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INTRODUCTION  

Ciliates occupy important trophic levels in the food 

chain (Kaur et al., 2019; Chi et al.,2021; Matsuoka et 

al.,2021; Pan et al., 2021;  Li et al., 2022; Zhang and 

Vd'ačný, 2022).  Free living ciliates are exposed to sev-

eral biotic and abiotic environmental stress factors, re-

sulting in homeostatic disturbance (Slaveykova et al., 

2016). The abiotic stress factors include temperature, 

pH, radiations, metal toxicity, metal-containing nanopar-

ticles, etc., whereas biotic stress includes parasitic and 

symbiotic interactions, predator-prey relationships 

(Slaveykova et al., 2016). The ability to respond to un-

favourable environmental conditions is crucial for the 

survival of any organism (Corliss and Esser,1974). Cili-

ates form resting cysts as an advanced survival strate-

gy to overcome environmental stress, viz., temperature 

(Matsuoka et al., 1990; Maeda et al., 2005; Shimada et 

al., 2021), starvation (Gutierrez and Gonzalez, 2002), 

ultraviolet radiations (Matsuoka et al., 2017 and Yama-

ne et al., 2020), salinity (Li et al., 2017), desiccation 

(Müller et al., 2010 and  Benčaťová et al.,, 2016).  

Under unfavourable conditions of food depletion, cili-

ates resort to different strategies viz., sexual reproduc-

tion, cell reorganization, cannibalism and encystment 

(Rosati et al.,1981; Verni et al., 1984; Gutiérrez et al., 

2001; Verni and Rosati, 2011; Li et al., 2017 ; Chen et 

al., 2018; Pan et al., 2019; Benčat´ova et al.,2021; Shi-

mada et al., 2021). Encystment is the most common 

adaption strategy, which apart from protection, also 

helps in the dispersal of species. Encysted cells are 

dormant with no visible activity, secrete a thick wall and 

revert to vegetative proliferative state under favourable 

conditions. Such cysts have commonly been referred to 

as ‘protective cysts’ or ‘resting cysts’ (Corliss and Es-

ser,1974). Encystment also occurs as an essential part 

of many ciliates' reproduction cycle, e.g.,Colpoda (Burt 

et al., 1941 and Frenkel, 1980), Tillina magna (Beers, 

1946) and Paraholosticha sterkii (Dieckmenn,1988). 

Such cysts are termed as ‘reproductive cysts’. Cyst 

formation is mainly characterized by drastic cytoplas-

mic dehydration, which induces decreased metabolic 

rate and increased autophagy (Gutierrez et al., 2001).  

Although studies have been conducted on the stress 
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response of ciliates against biotic and abiotic factors 

and some molecular and genetic studies, have been 

conducted but the studies on the process of encystment 

are still in their infancy. Cyst formation in ciliates pro-

vides a model system for studying cell differentiation as 

the process of encystment and excystment involves 

dedifferentiation and redifferentiation of cortical struc-

tures (Grimes, 1973; Walker et al., 1975,; Walker and 

Maugel, 1980; Li et al., 2017; Wang et al., 2017). How-

ever, very few studies have been conducted on cortical 

morphogenesis during encystment (Matsusaka et al.,  

1989, Gu and Ni,  1995; Foissner et al., 2007; 

Benčat´ova et al., 2016). Ultrastructural studies and 

molecular genetics during encystment may provide a 

better understanding of the taxonomy and phylogeny of 

ciliates (Matsusaka,1977; Berger, 2006;  Li et al., 2017; 

Chi et al., 2020; Pan et al., 2021; Zhang and Vd'ačný, 

2022). The ability to form cysts under unfavourable en-

vironmental conditions might have played a significant 

role in the long evoulutionay history of ciliates ( Verni 

and Rosati, 2011). 

The present study was conducted on the hypotrichous 

ciliate, Pseudourostyla levis, which was separated from 

other urostylids and given a generic status 

(Borror,1972), on the basis of morphological and mor-

phogenetic characteristics. The ciliate P.levis is an 

elongate and dorsoventrally flattened cell, measuring 

274.31± 13.4 µm in length and 80.02 ± 11.69 µm in 

width (mean ± S.D.,n =100). The cortical structures are 

typical of the genus Pseudourostyla and include buc-

cal , frontal and somatic ciliature which are distinct on-

togenetically and spatially (Berger, 2006). Buccal cilia-

ture includes the adoral zone of membranelles (AZM) 

and undulating membranes (UMs). Frontal ciliature, 

also known as FVT complex, includes frontoventral cirri 

arranged in a bicorona, transverse cirri and an isolated 

malar cirrus. Somatic ciliature includes marinal rows 

(more than two rows on either side of FVT) and dorsal 

kineties. Nuclear apparatus consist of 23-59 macronu-

clei and 3-11 micronuclei.  

