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Review Article 

INTRODUCTION 

Surface water pollution by the organic dyes is common-

ly found due to the partially treated effluents released 

from the various industries (Khan et al., 2019). Dyes 

are stable synthetic compounds resistant to photo light, 

microbial degradation and extreme temperature, and 

further, these are toxic and carcinogenic (Jose et al., 

2021; Khan et al., 2022; Bölgen and Vaseashta, 2021). 

Several techniques have been employed to treat water 

and wastewater, including coagulation/

electrocoagulation, biological processes, oxidation, 

membrane technologies, phytoremediation, extraction 

techniques, etc. Still, none of them is proven efficient in 

removing all the pollutant parameters. (Nidheesh and 

Singh, 2017; Marinho et al., 2021). During recent dec-

ades metal oxides of titanium were utilized chiefly in 

applying photocatalytic activity. The critical factor for 

widespread is its chemical stability and low cost of op-

eration. However, using these substances in suspen-

sion to eliminate the catalyst in water is complicated, 

making usage of these oxides not economically viable 
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(Matsuzaw et al.,2008; Qi et al.,2021; Marinho et 

al.,2021); To deal with this problem, one of the alterna-

tives is to functionalize the metal oxides with the cata-

lyst nanoparticles, making the separation of water from 

pollutants easy as it is highly stable. Various techniques 

have been adopted to fabricate the different types of 

titanium oxide and catalyst films (Vella et al.,2010); nev-

ertheless, the nanofibers fabricated by the electrospun 

technique are good examples of the next generation 

nanocatalysts (Altaf et al.,2020). As this method is ver-

satile, it can fabricate polymers, composites, and inor-

ganic materials from nanomaterials with controlled di-

ameters (Armstrong et al.,2020). The nanofibers pro-

duced by the electrospun techniques have larger sur-

face areas and high pore volume with interconnectivity 

favouring methods like water remediation, energy stor-

age, and conversion (Song et al., 2021; Marinho et al., 

2021). The research works related to titanium oxide 

nanofibers are increasing. These substances are highly 

potential in environmental applications compared to 

conventional catalysts due to their unique parameters, 

and these nanofibers help overcome water pollution-

related problems (Xu et al.,2018; Pascariu et al.,2019; 

Marinho et al., 2021). Indeed, the utilization of nano-

fibers fabricated by the oxides of titanium is already 

proven to be best in removing the pollutants than the 

nanoparticles produced (Altaf et al.,2020; Ehsani and 

Aroujalian, 2020). In this connection, the current review 

presents a history of electrospinning, techniques and 

applications of titanium dioxide nanofibers in dye re-

moval. 

BACKGROUND 

Marinho et al. (2021) stated that before developing tita-

nium dioxide nanofibers, several researchers conduct-

ed many studies for more than four centuries. Fig, 1 

depicts the brief timeline of evolving electrospinning 

techniques until the first research publications regard-

ing titanium dioxide nanofibers by an electrospun meth-

od in 2002. William Gilbert, in 1628 observed the 

changes in the shape of the water droplet when it en-

countered the external electrical field, and it was found 

to be the first record of electrospinning. Primarily, the 

spherical water drops attracted the amber piece and 

changed its shape to a cone, and this progression is 

called as "Taylor cone" (Gugulothu et al.,2018; Bar-

houm et al.,2019). Further in the next two centuries, 

variations in these shapes in contact with electrical 

charges were studied by many researchers. A re-

searcher named Charles V. Boys in the year 1887 

found that fibres can be fabricated by using a viscid 

liquid with the help of a dish connected with an electri-

cal charge (Xue et al.,2019). After a few years, JF Coo-

ley, in 1902, filed a patent in the USA titled "Apparatus 

for electrically dispersing fibres" with his observations 

and description about electrospinning (Cooley, 1902). 

Later in the twentieth century, electrospinning tech-

niques were spread around the globe, primarily in the 

production of water filters and industrial applications. 

