Investigation of bla_{IMP}-1, bla_{VIM}-1, bla_{OXA}-48 and bla_{NDM}-1 carbapenemase encoding genes among MBL-producing *Pseudomonas aeruginosa*

Farah Tareq Al-Alaq
Department of Biology, College of Science, University of Babylon, Hilla, Iraq
Suhad Saad Mahmoud
Department of Biotechnology, College of Science, University of Baghdad, Iraq
Noor S.K. Al-Khafaji
Department of Biology, College of Science, University of Babylon, Hilla, Iraq
Hussein O.M. Al-Dahmoshi*
Department of Biology, College of Science, University of Babylon, Hilla, Iraq
Mojtaba Memariani
Skin Research Center, Shahid Beheshti University of Medical Science, Iran
*Corresponding author email: dr.dahmoshi83@gmail.com

How to Cite

Abstract
Pseudomonas aeruginosa (*P. aeruginosa*) places among major opportunistic nosocomial pathogen which has developed extensive drug resistance. Due to uncontrolled consumption of antibiotics, multidrug-resistant (MDR) *P. aeruginosa* species are increasingly isolated from various settings of hospitals globally. This research aimed to determine the genes reproducing bla_{OXA}-48, bla_{IMP}-1, bla_{VIM}-1 and bla_{NDM}-1 metallo beta-lactamase (MBL) genes from MDR *P. aeruginosa* isolates. Herein, the isolates of 200 *P. aeruginosa* have been obtained from microbiology laboratory of burn ward. The antibiotic susceptibility profile was using Disc Diffusion Method (DDM) and in compliance with CLSI (Clinical and Laboratory Standards Institute) advice. Study of MBL-bearing strains and the existence of encoding genes was specified by means of polymerase chain reaction. In addition, pulsed field gel electrophoresis (PFGE) is performed for typing. In this study, 124 (62%) were extended spectrum β-lactamase producer and 51 (25.5%) were MBL producers. Moreover, 148 (74%) isolates were MDR-*P. aeruginosa*. Additionally, 42 (21%), 21 (10%), 10 (5%) and 2 (1%) isolates carried the bla_{IMP}-1, bla_{OXA}-48, bla_{VIM}-1 and bla_{NDM}-1 genes, respectively. The PFGE showed no genetic relationships among isolates. The study observed high rate of MDR *P. aeruginosa* in hospital settings, though not being outbreak, which nearly half of them carried carbapenemase enzymes. Therefore, the proper control of related infections and appropriate prescription and consumption of antibiotics is essential.

Keywords: Antibiotic resistance, Carbapenemase, Metallo-beta-lactamase, *P. aeruginosa*

INTRODUCTION
Pseudomonas aeruginosa can be defined as one of the major causes of severe infections like systemic pneumonia, burns, cystic fibrosis, skin inflammation and some infections related to respiratory tract, urinary tract, soft tissue bone and joint, gastrointestinal, blood and cornea, bacteremia, septicemia infections especially in patients with neutropenia and transplantation (Barry et al., 2021; Hassett et al., 2021). The species need narrow nutrition requirements and withstand in harsh environmental conditions. In addition, inherent and acquired drug resistance mechanisms which have caused failure in their eradication is a concern (Hu et al., 2021; Zheng et al., 2022). Carbapenem resistance among Gram-negative species has been induced for several years being induced by producing carbapenemases such as metallo-beta-lactamase (MBL) enzymes which have the ability to resist against nearly all common β-lactams. MBLs have a wide substrate spectrum and are hydrolyzing all beta-lactam excluding the monobactams (Shamkhalhi and Shahriari, 2021; Tchakal-Mesbhahi et al., 2021). Besides, the MBL encoding genes on class 1 integron are based on a plasmid that can transmit the elements of transmissible genes such as plasmids and transposons, mostly found...
among *P. aeruginosa* strains (Khademi et al., 2021; Tunyapanit et al., 2021). The *bla*_{IMPA} MBL was firstly found in *Serratia marcescens* in 1991. In recent decades, several MBLs have been spread such as *bla*_{VIM-1}, *bla*_{SPM} and *bla*_{GES-1} the enzymes require bivalent cations such as Zn2⁺ for their activity (Odoi et al., 2021; Olaniran et al., 2022). The important issues and menace for healthcare settings regarding MBLs include their wide range of substrate for function and their genetic location in genetic elements which promote their facilitating transmission to other pathogens (Yoon and Jeong, 2021). In this work, the major goal was to determine carbapenemase genes such as MBLs among MDR-*P. aeruginosa* clinical isolates.

