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INTRODUCTION 

Pesticides are a genuine issue for health, particularly 

the brain, especially when they are available at exces-

sive levels during critical stages of brain development 

because of their extensive use in agriculture and the 

high probability of finding them in food and water 

(Jurewicz and Hanke, 2008). Abamectin is by far the 

most routinely used pesticide in farming and 

healthcare, and its toxicity to nontarget organisms has 

attracted considerable interest (Bai and Ogbourne, 

2016). Excessive application of abamectin leads to an 

increase in its residues in crops and persistence in wa-

ter, soil, sediment, and food products (Danaher et al., 

2012). Abamectin is a neurotoxin that affects glutamate 

amino butyric acid-gated chloride channels in brain 

cells. Because the blood–brain barrier guards neurons 

in vertebrates, it is considered mainly safe for verte-

brate animals (Omura, 2008). The persistence of 

abamectin in the environment poses a threat to ecosys-

tems in various habitats. Macrocyclic lactones may 

cross the blood–brain barrier, causing GABA-like toxic 

effects such as hyperexcitability, incoordination, trem-

ors, and hypotension, which then progresses to ataxia, 

coma, respiratory failure, and even deafness (Yang, 

2012). Exposure to abamectin residues over an ex-

tended period through some foods, such as crops, may 

promote premature aging of stomach cells due to ex-

cessive ROS accumulation, as well as degenerative 

disorders, including gastric ulcers and even gastric 

cancer (Zhu et al., 2019), where oxidative stress is a 

major component of avermectin-induced cytotoxicity 

(Zhu et al., 2013) 

Pesticides, for example, are known to harm neuronal 

cytoarchitecture and are therefore regarded as essen-

tial predictors of brain dysfunction (N’Go et al., 2013). It 

is also worth noting that early disruptions in brain de-

velopment might result in neurologic issues either 

throughout infancy or at a late stage in maturity (Olney 

et al., 2002). In keeping with this, early postnatal pesti-
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cide exposure has been demonstrated to influence 

brain development, and a growing body of research 

suggests that early pesticide exposure has neurobe-

havioral implications (Heyer and Meredith, 2017). Fur-

thermore, an epidemiological survey found a direct as-

sociation between the increased use of agricultural 

chemicals and the prevalence of multiple neurological 

illnesses at various ages, including autism, dementia, 

and anxiety disorder (Seneff and Li, 2015). Biochemical 

markers that might express energy distribution charac-

teristics or be linked to other individual endpoints, such 

as breeding or development and population health via-

bility, can assist investigators in better understanding 

the processes associated with environmental stressor 

exposure (Sokolova et al., 2012). Neuronal prolifera-

tion, mass migration, differentiation, synaptogenesis, 

gliogenesis, myelination, and programmed cell death 

are required for optimal central nervous system devel-

opment (Mattson, 2006). Whereas the redox system 

plays a vital role in cell viability and mortality, oxidative 

stress is caused by the accumulation of oxidative dam-

age products that can lead to a dysregulation of apopto-

sis and autophagy, leading to diseases including aging, 

degenerative disorders, and cancer. Apoptosis, or pro-

grammed cell death, is a natural suicide mechanism 

that occurs during development and as a homeostatic 

mechanism to keep cell populations in tissues in check 

(Muñoz-Pinedo, 2012). Neuronal loss is part of a re-

modelling process that eliminates approximately half of 

all neurons born during neurogenesis. Following this 

developmental window, neuronal loss is physiologically 

inappropriate for most systems and can contribute to 

neurological impairments such as Alzheimer's and 

Parkinson's disease. Indeed, the central nervous sys-

tem is highly vulnerable to the detrimental effects of 

chemical or physical stimuli during these two critical 

times (O’Rahillyand Müller, 2008). Targeted disruption 

of the Bcl-2 family results in neurodevelopmental abnor-

malities that primarily affect the maintenance of select 

neuronal subpopulations during postnatal life. Bcl-2 

family members may play a more significant role in the 

embryonic brain (González-García et al., 1994). Bax, a 

member of the Bcl-2 family, plays an important role in 

releasing apoptogenic factors from mitochondria (Liou 

et al., 2014; Youle and Strasser, 2008). 

Therefore, this study aimed to investigate the relation-

ship between abamectin exposure during critical peri-

ods of life (lactation) and the developing brain in rat 

neonates by determining oxidative stress biomarkers 

and the expression pattern of genetic apoptosis bi-

omarkers. 

MATERIALS AND METHODS 

Pesticides used 

Abamectin formulation (1.8% emulsifiable concentrate, 

EC) was obtained from Mammalian Toxicology Depart-

ment, Central Agricultural Pesticides Lab., Agriculture 

Research Center, Dokki, Giza, Egypt. 