Doshi and Reneker 1995 reported electrospinning tech-

niques with the usage of various polymers (Xue et 

al.,2019). These techniques are popularized and led to 

modern electrospinning concepts, which ushered in the 

production of ultrathin fibres having a diameter at a 

nanoscale level (Tucker et al., 2012). The research 

rapidly disseminated the incorporation of metal oxides 

and metal nanoparticles into the fibres fabricated by 

electrospun methods. Many researchers described in-

corporating titanium dioxide nanofibers in 2001-2002. 

After that, the publications on electrospinning tech-

niques have increased each year exponentially. It was 

Fig. 1. A brief timeline of electrospinning 
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estimated that more than two hundred types of poly-

mers had been fabricated into nanofibers by using elec-

trospun techniques for several applications (Zhu et 

al.,2020). In addition, these nanofibers can be pro-

duced in larger volumes, allowing the manufacturing of 

more recent commercial goods; the present uses on-

air/water filtration, biomedical products, and facial 

masks. In the meantime, the research organizations 

are developing innovative methods and compositions 

that provide specific functions in advanced applications 

(Barhoum et al.,2019; Marinho et al.,2021). 

 

Process of Electrospinning 

Electrospinning techniques are simple, have low opera-

tion costs, and continuously produce nanofibers in bulk 

production (Kim et al.,2021). The significant benefits of 

electrospinning are required simple equipment compo-

sitions and have high flexibility in nanofiber orientations 

(Liao et al.,2018). Thus, the electrospinning technique 

has gained much prominence in research worldwide 

(Istirohah et al., 2019). Electrospraying is a technique 

that depends on the ejection of liquids from the jets 

under high voltage, and it is an electrohydrodynamic 

process. In the electrospraying technique, jets will 

break down the droplets to produce a particle, whereas, 

in the electrospinning process, the jet continuously 

makes the nanofibers. The liquids’ viscosity and elastic-

ity are the main features that determine the behaviour 

of the jets (Xue et al.,2019). The setup of the electro-

spinning process is simple and accessible by all labora-

tories, as shown in Fig. 2 (Marinho et al.,2021). The 

equipment configuration includes a power supply, an 

injection pump, and a sharp tip and collector. Neverthe-

less, different electrospinning designs were found 

worldwide, which provide for multiple needles with a jet 

(Démuth et al.,2016; SalehHudin et al.,2018), coaxial 

shape needles (Prado-Prone et al., 2018), without nee-

dles (Ali et al.,2017), and liquid bath connected to a 

solid collector (Zhou et al., 2009; Wu and Hong, 2016).  

Different types of materials were used to prepare nano-

fibers by the electrospinning technique. However, or-

ganic polymer solutions were primarily used in electro-

spinning methods (Liao et al., 2018).  Alternative meth-

ods are introducing nanomaterial into the polymer solu-

tions to produce nano functionalized fibres. This pro-

cess has created many opportunities for researchers to 

test several combinations of nanoparticle-solvents-

polymers to fabricate nanofibers for varied applications. 

One of the first reported research for the fabrication of 

titanium dioxide nanofibers used a composition of etha-

nol dissolved polyvinyl pyrrolidone and titanium tetra-

isopropoxide (Marinho et al., 2021).  

 

Titanium dioxide nanofibers in dye removal 

Titanium dioxide materials have more significant  

advantages than other materials as they show higher 

photoactivity and higher stability (Wang et al.,2019). 

Indeed, titanium dioxides are the most used semicon-

ductors for photocatalytic applications (Greenstein et 

al.,2021). Even though many researchers have studied 

these materials, most of the information related to tita-

nium dioxide is related to its production in suspension 

or powder forms. Nevertheless, recycling these materi-

als is a complex and costly process, as separating cat-

alyst powder from liquids is difficult (Ananpattarachai 

and Kajitvichyanukul, 2016). This problem can be 

avoided by functionalizing titanium dioxide with active 

semiconductor nanoparticles; it eliminates the post-

filtration step and allows the catalyst for reuse with 

more excellent stability. Several methods like chemical 

vapour deposition, sol-gel techniques, sputtering, phys-

ical vapour deposition, and sputtering, have fabricated 

titanium dioxide and catalyst supports (Sonawane et 

al.,2003). Moreover, materials like paper, ceramics, 

pumice stones, glass, and stainless steel are often 

tested as catalyst supports (Vella et al., 2010). Electro-

spinning techniques are simple and economical meth-

ods for fabricating nanofibers continuously with even 

diameters with various compositions (Someswararao et 

al., 2018). One dimensional nanomaterials also gained 

much prominence in research as titanium dioxide nan-

ofibers due to their larger surface areas and photocata-

lytic activity (Pascariu et al., 2019;  Marinho et al., 

2021). Conventionally, the titanium oxide nanofibers 

are fabricated by electrospinning technique by incorpo-

rating titanium dioxide as a precursor with a polymer. 