In the Indian isolate of Pseudourostyla levis,  a novel 

phenomenon of pseudoencystment was  observed in 

which cells entered a state of dormancy after rounding 

up and secreted a soft mucoid capsule but did  not form 

a cyst wall.  The process of pseudoencystment was  

triggered by starvation in healthy cells.The cycle of 

pseudoencystment followed  a programmed sequence 

of events, once it was  initiated. Unlike true cysts, cells 

reverted to the vegetative state without waiting for fa-

vourable conditions to return. Alternately, on prolonged 

starvation, true cysts wers also formed which secreated 

cyst wall and required food or fresh culture medium for 

excystation. The pseudocysts were distinctly different 

from true cysts as they did not possess the cyst wall, 

and reverted back to active trophic state without provid-

ing food or fresh culture medium, and a synchronized 

induction of pseudocysts formation could be achieved 

by a brief spell of starvation. For this reason, this pro-

cess was termed as pseudoencystment and an attempt 

was made to elucidate: (i) the parameters that induced 

pseudocyst formation, (ii) the temporal sequence of 

shape changes, (iii) corticomorphogenesis during 

pseudoencystment and excystment, (iv) experimental 

designed to illustrate the possible significance of this 

phenomenon in free-living ciliate P. levis.   

MATERIALS AND METHODS  

Culturing method 

Water samples were collected from stagnant water 

bodies near the river Yamuna and water pools near 

Najafgarh area (28° 34' N, 76° 07' E), Delhi, India. Cul-

tures were grown in petri dishes (180mm×30mm) and 

maintained in the BOD at 24±1°C, in the modified 

Pringsheim’s medium. Cells were fed every 24 h with 

the green algae Chlorogonium elongatum 

(Ammermann et al., 1974). Axenic cultures of Chloro-

gonium were grown at 25°±1°C, under fluorescent 

lights set up with a photoperiod of 14 hrs.alternating 

with a dark period of 10 hrs. Under these conditions, 

optimum density of Chlorogonium was attained in three 

to four days after the initial inoculation. Algal cells were 

washed with Pringsheim’s medium and used for feed-

ing the ciliates. To maintain the ciliates in log phase, 

approximately, 550 Chlorogonium/Pseudourostyla were 

made available once in 24 hours. To avoid overcrowd-

ing, ciliates were divided in different petri dishes after 

three to four days.   

 

Induction of pseudoencystment 

Proliferating culture did not show pseudocyst formation. 

Preliminary observations revealed that the quantity of 

food and the nutritional status of the cells were the two 

most crucial factors in inducing pseudocyst formation. 

Accordingly, experiments were set up to establish the 

relationship between the onset of pseudoencystment 

and the quantity of food made available to the cells. For 

this purpose, a feeding protocol was standardized.  

In the course of routine feeding (once in 24 hrs), ciliate 

cultures were provided with food material that was ap-

proximately 550 Chlorogonium: one P. levis cell. This 

was the optimum quantity of food, required to keep the 

ciliates in a healthy proliferative state. To assess the 

influence of food quantity on the process of pseudocyst 

formation, different dilutions of Chlorogonium were 

made (Table1). Number of Chlorogonium cells availa-

ble per Pseudourostyla were from 550 to zero in differ-

ent culture dishes. Each culture dish contained about 

1000 Pseudourostyla cells/ml of the culture fluid. Pseu-

docysts formed within a period of 24 hours were 

scored. 

To enumerate the number of Chlorogonium in a known 
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aliquot of culture medium, 0.1 ml of washed Chlorogo-

nium cells were taken and counted using Neubauer,s 

chamber. The cells were counted in the five squres of 

central square meant for RBC counting. The number of 

Chlorogonium cells/ ml were calculated using the for-

mula N×Dilution/ Area× depth, where N is the number 

of cells counted in five squres. Accordingly, desired 

dilutions were made for experimental purposes. 