Animals and experimental design 

The test was carried out following the guidelines for the 

care and use of laboratory animals (Council, 2011). 

Twenty timed-pregnant rats were withdrawn from the 

breeding colony of the Mammalian Toxicology Depart-

ment, Central Agricultural of Pesticides Laboratory., 

and Agriculture Research Center. Animals were given a 

well-balanced diet and unlimited access to tap water. 

The animals were maintained in separate cages in an 

air-conditioned room at a temperature of 32 degrees 

Fahrenheit. 23±2 °C and a relative humidity of ~ 55% 

(50 - 60%) under a normal light/dark cycle. Immediately 

after delivery (postnatal day zero), the pups were 

weighed, counted, sexed, and checked for anomalies 

and then breasted feeding for each corresponding dam. 

Lactating dams and their pups were assembled into 

two main experimental groups. The first one, G1 (10 

dams), was saved as the control group and received 

distilled water daily throughout the lactation period. The 

second group, G2 (10 dams), was incubated with 0.211 

mg/kg abamectin from the first day of lactation until the 

10th day. 

After 10 and 21 days, the neonatal rats (everyone from 

the different dams to avoid the siblings) were sacrificed 

without anesthesia. The brain was obtained, splashed 

with ice-cooled normal saline solution, and quickly fro-

zen until biochemical and gene expression assays 

were used. 

Biochemical markers 

Tissue preparation 

The brain tissues were homogenized (1:10% W/V) in 

ice-cold sodium phosphate buffer (50 mM, pH 7.4) con-

taining 0.1 mM ethylenediaminetetraacetic acid. The 

homogenates were centrifuged at 12.000 g for 30 min 

at 4 °C, and the supernatant was directly frozen until 

use. The total protein content was determined based 

on the method of Bradford (1976). 

Estimation of oxidative stress biomarkers 

Protein carbonyl content was spectrophotometrically 

determined according to the method of (Reznick and 

Packer, 1994), while reduced glutathione (GSH) was 

determined by the method of (Ellman, 1959). The anti-

oxidant enzymes Gpx, SOD, and GST were determined 

by the methods of Necheles et al. (1969), Marklund and 

Marklund (1974), and Habig et al. (1974), respectively. 

Apoptotic gene expression estimation 

A QIAamp RNeasy Mini Kit (Qiagen, Germany, GmbH, 

Catalogue no.74104) was used to extract RNA from the 

brain. According to the manufacturer's instructions, 
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matching cDNA was generated using RevertAid Re-

verse Transcriptase Thermo Fisher (catalogue number: 

K1622). Real-time polymerase chain reaction (RT–

PCR) quantification was performed by a Stratagene 

MX3005P instrument using the Quantitect SYBR green 

PCR kit (Cat. No. 204141) with a 25 µl total reaction 

volume containing 12.5 μl 2x SYBR Green PCR Master 

Mix, 1 μl primers, 2 μl cDNA, and 8.5 μl of RNase Free 

Water. The primers for the target and internal reference 

(β-actin) genes obtained from Metabion (Germany) 

were 5'-CACCAGCTCTGAACAGATCATGA-3' and 5'-

TCAGCCCATCTTCTTCCAGATGGT-3' used for Bax, 

and those for BCL-2 were 5'-

CACCCCTGGCATCTTCTCCTT-3' and 5'-

AGCGTCTTCAGAGACAGCCAG-3' (Kinouchi, 2003), 

whereas those for ß-actin were 5'-

TCCTCCTGAGCGCAAGTACTCT-3 and 5'-

GCTCAGTAACAGTCCGCCTAGAA-3 (Banni et al., 

2010). Each cycle consisted of denaturing for 5 min at 

94 °C, annealing for 30 s at the appropriate annealing 

temperature, and polymerization for 30 s at 72 °C. The 

dissociation stage was added after amplification to veri-

fy the specificity of the PCR products, quantitative anal-

ysis was performed with Stratagene MX3005P soft-

ware, and variations in gene expression on the mRNA 

of the different samples were estimated according to 

the "ΔΔCt” method (Yuan, et al., 2006). 

Statistical analysis 

Statistical analysis was performed using the IBM SPSS 

version 25 software package (SPSS, IBM, and Chica-

go, IL, USA). An independent t test was used to com-

pare the quantitative results, and the correlation coeffi-

cient was also used to study the relationships between 

the quantitative biochemical variables. 