Further, the nanofibers are calcinated to change their 

amorphous phase to crystalline (Mahltig et al.,2007). 

Although titanium dioxide is used for calcination and 

precursors, nanofibers can be fabricated even by elec-

trospinning methods using blended semiconductor fi-

bres alone from them. The coaxial and dual electro-

spinning techniques are more effective for new nano-

fiber production. Luo et al. (2016) used the coaxial de-

sign to spin the titanium dioxide and polyvinyl alcohol 

nanoparticles concurrently. 

Nevertheless, it is essential to note that nanofibers fab-

ricated by polymeric solutions containing titanium diox-

ides might show instabilities, and both materials demix-

ing can occur (Grothe et al., 2018). However, with 

more excellent stabilities, titanium dioxide nanofibers 

by mixing polyetherimide and titanium dioxide na-

nopowder in dimethylformamide and tetrahydrofuran. 

The nanofibers fabricated are subjected to the cold 

plasma in nitrogen atmospheres to enhance their pho-

tocatalytic and adhesion properties. The material 

showed excellent photocatalytic activities for the discol-

ouration of methylene blue with higher stability, and the 

same was tested for five cyclic performances. The al-

ternative approach is to coat the purest electrospun 

nanofibers to the titanium dioxide after the electrospun 

process. Indeed, it is one of the first approaches for 
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fabricating titanium dioxide nanofibers. Drew et al. 

(2003), synthesized the nanofibers using polyacryloni-

trile by immersing them in a solution consisting of titani-

um dioxide. The structural properties of the pristine 

titanium dioxide nanofibers can be modified by adding 

transition-metal/nonmetals to form composites 

(Pascariu et al.,2019). Kudhier et al. (2018) compared 

the pristine and silver doped titanium nanofibers; the 

material's bandgap was decreased by adding silver to 

the titanium dioxide nanofibers, which enhanced the 

antibacterial activity. Correspondingly, titanium dioxide 

nanofibers were fabricated by doping with the graphitic 

carbon nitride to titanium dioxide in polymer solution 

adding urea. Heterojunctions are formed between the 

semiconductor materials due to graphitic carbon nitride 

with titanium dioxide enhancing the photocatalytic activ-

ity by suppressing the recombination charge (Tang et 

al., 2018).  

The properties of the nanofibers are mainly dependent 

on the polymer solutions utilized, working procedures 

and laboratory conditions (Pascariu et al., 2019). Kim et 

al. (2018 )stated that modified aluminium collectors 

would help in the unidirectional growth of nanofibers. 

The unidirectional nanofibers show higher crystallinity, 

act as electron transport, and enhance the nanofibers' 

optical/mechanical properties.  

In recent years many techniques have been developed 

to treat water and wastewater. Several technologies 

have been examined to find better treatment options at 

lower costs (Chen et al.,2020). Generally, conventional 

technologies like coagulation, adsorption and biological 

processes are easily operated and involve lesser costs. 

Nevertheless, they have a disadvantage like sludge 

disposal and a longer duration of the water treatment 

(Bora et al.,2016). In contrast, ultrafiltration, photocata-

lytic degradation, and electrochemical methods involve 

initial high capital investment and energy; however, 

these methods have long-term advantages (Ortega et 

al., 2017). Water and wastewater treatment methods 

are never unique or straightforward and need continu-

ous improvement and different approaches (Song et 

al.,2017). In this regard, the titanium dioxide nanofibers 

fabricated by the electrospinning technique have more 

significant advantages for removing pollutants by the 

methods like membrane filtration, photocatalytic activity, 

and adsorption (Li et al., 2014; Marinho et al., 2021). 