MATERIAL AND METHODS

Bacterial strains

A total of 200 *P. aeruginosa* isolates were obtained from the Microbiology Laboratory of Burn Ward and identified using biochemical tests including growth in Cetrimide agar culture (Merck, Germany), motility, oxidase and catalase tests, Indole production in SIM Agar, TSI Agar (Merck, Germany) pattern, and growth in 42°C. The isolates were kept at a temperature of -70°C for further study.

Antibiotic susceptibility test

The antibiotic susceptibility profile was implemented using ampicillin, ceftazidime, tetracycline, erythromycin, ciprofloxacin and imipenem disks as advised via CLSI (Clinical and Laboratory Standards Institute) version 2018. Extended spectrum β-lactamase (ESBL) producing isolates were indicated using synergy test between ciprofloxacin and imipenem disks as advised via CLSI using ampicillin, ceftazidime, tetracycline, erythromycin, gentamicin, and ticarcillin-clavulanate. Antibiotic susceptibility test was performed according to CLSI (Clinical and Laboratory Standards Institute, 2018) and IMP-EDTA disks based on CLSI standards and the combine disk method including imipenem (IMP) and IMP-EDTA disks was performed using disk diffusion onto the MHA medium based on CLSI standards (Clinical and Laboratory Standards Institute, 2018) and metallo-beta-lactamase producing strains were identified according to susceptibility of halo zone difference >5mm. For this method, firstly a bacterial suspension that is equal to the half McFarland standard is prepared and lawn onto the MHA (Merck, Germany) medium and then, the IMP and IMP-EDTA disks (Rosco, Denmark) were placed with 2 cm distance onto the medium and incubated for a period between (18 and 24) hrs, a temperature of 37 Celsius. The inhibition zone is measured to be more than 5mm difference between the disks as a positive result (MBL- producing strain). Herein, *P. aeruginosa* ATCC 27853, *S. aureus* ATCC25923 and *E. coli* ATCC25922 were utilized as control of all tests.

PCR detection of carbapenemases and MBLs

The total genomic DNA was extracted with the use of boiling technique (Neumann et al, 1992). After that, PCR was done to detect the MBLs involving *bla*_{VIM-1}, *bla*_{IMP-1}, *bla*_{NDM-1} and *bla*_{OXA-48} genes by means of primers. The thermal conditions included initial denaturation for 3mins at a temperature of 94C, denaturation for 1 min at a temperature of 94 Celsius, annealing for 45 seconds, at 61-65°C, 72°C for 1 min and final extension at 10min in a total of 35 cycles (Table 1).

To do PCR, 1.5 μL of MgCl₂ 0.24 μL of dNTPs, and one unit of Taq polymerase enzyme 5 Picomole of each primer and 1μL of template DNA were added to PCR master mix (Fermentase, Lithuania) in 25 μL as a final volume. To observe and identify banding sizes of products, in a 2% agarose gel prepared with 1X TBE, 100 bp DNA marker (Fermentase, Lithuania) was used.

Pulsed field gel electrophoresis (PFGE)

The isolates’ molecular typing is done with the use of PFGE approach as previously described. A similarity of >90% was considered for being in a common type.

RESULTS

Antibiotic resistance profile

Among 200 *P. aeruginosa* isolates, resistance to Ceftazidime (86%), Ciprofloxacin (68%) Piperacillin-Tazobactam (36%), Imipenem (34%), Meropenem (34%), Amikacin (33%), and Gentamycin (33%) and was observed. Notably, 66 (33%) isolates were MDR which exhibited resistance to all 7 tested antibiotics (Table 2). In the phenotypic tests, 124 (62%) and 51