RESULTS 

Oxidative stress biomarkers 

Compared to the control group G1, Abamectin- intoxi-

cation (ABA) after 10 days of exposure during lactation 

periods revealed a significant increase in brain protein 

carbonyl levels (p<0.001) and a decrease in GSH con-

tent (p<0.01), while the antioxidant enzymes GPx 

(p<0.01) and GST (p<0.05) activities were increased 

markedly. However, brain SOD activity (p<0.01) was 

significantly decreased (Table 1). The same trend of 

oxidative stress biomarkers disturbance was noticed 

after the lactation period (21 days), although the expo-

sure was stopped in the middle of the lactation period 

(Table 2). 

Gene expression 

The gene expression of apoptosis biomarkers (BCL-2 

and BAX) is presented in Table 3. The data revealed 

that exposure to abamectin at a dose level of 0.211 

mg/kg (1/100 of LD50) during the lactation period from 

PND1 to PND10 induced a significant increase in 

apoptosis levels, as evidenced by the rise in BAX ex-

pression (a pro-apoptotic marker) fourfold-fold after ten 

days of exposure, while BCL-2 expression (an anti-

apoptotic marker) decreased significantly to 50% of the 

control in pub's brain. The same trend was noticed in 

the expression of BAX (3-fold upregulation) and BCL-2 

Treatments 
SOD 
(U/ml) 

GST 
(nM/min/mg pro.) 

GPx 
(µmol/ml) 

PC 
(nmol/ml) 

GSH 
(µmol/ml) 

G1: Control 
(5 mlD.W./kg) 

4.707±0.391 36.25±0.725 5.082±0.087 6.945±0.237 1.729±0.044 

G2: ABA 
(0.211 mg/kg) 

3.172±0.260** 38.656±0.728* 5.377±0.080** 10.575±0.145*** 1.529±0.006** 

*Significant at 0.05 ** Significant at 0.01 *** Significant at 0.001. 

Table 1. Oxidative stress biomarkers in neonatal brains exposed to abamectin after 10 days of exposure during the  

lactation period 

Treatments 
SOD 
(U/ml) 

GST 
(nmol/min/mg pro.) 

GPx 
(µmol/ml) 

PC 
(nmol/ml) 

GSH 
(µmol/ml) 

G1: Control 
(5 mlD.W./kg) 

3.666±0.629 44.843±0.939 3.709±0.262 16.03±0.49 1.705±0.016 

G2: ABA 
(0.211 mg/kg) 

2.787±0.086*** 52.21±1.70** 3.334±0.063 19.30±0.470* 1.580±0.029*** 

*Significant at 0.05 ** Significant at 0.01 *** Significant at 0.001. 

Table 2. Oxidative stress biomarkers in the neonatal brain after the lactation period (21 days) of exposure to abamectin 

(PND1 to PND 10) 
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(66% downregulation) at the end of the lactation period 

(21 days), although exposure to abamectin was ob-

served during the first ten days of the lactation period. 

DISCUSSION 

 Excessive pesticide use on plants increases concern 

about environmental damage, and ingestion of specific 

products has a substantial neurotoxic effect (Franco et 

al., 2010). Xenobiotic exposure at a young age has 

been shown to cause more severe abnormalities. Such 

susceptibility could be caused by insufficient excretory 

and xenobiotic–metabolizing systems in infants. Due to 

higher brain absorption of xenobiotics, the rapidly de-

veloping nervous system is particularly vulnerable 

(Nahas et al., 2019). Glutamate is the brain's ubiqui-

tous stimulant. It plays a role in memory, synaptic plas-

ticity, learning, and cognition (Daghestani et al., 2009). 

Inhibition of the neurotransmitter (GABA) receptor in 

mammals opens the ionotropic GABA-A receptor-gated 

Cl channels that are only found in the CNS (McCavera 

and Wolstenholme, 2007). Furthermore, the breakdown 

of hazardous compounds by CYP-2E1 (detoxification 

membrane protein) yields more reactive and toxic by-

products, as oxidative stress plays a crucial role in 

abamectin-induced toxicity. Such oxidative stress reac-

tions were observed in the livers of abamectin-

intoxicated rats. Furthermore, following abamectin ex-

posure, brain redox indicators were altered (Radi et al., 

2020). 

Alterations in the development process may occur dur-

ing the postnatal stage, resulting in greater neuronal 

cell degeneration (Barkur and Bairy, 2016). Apoptosis 

occurs during various developmental stages, including 

neurulation, synaptogenesis, and elimination of adult 

neurons. Apoptosis is likely to occur in neurons that do 

not reach their appropriate new target throughout de-

velopment due to a lack of enough neurotrophic factors 

necessary for CNS growth and development 

(Czabotaret et al., 2014). 