Titanium dioxide nanofibers are suitable adsorbents for 

eliminating heavy metals from the water as their surfac-

es consist of carboxyl, hydroxyl groups, etc. (Zhu et 

al.,2020). As hydrophilicity of the nanofibers is en-

hanced by titanium dioxide; further it also increases the 

stabilities, mechanical strength, and anti-smudge prop-

erties when they are utilized in the process of mem-

brane filtration (Chen et al., 2020). The surface rough-

ness of the nanofibers is improved, which helps for the 

desalination of water (Pan et al., 2019). Furthermore, 

the titanium dioxide photocatalytic properties also 

helped regenerate electrospun nanofibers. Li et al. 

(2014) conducted studies on the titanium dioxide elec-

trospun nanofibers for dye removal and achieved re-

moval percentages of 92 for methylene blue, 95 for the 

congo red and 52 for methyl orange. The pH of the so-

lutions affects the charge of the titanium dioxide parti-

cles significantly. The zero-point charge is termed pH, 

where the surface of the particles is not charged. Singh 

et al.,2003 reported that the zero-point charge's com-

mercial titanium dioxide nanoparticles pH is 6.2; beyond 

this value might negatively affect the catalysts and at-

tract the other molecules. 

On the other hand, the reactant adsorption phenomena 

are negatively affected and limit the reactions at higher 

temperatures, i.e., above 80oC; further, the oxygen con-

centration in the water decrease by increasing the tem-

peratures. Thus, optimum temperatures for the reac-

tions range from 20 to 80oC (Malato et al.,2016). Even 

though these methods seem to be promising as they 

Fig. 2. Diagrammatic representation of electrospinning device  
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have a greater agglomeration tendency, they are chal-

lenging to separate from the aqueous medium; thus, 

usage of these methods is limited (Kumar et al., 2014). 

However, doping of photocatalytic nanoparticles to the 

electrospun nanofibers is found to be an alternative for 

these limitations (Peng et al., 2016). Comparing hetero-

geneous photocatalytic activity with membrane filtration 

to remove the toxic pollutants found that the titanium 

nanofibers show many advantages as they have the 

potency to degrade the contaminants compared to the 

membrane filtration and separate the solution phase 

easily. Li et al., 2017 used Heteropolyacids and titani-

um dioxide nanoparticles for the composite and re-

moved the methyl orange dye with an efficiency of 

94%. Ramasundaram et al., 2015 used Polyvinylidene 

fluoride and titanium dioxide nanoparticles to remove 

the Bisphenol A and removed the pollutants from the 

aqueous medium completely. Park et al. (2011) used 

silver, titanium dioxide and polyvinylpyrrolidone nano-

particles to prepare electrospun nanofibers and re-

moved the methyl orange with an efficiency of up to 

80%. In addition, traditional membrane separation 

methods only separate the pollutants concentrate; this 

method requires high energy for the operation to re-

duce the fouling of the membrane to maintain the con-

stant flow (Gao et al., 2020). Wang et al., 2018 pre-

pared electrospun nanofibers by doping carbon nano-

fibers and removing the methylene blue dye with an 

efficiency greater than 57 %. Khan et al., 2022 synthe-

sized titanium dioxide nanofibers by doping them with 

zinc and cadmium and tested them to remove the or-

ganic dyes. These electrospun titanium dioxide nano-

S. 