To study the corticomorphological changes, cells were 

stained with Párducz haematoxylin staining method 

(Párducz 1952, 1967). Cilates were fixed in the fixative 

mixture of 2% aqueous Osmium tetraoxide and saturat-

ed solution of aqueous mercuric chloride (6:1 respec-

tively). After 15 minutes cells were washed with distilled 

water and treated with 1% iron alum (ferric ammonium 

sulphate) for 2 minutes. Again cells were washed with 

distilled water and stained with Heidenhein’s haematox-

ylin for 20 minutes. After washing with distilled water, 

cells were dehydrated and mounted in Canada Balsam.  

 

Analysis of the significance of  

pseudoencystment 

To analyze the significance of the pseudoencystment 

process, one set of culture of P. levis was fed daily 

(without skipping even a single day) for  6 months and 

maintained under conditions in which no pseudocyst 

formation occurred (Experimental). The second set of 

culture, was not fed on weekends or holidays and cells 

were frequently undergoing pseudoencystment 

(Control). At varying intervals, cells were scored for 

their size, proliferative capacity and feeding profile in 

both experimental and control cultures. Size measure-

ments were done in arbitrary units by an ocular mi-

crometer (Leitz) and converted into metric units with the 

help of a stage micrometer.  To study the feeding pro-

file, number of Chlorogonium consumed / ciliate was 

calculated at an interval of seven days. To study the 

change, if any, in the proliferative capacity, the cell cy-

cle (Generation time) was compared in the experi-

mental with the controls.    

RESULTS  

Induction of encystment  

Starvation triggered the process of pseudocyst for-

mation in Pseudourostyla levis. Pseudoencystment  

was observed when the feeding was skipped in cul-

tures with cells at the end of the log phase. After ap-

proximately 18 hrs (from the time when routine feeding 

was omitted), more than 40% of cells were  noticed in 

stage 1 of pseudoencystment. The total period from the 

point of induction to the formation of a pseudocyst took 

about 24-26 hrs.  

Effect of food availability on the formation of pseudo-

cyst in P.levis was clearly indicated by the results ob-

tained, when different dilutions of food were provided to 

an equal number of ciliates, maintained in separate 

culture dishes.Number of Chlorogonium available per 

ciliate was serially reduced from 550 to zero in parallel 

culture dishes. Data in Table 1 clearly showed that per-

centage of pseudocyst formed increased with the in-

crease in food dilution. When the number of Chlorogo-

nium / ciliate was reduced from 550 to 350, only 0.5% 

pseudocysts were obtained. With further diution of 200 

Chlorogonium/ ciliate, 13.6% pseudocysts were formed 

and complete withdrawal of food yielded a maximum of 

42.9% pseudocysts. The result clearly indicated that 

the percentage of pseudocysts formed was directly 

proportional to the availability of the Chlorogonium/ 

Pseudourostyla cell. 

 

Stages of pseudoencystment 

To induce pseudocysts formation, routine feeding was 

skipped and it was counted as zero hour. The ciliates 

at this stage were elongate and dorsoventrally flat cells 

(Fig.1). However, with prolonged starvation morpholog-

ically identifiable cells were observed. On the basis of 

shape changes and cell size, chronological order of 

different stages of pseudoencystment and excystment, 

is presented in Table 2. Different stages of pseudoen-

cystment and excystment were: 

Stage 1:  Cells in stage 1 were identifiable about 18 

hours from the time of induction (time when the routine 

feeding was skipped). Stage 1 cells were slightly short-

er in length as compared to vegetative cells and were 

spindle-shaped and had a dense cytoplasm (Fig. 2). 

Cells remained in this stage for approximately 4 hrs 

(Fig. 2). Cells were distinguished as they were slightly 

shorter in length, spindle-shaped and had a dense cy-

toplasm.  

Stage 2: Cells became smaller and broader with blunt 

ends. A further increase in the cytoplasmic density was 

observed. This stage persisted for about 2 hrs (Fig. 3).  

Stage 3: Cells gradually acquired a spheroid shape 

and at this stage they were referred to as young pseu-

docysts (Fig. 4). The cells remained in this stage for 

about 8 hrs. and then transformed into a mature pseu-

docyst or stage 4.  

Stage 4: Cells at this stage were designated as mature 

pseudocysts (Fig. 5). The cells persisted  in this stage 

for about 4 hrs and then started showing signs of 

excystment. Thus, cells remained  for about 12 hrs in 

the rounded dormant state and did  not feed during the 

entire process of pseudoencystment.  