Table 1. MBL genes PCR information

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence 5' to 3'</th>
<th>Annealing (°C)</th>
<th>Product(bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>bla<sub>IMP</sub></td>
<td>F: GGGTGGGGCTTGTTTCCGTA</td>
<td>62</td>
<td>198</td>
</tr>
<tr>
<td></td>
<td>R: TCTATGCCGCTGCTGGTC</td>
<td>61</td>
<td>250</td>
</tr>
<tr>
<td>bla<sub>VIM</sub></td>
<td>F: CATGTGCCTGATGTTGATGAGT</td>
<td>65</td>
<td>484</td>
</tr>
<tr>
<td></td>
<td>R: GCCTGTCAGCCTGGTAGG</td>
<td>65</td>
<td>1015</td>
</tr>
<tr>
<td>bla<sub>OXA-48</sub></td>
<td>F: CGGCGCCTCGACCTCAAGAT</td>
<td>65</td>
<td>484</td>
</tr>
<tr>
<td></td>
<td>R: TCCGGCAAGCAGCAGTTGAC</td>
<td>65</td>
<td>1015</td>
</tr>
<tr>
<td>bla<sub>NDM-1</sub></td>
<td>F: CGACACTCTAGTGGATCTCGC</td>
<td>65</td>
<td>484</td>
</tr>
<tr>
<td></td>
<td>R: GTCGAAAAGGCCAGCTTCCG</td>
<td>65</td>
<td>1015</td>
</tr>
</tbody>
</table>
(25.5%) of them were ESBL and MBL producers, respectively (Table 3).

PCR results

The present study observed that 42 (21%), 21 (10%), 10 (5%) and 2 (1%) isolates carried the \(\text{bla}\text{IMP-1}\), \(\text{bla}\text{OXA-48}\), \(\text{bla}\text{VIM-1}\) and \(\text{bla}\text{NDM-1}\) genes, respectively (Fig. 1-4). One MDR- and MBL-producing isolate carried all these genes. These isolates were obtained from a male patient with age of 72 years, with previous hospitalization and history of consumption of cephalosporins and carbapenems.

Genetic typing

The PFGE showed no genetic relation among isolates considering 90% similarity index (Fig. 5).

DISCUSSION

MBLs are critical due to resistance against carbapenems and majority of \(\beta\)-lactams as an effective antibiotic used against infections caused by *P. aeruginosa*. Due to high resistance rate of bacteria producing these enzymes and failure in antibiotic treatment and extreme infection such as septicemia and pneumonia, the death risk due to the presence of these strains is higher compared to other bacteria resistant to imipenem in hospital infections (Mathlouthi *et al.*, 2015; Al-Dawodeyah *et al.*, 2018). Owing to the fact that genes encoding these enzymes are located on the genetic transmittable elements like plasmids as well as the transmission of mentioned genes to other strains. Quick examination and recognition of strains resistant to carbapenem, especially imipenem in terms of epidemiology and helping therapeutic factors in selecting adequate antibiotic for successfully treating patients

Table 2. Antibiotic resistance pattern of *P. aeruginosa* isolates

<table>
<thead>
<tr>
<th>Disk/Resistance (N=200)</th>
<th>Resistance N (%)</th>
<th>Intermediate N (%)</th>
<th>Sensitive N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceftazidime</td>
<td>172 (86)</td>
<td>9 (4.5)</td>
<td>19 (9.5)</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>136 (68)</td>
<td>4 (2)</td>
<td>60 (30)</td>
</tr>
<tr>
<td>Piperacillin-Tazobactam</td>
<td>72 (36)</td>
<td>3 (1.5)</td>
<td>125 (62.5)</td>
</tr>
<tr>
<td>Imipenem</td>
<td>68 (34)</td>
<td>2 (1)</td>
<td>130 (65)</td>
</tr>
<tr>
<td>Meropenem</td>
<td>68 (34)</td>
<td>3 (1.5)</td>
<td>129 (64.5)</td>
</tr>
<tr>
<td>Amikacin</td>
<td>66 (33)</td>
<td>4 (2)</td>
<td>130 (65)</td>
</tr>
<tr>
<td>Gentamycin</td>
<td>66 (33)</td>
<td>3 (1.5)</td>
<td>131 (65.5)</td>
</tr>
</tbody>
</table>

Table 3. Rate of ESBL and MBL enzymes

<table>
<thead>
<tr>
<th>(\beta)-lactamase</th>
<th>No (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESBL*</td>
<td>124 (62)</td>
</tr>
<tr>
<td>MBL**</td>
<td>51 (25.5)</td>
</tr>
</tbody>
</table>

*extended-spectrum \(\beta\)-lactamase, **metallo-\(\beta\)-lactamase
E-test. It also benefits from high sensibility (Aksoy and Tuğrul, 2020; Radhika et al., 2022). Yet, concerning the probability of occurrence of false results, performing molecular tests such as PCR seems to be necessary.