no 
Nanofiber constituents Dye 

Dye  

removal (%) 
References 

 1 Heteropolyacids and titanium dioxide Methyl orange 94 Li et al., 2017 

 2 
Metal organic frame works, titanium dioxide and 

zinc 
Rhodamine 92 Hou et al., 2019 

 3  Polymethyl methacrylate and titanium dioxide Methylene blue 100 Vild et al., 2016 

 4 Polyvinylidene fluoride and titanium dioxide Cimetidine 100 
Ramasundaram et al., 

2015 

 5 Polyvinylidene fluoride and titanium dioxide 4- Chlorophenol 100 
Ramasundaram et al., 

2015 

 6 Polyvinylidene fluoride and titanium dioxide Bisphenol A 100 
Ramasundaram et al., 

2015 

 7 Silver, titanium dioxide and polyvinylpyrrolidone Methylene blue 100 Chang et al.,2009 

 8 Silver, titanium dioxide and polyvinylpyrrolidone Methylene blue 80 Park et al.,2011 

 9 Titanium dioxide and bio-glass nanofibers Methylene blue 60 Lian et al.,2018 

 10 Titanium dioxide and carbon nanofibers Rhodamine B 80 Xu et al., 2016 

 11 Titanium dioxide and cyanide nitrogen RhB 96 Wang et al., 2018 

 12 Titanium dioxide and graphene oxide Propranolol 100 Gao et al., 2020 

 13 Titanium dioxide and peroxyl acetyl nitrate Isoproturon 90 Xie et al., 2017 

 14 Titanium dioxide and polyvinylpyrrolidone Methylene blue 90 Aghasiloo et al.,2019 

 15 Titanium dioxide and polyvinylpyrrolidone Rhodamine 92 Wang et al.,2019 

 16 Titanium dioxide, zinc oxide and polyvinyl alcohol Methyl orange 60 Ramos et al.,2020 

 17 
Titanium dioxide, graphene oxide and polyvinyl 

acetate 
Rhodamine 90 Seong et al.,2018 

 18 
Titanium dioxide, graphitic carbon nitride and  

polyvinyl acetate 
Rhodamine 90 Adhikari et al.,2016 

 19 Titanium dioxide, polyaniline and polyacrylonitrile Methyl orange 90 Sedghi et al.,2017 

 20 Titanium dioxide, silver and peroxyl acetyl nitrate Methylene Blue 99 Shi et al., 2017 

 21 Titanium dioxide, silver and peroxyl acetyl nitrate Methylene Blue 100 Panthi et al., 2017 

 22 
Zinc ferrite, titanium dioxide and polyvinylpyrroli-

done 
Methylene blue 100      Nada et al.,2017 

 23 Titanium dioxide, Zinc and Cadmium Methylene blue 94 Khan et al., 2022 

 23 Titanium dioxide, Zinc and Cadmium Methyl orange 96 Khan et al., 2022 

 25 Titanium dioxide and carbon nanofibers Methylene blue 57 Wang et al., 2018 

Table 1: Application of electrospun titanium dioxide nanofibers for dye removal 



 

455 

Konni, M. et al. / J. Appl. & Nat. Sci. 14(2), 450 - 458 (2022) 

fibers removed the methylene blue with an efficiency of 

94% within 2 hours. Further, they have achieved 96 % 

removal of methyl orange with the same nanocompo-

sites within 100 minutes. 

In contrast, the utilization of titanium dioxide nanofiber 

proved that they are efficient in photocatalytic activities 

compared to the titanium dioxide nanoparticles.Table 1 

depicts the list of titanium doped electrospun nano-

fibers to remove the dye from the aqueous medium. 1. 

Still, there is a need to conduct further research on 

these nanofibers for industrial and large-scale applica-

tions. Integrating academic research with the industries 

will help move the bench-scale operations to the indus-

tries that will benefit both. Further researchers should 

concentrate on the disadvantages of the solvents and 

fabrications procedure, and alternative green chemistry 

methods should be implemented to make the complete 

process sustainable. 

Conclusion  

The evolution in treating the water with various nano-

materials showed how the current research advances 

science. The literature showed that electrospun nano-

fiber's application in water and wastewater is efficient, 

and researchers have gained much prominence. Even 

though several bench-scale studies have proven that 

nanofibers are efficient in removing the organic and 

inorganic pollutants from the aqueous medium, further 

scaling up of studies is required to move these technol-

ogies to the water industries for larger-scale production 

and utilization. The cost expenditures in producing the 

electrospun nanofibers hinder their usage in developing 

countries like India. However, adopting these technolo-

gies in the water industry is reliable, reducing second-

ary unit treatment processes. Thus, these technologies 

must be adopted and utilized for water treatment to 

replace the associated costs linked with conventional 

water treatment units. 
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