 

Corticomorphological changes during  

pseudoencystment  

The ciliature of a vegetative cell (stage zero) includes 

buccal ciliature (AZM and UMs), FVT, right and left  

marginal cirral rows (Fig.6).The adoral zone of mem-

branelles (AZM) extends up to 1/3-1/4 of the body 

length and consists of 84-113 membranelles. On the 
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right side of AZM, two undulating membranes (UMs) 

are present, the outer paroral and the inner endoral 

membrane. Frontal ciliature (FVT complex) consists of 

two rows of frontoventral cirri, 6-10 transverse cirri and 

an isolated malar cirrus. There are five rows of right 

and four rows of left marginal rows on either side of 

FVT complex. Dorsal surface is covered with seven 

rows of dorsal kineties.  

During the transformation of vegetative cell to a pseu-

docyst (Figs.7-9), the relative positioning of cirri on the 

ventral surface, and dorsal kineties remained unaltered 

except that they were so adjusted to get accommodat-

ed in a smaller spheroid structure. Once a pseudocyst 

was  formed, it remained  in this rounded, dormant 

state for approximately 12 hours, during which  there 

was  substantial resorption of the AZM and the UMs. 

Pseudoencysted cells showed an average of 15 mem-

branelles as compared to an average of 96 mem-

branelles in vegetative cells.   

 

Excystment 

Pseudocysts stayed in the rounded, dormant state for 

about 12 hrs. afterwhich  they reverted to vegetative 

state without reference to any change in the environ-

mental conditions.The excysted cell was somewhat 

spindle-shaped.The shapes’changes during excyst-

ment were  in a reverse order as compared to that dur-

ing the pseudoencystment process.The excysted cell 

was smaller than a proliferating vegetative cell and re-

sumed  feeding after 6-8 hrs from when excystment 

started. 

However, true cysts did not excyst unless fresh culture 

medium and Chlorogonium was provided. After the ad-

dition of food, cells started showing rotation inside the 

cyst wall within 4-5 hrs of induction and finally cyst wall 

burst  to release the cell. Newly excysted cells were  

spheroids and started feeding within 6-7 hrs. Gradually 

they changed their shape and size and transformed into 

vegetative cells.  

 

Analysis of significance of pseudoencystment  

A comparison of cell size, generation time, and food 

consumption of controls and experimental ciliated did 

not reveal any significant change. Average generation 

time was the same in both control and experimental 

cells, i.e., 20.5±0.5 hrs. Average cell size observed in 

controls and experimental cells was 268.5 µm ×82.2 µm 

and 278.5µm µm × 80.5 µm,  respectively. Cells from 

both cultures depicted similar efficiency in utilization of 

the food material.The pseudoencysted cells reverted 

back to the active trophic state after 43 hours (from the 

time of induction to the formation of an excysted vege-

tative cell), without food. Thus, the process appeared to 

be a programmed event. From this experiment, it was 

Number of Chlorogonium availa-

ble/ Pseudourostyla 

Percentage of pseudo-

cyst induction within 24 
Remarks 

Approximately 550          0 Optimal food quantity and cells were in different 

stages of division Approximately 500           0 

Approximately 350           0.5 

With a decrease in the number of Chlorogonium 

cells available per Pseudourostyla cell, percent-

age of Pseudocyst formation increases. 

Approximately 200         13.6 

Approximately 150         12.6 

Approximately 100         33.9 

               0         42.9 

Table 1. Effect of food availability on the formation of pseudocyst in P. levis The number of ciliates per ml. of the culture 

fluid was about 1000 cells 

Time interval from the point 

of induction of pseudoencystment 
Stages observed 

Cell size 

(µm) 

  0 hr. Vegetative cell 252.6-290.6× 64.3-115.9 

18 hrs. Stage 1 225-240 × 80-110 

22hrs.   Stage 2 175-185 × 95-105 

 26 hrs.  Stage 3 110-115 in diameter 

34 hrs. Pseudocyst   -do- 

38 hrs.  Early excysting cell  175-180 × 90-103 

 42 hrs.  Excysted cell  165- 172 × 80-85 

Table 2. Time Schedule of various stages of pseudoencystment and excystment from the point of induction of  

pseudocyst formation. 
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inferred that the process of pseudoencystment was not 

a rejuvenating process and appeared to be a short-

term survival strategy evolved by the ciliate to over-

come the period of starvation. 

