et al.*, 1992; Pandey *et al.*, 2017). Organic solvents such as methanol, ethanol, hexane and acetone are often used to extract bioactive compounds since these solvents easily elute most polar molecules (Abubakar *et al.*, 2020).
Many studies have addressed the antimicrobial potential of plants from the Artemisia genus (Ahameethunisa and Hopper, 2010). Artemisia annua and Artemisia afra extracts exhibited strong bactericidal activity against Mycobacterium Tuberculosis (Martini et al., 2020). In another study by Khan et al., 2018, ethanolic extracts of A. absinthium exhibited a dose-dependent antibacterial activity exclusively against S. aureus and E. faecium with an MIC50 value of 256 µg/mL. A subsequent study was done by (Habibipour et al., 2015) in which a hydro-alcoholic extract from the A. absinthium was active against S. aureus, P. aeruginosa, Bacillus subtilis, Haemophilus influenza and Bacillus cereus with a dose of 750 mg/mL of the extract. Reports have shown that A. absinthium showed antimicrobial activity. Ethanolic extract of A. absinthium inhibits S. aureus ATCC (29213) with a zone of inhibition 10-15 mm, (Düger et al., 1999), which is consistent with our results but had no potent antimicrobial effects against E. coli, E. faecalis, which is in contrast to our studies. In the present study, methanolic extract showed antimicrobial activity against all tested pathogens. The highest zone of inhibition (20 ± 0.7 mm) was seen in E. faecalis. This might be due to the difference in the extraction solvent, geographical location and bacterial strain used. A. absinthium has also been reported to have antifungal activity. The study by (Joshi et al., 2013) stated that the essential oil of A. Absinthium was effective against Micrococcus leucus. Recently, the silver nanoparticles synthesized using the aqueous extract of A. absinthium has shown potent antifungal activity against some pathogens of Candida species (Del et al., 2019). In our study, methanolic extract of A. absinthium was also effective against C. albicans with (14 ± 0.9 mm) inhibition zone. Meanwhile, the standard drugs did not show any activity against C. albicans. This shows that A. absinthium leaves have potent activity against all tested pathogens.

Plants have unlimited potential to produce substances that entice researchers to hunt for novel chemotherapeutics (Dehelean et al., 2021). A realistic and promising strategy for cancer prevention is the continuous search for new anticancer agents in plant medicines (Garcia-Oliveira et al., 2021). Plant-derived natural compounds with anticancer effects include terpenoids, alkaloids, and phenylpropanoids (Desam et al., 2022). Natural product research can lead to the discovery of a plethora of novel chemical structures with a wide range of biological functions (Amit & Singh, 2022; Iqbal et al., 2017; Rajput et al., 2021). Over 60% of the anticancer drugs in clinical use today are either obtained from natural products or are based on natural product
templates (Cragg and Pezzuto, 2016). Since cancer death rates are so high, finding new treatments is a top priority. The genus Artemisia is a rich source of anti-tumor compounds such as terpenoids, sesquiterpene lactones and flavonoids (Nigam et al., 2019). Previous studies have shown that A. absinthium extract has strong anti-proliferative effects against human breast cancer cells (Shafi et al., 2012). The present research explores the effects of methanolic leaf extract against human lung cancer A549 cells. The findings obtained from the MTT assay exhibited that A. absinthium methanolic extract significantly ($p \leq 0.05$) inhibited the growth of A549 cancer cells with an IC_{50} of 36.8 $\mu g/mL$ for 24 h, indicating a promising anti-lung cancer activity of methanolic extract of A. absinthium leaf extract. As can be seen in (Fig.4) MTT assay showed that methanolic extract could inhibit the growth of A549 cancer cells in a dose-dependent manner. Shafi et al. (2012) observed that A. absinthium had considerable cytotoxic activities against MDA-MB-231 and MCF-7 cells with IC_{50} values of 25 $\mu g/mL$ and 20 $\mu g/mL$, respectively. Further, they reported that it induced apoptosis in both cells.

Our results support earlier findings by Gordanian et al., 2014, who found that extracts of A. absinthium and A. vulgaris had higher anticancer potential against the HEK-293 AND MCF7 cell lines than did extracts of A. incana, A. spicigera, and A. fragrans. Another study by Lian et al. (2018) revealed that the methanolic extract of A. vulgaris has considerable anti-proliferative effects against human colon cancer cells (HCT-15) with an IC_{50} value of 50 $\mu g/mL$. An in-depth investigation would help in better understanding and development of future therapeutics. Isolation of bioactive compounds and in vivo studies would reveal the true potential of the extract against different cancers and pathogenic microorganisms.

Conclusion

The present study concluded that the methanolic extract of A. absinthium significantly ($p \leq 0.05$) inhibited all the tested pathogens and induced characteristic cell death in lung (A549) cell lines. The effective bioactive potential of this plant provides the basis for a new natural source on the drug ability list of pharmacognosy platforms.

Conflict of interest

The authors declare that they have no conflict of interest.

ACKNOWLEDGEMENTS

The authors are thankful to the Department of Biomedical Engineering, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, for providing laboratory facilities to carry out the experiments.

REFERENCES