The present study revealed that exposure to abamectin 

at a dose level of 0.211 mg/kg (1/100 of LD50) during 

the lactation period from PND1 to PND10 induced a 

significant increase in apoptosis levels, as evidenced 

by the rise in BAX gene expression exposure and a 

decline in BCL-2 gene expression in the pub's brain. 

The induction of apoptosis in the brains of pubs may 

occur by activation of the MAPK pathway (a signaling 

pathway is involved in practically every biological activi-

ty when generating ROS increases (Wada and Pen-

ninger, 2004 & McCubrey et al., 2007). BAX controls 

the release of cytochrome c from mitochondria by con-

structing a mitochondrial pore. The release of cyto-

chrome c from mitochondria during permeability transi-

tion and hypertrophy can promote the effects of oxygen 

free radicals by diminishing redox homeostasis 

(Votyakova and Reynolds, 2005). The same trend of 

apoptosis was noticed in TM3 cells after exposure to 

abamectin, which induces mitochondrial depolarization 

and apoptosis formation (Zhu et al., 2020). 

The interruption of the ratio between ROS generation 

and removal may result in cell damage, apoptosis, or 

even necrosis (Lushchak, 2011). The present study 

revealed that exposure to abamectin during lactation 

periods led to a significant increase in protein carbonyl 

levels in pup brains. Protein carbonylation arises either 

from amino acid oxidation by reactive oxygen species 

(ROS) or from the interaction of lipid peroxidation prod-

ucts with amino acids (Zheng and Bizzozero, 2010). 

Protein carbonyl has long been utilized as a metric of 

oxidative stress levels in various neurodegenerative 

pathologies, including multiple sclerosis (Bizzozero et 

al., 2005) and Alzheimer's disease (Sultana and Butter-

field, 2010). 

A glutathione decline below a specific level was noticed 

in the present study after exposure to abamectin during 

lactatation periods, which is connected with permeabil-

ity friction. This action results in increased superoxide 

formation, either due to an increase in ubiquinone redox 

cycling within complex III or as a result of an increase in 

ubiquinone redox cycling outside of complex III (Chen, 

et al. 2003). Glutathione depletion leads to H2O2 

buildup and cell injury since it is the primary antioxidant 

responsible for eliminating ROS generation (Radi et al., 

2020). 

Abamectin treatment significantly impacted the activi-

ties of SOD, GPx and GST in the brains of pups in the 

present study. As a result, the effects of abamectin on 

the ROS removal pathway appear to be the primary 

cause of abamectin-induced oxidative stress. Such ef-

Treatments 
BAX BCL2 

10-days 21-days 10-days 21-days 

Group G1: Control 
(5 mlD.W./kg) 

1.01±0.033 1.00±0.052 1.01±0.06 1.01±0.017 

Group G2:ABA 
(0.211 mg/kg) 

4.37±0.17*** 2.80±0.25*** 0.52±0.06*** 0.66±0.04*** 

Table 3. Gene expression of BAX and BCL2 in the neonatal brain after 10 and 21 days of lactation exposure to 

abamectin (PND1 to PND 10) 

*Significant at 0.05 ** Significant at 0.01 *** Significant at 0.001. 
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fects were documented in MEFs by Liang et al. (2020). 

The obtained results were in the same direction as 

those of Zhang et al. (2016 & Zhang et al., 2017), 

where abamectin treatment caused apoptosis and DNA 

damage in human HepG2 cells. Additionally, hepato-

cyte apoptosis of juvenile fish after abamectin exposure 

is probably triggered by ROS generation even at a 

much lower concentration than the safe concentration 

and the realistic environmental levels (Honga et 

al.,2020). 

This study revealed the impact of abamectin on devel-

opmental neurotoxicity in the brains of neonates whose 

mothers were exposed to these pesticides during criti-

cal periods of development. The results exhibited a 

significant change in oxidative stress biomarkers and 

apoptosis gene expression. Pesticides and other lipo-

philic harmful pollutant particles have been found in the 

mother's adipose tissue, and these particles are trans-

mitted to the infant via breast milk, generating congeni-

tal deficits and negative impacts as reported earlier 

Mortuza et al., (2019). The neonatal neural system is 

five times more vulnerable than the adult nervous sys-

tem, as evidenced by Aaseth et al. (2020) and Iqubal et 

al. (2020). 

Conclusion 

Finally, exposure to abamectin during critical periods of 

development, such as lactation periods, resulted in a 

significant change in oxidative stress biomarkers and 

apoptosis gene expression in the brains of rat neonates 

whose mothers were exposed to these pesticides. and 

these particles are transmitted to the infant via breast 

milk, generating congenital deficits and negative im-

pacts. 
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