DISCUSSION  

In the present study on P. levis a unique phenomenon 

of pseudoencystment with certain peculiarities was ob-

served. Pseudocysts did not possess cyst wall yet they 

were dormant. The state of dormancy lasted only for a 

limited period of about 12 hours and appeared to be a 

programmed event. Reversion to the vegetative state 

was not dependent upon favourable conditions.  

In Urostyla grandis,Pigon and Edström (1959) and Pi-

gon (1960) reported the formation of round cells as a 

transitory stage during encystment. Later, the round 

cells formed cyst wall, had a tendency to stick to each 

other, retained ventral ciliature but completely resorbed 

the buccal ciliature. 

True encystment has been described in Pseudourosty-

la criststa (Grim and Manganaro,1985 and Pan et al., 

2019) but no intervening stages comparable to pseudo-

cysts have been mentioned. In Pseudourostyla levis, 

Takahashi (1973) has described that during temporary 

conjugation, exconjugants undergo encystment and 

unlike true cysts of the same species, they lack cyst 

wall but show nuclear reorganization, which does not 

occur during true encystment. In the present study on 

pseudocysts, nuclear reorganization was not observed. 

In Onychodromus (Jareño, 1977), during conjugation, a 

process called joint encystment occurs which involves 

fusion of the cytoplasm of pairs, but no macronuclear 

reorganization ensues. Such pairs form cysts without 

cyst wall and excystment results in the formation of 

doublet cells. No such event of pairing or doublet for-

Figs.1-5. Photomicrographs of live cells of Pseudourostyla levis under Nomarski Phase Contrast microscope revealing 

morhological changes during pseudoencystment. × 450. Fig.1: Vegetative cell; Fig.2: Stage 1; Fig.3: Stage 2; Fig.4: Ear-

ly stage 3; Fig.5: Stage 4 (pseudocyst). 

Figs. 6-9. Photomicrographs of Pseudourostyla levis revealing cortical changes during pseudoencystment (Iron hema-

toxylin staining). × 450.  Fig.6: Vegetative cell showing ciliary structures on the ventral surface: buccal ciliature includes 

adoral zone of membranelles (AZM) and undulating membranes (Ums), frontoventral complex (FVT), right marginal cirral 

rows (RMR) and left marginal cirral rows (LMR). Fig.7: A cell at late stage 1, showing resorption of Ums and resorbing 

membranelles of AZM. Fig.8: A cell at stage 3, showing all the ventral cirral rows are intact. Fig.9: A cell at stage 4, 

showing a substantial resorption of AZM. 
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mation was observed in the present study. Hence the 

process of pseudoencystment differs from the reported 

encystation in other ciliates and is a unique phenome-

non. Therefore, in the absence of any direct evidence 

revealing the significance of this process, a comparison 

of certain aspects is mentioned below so as to assess 

the proper significance of this phenomenon.  

 

Induction of pseudoencystment 

Food was the crucial factor in inducing pseudoencyst-

ment.The pseudocyst remained dormant for about 12 

hrs and then reverted to the vegetative trophic state. 

The entire process, from the point of induction to the 

formation of an excysted vegetative cell, took about 43 

hrs.Thus, the process of pseudoencystment appeared 

to be a short-term survival strategy evolved by the cili-

ate to survive periods marked by the anticipated defi-

ciency of food. Protective cysts reported in other cili-

ates manifest a long-term survival strategy and wait till 

the adverse environmental conditions are over.  

 Absence of food evokes multifarious responses in dif-

ferent ciliates. These responses include formation of 

true cysts (Beers, 1927; Manwell, 1928; Beers, 1930; 

Corliss and Esser, 1974; Gutierrez et al., 2001; Gao et 

al.,2015; Li et al.,2017; Matsuoka et al.,2021).  In Ony-

chodromus quadricornutus, starvation induced for-

mation of cannibal giants (Wicklow ,1988).   