The present study observed that resistance to Ceftazidime (86%), Ciprofloxacin (68%) Piperacillin-Tazobactam (36%), Imipenem (34%), Meropenem (34%), Amikacin (33%), and Gentamycin (33%) and was observed. Notably, 66 (33%) isolates were MDR which exhibited resistance to all antibiotics. In the phenotypic tests, 124 (62%) and 51 (25.5%) of them were ESBL and MBL producers, respectively. The results of present study were quite similar to those documented by Mahfoud et al. (2015) from Syria; Al-Agamy et al., (2016) from Saudi Arabia; Zorgani et al. (2015) from Libya for imipenem and meropenem (43.9%, 40.9%), (38.2%, 52.5%), (36%, 46%) respectively while the results much less than those acknowledged by Joji et al., (2019) from Bahrain were (88%, 90%); Sid Ahmed et al., (2020) from Qatar were (90%, 90.2%); Ramadan et al., (2018) from Egypt were (78%, 78%) and Mathlouthi et al., (2015) from Libya were (87%, 79%) for imipenem and meropenem respectively. Generally, the results of these studies indicate the increasing resistance against imipenem during a decade. Concerning the similarity of mentioned studies in terms of using the disk diffusion method, the variations in results could be due to differences in resistance in various areas, sample type or the type of used disks. Different studies shown that patients suffering from infections because of the MBL-producing P. aeruginosa strains received various antibiotics as therapy and the death (mortality rate) due to infections by this type of bacteria were 20 % in study conducted in Iran (Vala et al., 2014), 29-year-old female death case from Italy (Carugati et al., 2020).

The present study show that, 42 (21%), 21 (10%), 10 (5%) and 2 (1%) isolates carried the \(\text{bla}_{\text{IMP}-1} \), \(\text{bla}_{\text{OXA-48}} \), \(\text{bla}_{\text{VIM-1}} \) and \(\text{bla}_{\text{NDM-1}} \) genes, respectively. One MDR- and MBL-producing isolate carried all these genes. The fre-

Fig. 5. PFGE pattern of carbapenemase-producing strains of P. aeruginosa; the UPGMA analysis using gel compare exhibited no genetic relation among the isolates
quency of genes were very low when compared with Salimi and Eftekhari (2014) from Iran, who found blaIMP and blaVIM present in 56.25% and 46.8% of P. aeruginosa isolates, respectively. Same thing for blaOXA-48 and blaNDM were present in 18% and 32% respectively (Khosravi et al., 2019). blaIMP-1 and blaVIM-1 were present among P. aeruginosa in different frequencies as documented by Aghamiri et al., (2014) (9%, 33%); Azimi et al., (2018) (15.6%, 17.5%) and Alkhudhairy and Al-Shammari, (2020) (25%, 33.3) for blaIMP-1 and blaVIM-1, respectively. Same results were also highlighted in an Iranian study, which found the percentage of blaIMP-1 was (5.77%) and blaVIM-1 was (17.31%) (Jabalameli et al., 2018). MBL producing P. aeruginosa has evolved worldwide with a high mortality rate. This study reports MDR-P. aeruginosa producing MBL conferring cross-resistance to cephalosporin and aminoglycosides. Therefore, the proper control of related infections and appropriate prescription and consumption of antibiotics is essential.

Conclusion

MBL- producing P. aeruginosa has evolved worldwide with a high mortality rate. This study reports MDR-P. aeruginosa producing MBL conferring cross-resistance to cephalosporin and aminoglycosides. Therefore, the proper control of related infections and appropriate prescription and consumption of antibiotics is essential.

Conflict of interest

The authors declare that they have no conflict of interest.

REFERENCES

tegrons in multidrug-resistant and carbapenem-resistant Pseudomonas aeruginosa clinical isolates. Gene Reports, 25, 101407.