 

Shape changes 

Shape changes must involve enormous reorganization 

of the cytoskeletal elements in order to acquire a spher-

ical configuration from a dorso-ventrally flattened, elon-

gated structure. In the protective cysts of Histriculus 

muscorum (Nakamura and Matsusaka, 1985), most of 

the microtubular network of cells is completely depoly-

merized into a soluble tubulin pool. In Euplotes encysti-

cus, enhanced levels of                (Chen et al., 2018) 

and in Colpoda cucullus, both             (Sogame  

et al., 2013),  have been reported. Upregulation of 

these proteins indicate their involvement in the cyto-

skeletal reorganization during encystment. In Pseu-

dourostyla cristata, Gao et al. (2015) identified encyst-

ment related proteins and suggested their possible role 

in stress tolerance and, subsequently, cyst formation. 

Pan et al. (2021) have compared the Inc RNAs profile 

and coexpressed RNAs in dormant cysts and vegeta-

tive cells of P.cristata and suggested their contribution 

to the process of encystment. 

 

Cortico-morphological changes during  

pseudoencystment  

During the transformation of a young pseudocyst to a 

mature pseudocyst, substantial resorption of AZM and 

UMs occured, whereas all the ventral cirral rows re-

mained intact. Number of dorsal kineties also remained 

unchanged in a pseudocyst.  

On the basis of the degree of resorption of ciliature, 

Matsusaka et al. (1989), classified the resting cysts of 

hypotrichs into three categories: (1) non-kinetosome 

resorbing (NKR) cysts of euplotids, containing intact 

cytoplasmic tubules, basal bodies and ciliary shafts, (2) 

partial kinetosome resorbing cysts of urostylids contain-

ing basal bodies but no ciliary shafts, and (3) kineto-

some resorbing cysts of oxytrichids containing no mi-

crotubular organelles, except for Paraurostyla weissei, 

containing cortical microtubules.  

In the true cysts of Pseudourostyla cristata (Grim and 

Manganaro,1985) cirri remains intact beneath the cyst 

Figs.10-11. Photomicrographs of Pseudourostyla levis revealing cortical changes on the ventral surface during excyst-

ment (Iron-hematoxylin staining). × 450. Fig.10: An excysting cell showing oral primordium (OP). Fig.11: An excysted 

vegetative cell, showing complete AZM and UMs. 
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wall, but the AZM is completely resorbed. However, 

very few studies have been conducted on the mecha-

nism of ciliature dedifferentiation and redifferentiation 

(Grimes,1973; Walker and Maugel,1980; Rios et 

al.,1985; Berger,2006; Li et al., 2017).  

 The present study on P. levis indicated that pseudo-

cysts were unique and differed from the described 

types of cysts of hypotrichs. In pseudocysts, the partly 

resorbed AZM and UMs persisted and thus differed 

from both Euplotes type, where no resorption occurred 

and from Urostyla type, where complete resorption oc-

curred.  

During excystment of pseudocysts to active trophic 

state, a primordium equivalent to buccal primordium 

was formed and a complete AZM was reorganized in 3-

4 hours. However, the AZM of the excysted cell had 

fewer membranelles than a vegetative cell. Other de-

tailed stages, showing the reorganization process dur-

ing excystment, could not be traced. Corticomorpho-

genesis during encystmsnt and excystment has been 

reported in few ciliates but the fate of ventral and dorsal 

ciliature is not described in detail (Gu and Xu 1995; 

Gao et al., 2015; Benčaťová and Tirjaková 2017,2018; 

Jiang et al., 2019; Jung et al., 2021; Zhu et al.,2021; Li 

et al.,2022). Kamra and Sapra (1991) reported that 

during excysment, Coniculostomum monilata, required 

at least three division cycles for the complete regenera-

tion of the ciliature. 

Conclusion  

Ciliates coexisting in habitat have evolved different 

strategies to survive. Encystment is a stress-induced 

phenomenon and an important bionomic strategy 

evolved by ciliates to overcome environmental chal-

lenges. The ability to encyst during the period of unfa-

vourable environmental conditions might have played a 

significant role in the long evolutionary history of cili-

ates. The present study on Pseudourostyla levis, re-

veals that pseudoencystment is a short-term survival 

strategy adopted by the ciliate to survive the periods of 

starvation.The process of pseudoencystment and 

excystment in P.levis  is a reversible cell differentiation 

and redifferentiation process and may provide signifi-

cant information for understanding the unresolved as-

pects of phylogeny of ciliates. Molecular analysis of 

gene expression during pseudoencystment, is required 

to be done in P. levis to study the downregulated and 

upregulated proteins to understand their role in the pro-

cess of dedifferentiation and redifferentiation.  
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