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INTRODUCTION 

Remote sensing offers the opportunity to monitor and 

manage natural resources at various temporal, spectral 

and spatial resolutions. It thus offers great potential for 

developing more effective management strategies

(Kumar et al., 2015). In this aspect, water is among the 

natural resources that require frequent monitoring to 

better understand its use, particularly in regions where 

the amount of water is limited, such as in Egypt. 

Lake turbidity is highly dynamic and its temporal varia-

tions have been attributed to factors such as algal 

blooms and the concentration and character of sus-

pended sediments and dissolved organic matter etc. 

(Liu et al., 2007). Lake turbidity spatial variations are 

not easily revealed by in situ based measurement and 

are considered time-consuming and expensive and are 

usually confined to a few monitoring points measured a 

few times each year (Flores-Anderson et al., 2020). 

Many studies have used data acquired by multispectral 

high spatial resolution sensors for lake water quality 

monitoring, such as Landsat (Guan, 2009; Abdullah, 

2010; and Mohsen et al., 2021) and Sentinel-2 (Toming 

et al., 2016, Blix et al., 2018 and Brescianiet al., 2019). 

However, the temporal resolution of Landsat cannot 

capture the rapid changes that may occur within a lake. 

On the other hand, Sentinel-2was launched in June 

2015 and therefore lacked the historical archive, which 

allows monitoring the changes occurring within the 

lakes over time. On the other hand, the MODIS data 

has been utilized in various lake water quality monitor-

ing studies(Wu et al., 2009; McCullough et al., 2012and 

Avdanet al., 2019). Nevertheless, despite having a high 

temporal resolution that can rapidly catch the water 

quality changes, MODISlacks the spatial resolution 

required for such studies. 
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In this aspect, downscaling has played an important 

role in remote sensing, and it allows prediction at a finer 

spatial resolution than that of the input imagery 

(Atkinson, 2013). Recently, downscaling using machine 

learning algorithms, such as artificial neural networks 

(ANN), has gained more recognition because of their 

fast operation and high computing precision (Li et al., 

2019). 

ANN imitate the physical process of learning in the hu-

man brain. It consists of artificial neurons that imitate 

the biological neurons and the synaptic connections 

among them, regulating them through problem-solving 

(Canzianiet al., 2008). These neurons are logically ar-

ranged in an input layer, an output layer, and one or 

more hidden layers. The input layer is the mean by 

which data are presented to the network, and the output 

layer holds the network's response to the input. The 

hidden layers enable these networks to represent and 

compute complicated associations between the inputs 

and outputs (Erzinet al., 2010). 

The ANN is considered appropriate for dealing with a 

large set of variables and their nonlinearity is conven-

ient for analyzing complex systems (Canzianiet al., 

2008). Various studies have employed neural networks 

for downscaling image products such as water Chloro-

phyll (Fu et al., 2018 and Mohebzadeh and Lee, 2020); 

Land surface temperature (Li et al. 2019 and Yooet al., 

2020); NDVI (Nomura and Oki, 2021) and soil moisture 

(Senanayakeaet al., 2019). Nevertheless, the studies 

that discuss the downscaling of the remote sensing 

reflectance data usually involving more complicated 

methods are as the smoothing filter-based intensity 

modulation technique (SFIM) (Santi, 2010), and the 

recently developed area-to-point regression kriging 

(ATPRK) approach (Wang et al., 2016), as well as the 

popular Spatial and Temporal Adaptive Reflectance 

Fusion Model (STARFM) (Cui et al., 2018). 

This study proposes a method for spatial downscaling 

the MODIS reflection data of 250 and 500 m resolution 

to 10 m utilizing the neural networks and monitoring the 

changes in water quality (i.e. turbidity) in Lake Nasser, 

Egypt. 

MATERIALS AND METHODS 

Study area 

Nasser Lake is an artificial basin that was formed due 

to the construction of Aswan High Dam (Fig. 1). The 

only source of its water is the River Nile inflow from the 

south. The flood season always takes place from the 

end of July to November (AbdEllah, 2020). Lake Nasser 

is about35 km at its widest point with an average width 

of 12 km with a maximum water depth is 120 m near 

the Aswan High Dam (Salem, 2011). The lake is fea-

tured by numerous side extensions located on both 

sides, known as Khors (AbdEllah and El-Geziry, 2016). 

The water levels in the lake vary from year to year, ac-

cording to the coming flood, and from month to another, 

according to the discharge from the lake across the 

High Dam. This fluctuation of water level affects the 

water quality status of the lake and its Khors due to the 

change of their morphometric configuration (Salem, 

2011). 

Remote sensing data  

Both MODIS and Sentinel-2 data were used in this 

study, and they were acquired free of charge via the 

internet (https://earthexplorer.usgs.gov). The data were 

processed using two sets of software. The remote 

sensing and GIS software included the QGIS version 

3.16, while the ANN processing employed used the 

MATLAB software. 

MODIS data 

Aqua and Terra are two polar-orbiting satellites 

launched by the US National Aeronautics and Space 

Agency (NASA). The Terra spacecraft launched on 

December 18, 1999, and the Aqua spacecraft launched 

on May 4, 2002. Both Terra and Aqua satellites operate 

in near sun-synchronous polar orbits with a nominal 

orbit altitude of 705km. MODIS is carried on both satel-

lites with 36 spectral bands and provide near-daily ob-

servations. Four bands were used in this study. Two 

bands were at 250 m spatial resolution, one in the red 

range and the other in the near-infrared. On the other 

hand, band three and four were available at 500 m. 

Band 3 was in the blue range, while band 4 was in the 

green range (Moreno-Madrinanet al., 2010).  

Terra MODIS data in the form of MOD09A1 and 

MOD09Q1 Version 6products were used. These prod-

ucts provided surface spectral reflectance of Terra 

MODIS corrected for atmospheric conditions. For each 

pixel, a value was selected from all the acquisitions 

within the 8-day composite period. The criteria for the 

pixel choice include cloud and solar zenith. When sev-

eral acquisitions meet the criteria, the pixel with the 

minimum band 3 value is used. MOD09A1 provides an 

estimate of the first seven reflectance MODIS bands at 

500 m, while MOD09Q1 provide spectral reflectance 

Bands 1 and 2 at 250 m (Vermote, 2015 a and b). For 

each of the studied dates, the first two bands were of 

the MOD09Q1, 250 m data, while bands three and four 

were of the MOD09A1, 500 m data. Furthermore, the 

study area was covered by two MODIS images. There-

fore, four images were downloaded for each date. 

The MODIS products are distributed in the Hierarchical 

Data Format - Earth Observing System (HDF-EOS). 

The MODIS data were imported and converted into Tiff 

format using the QGIS’s Semi-Automatic Classification 

Plug-in (SCP). For each date, the two images that cov-

ered the study area were mosiked using the same tool 

(Fig. 2). 
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Sentinel-2 data 

Sentinel-2 (S2) was developed by the European Space 

Agency (ESA) and provided high spatial, spectral and 

temporal resolution images of the earth. Sentinel-2 had 

two launches; Sentinel-2A was launched on 23rd of 

June 2015 and Sentinel-2B on the 7thof March 2017. 

Those two satellites are at a mean altitude of 786 km 

with a revisit time of 5 days. Each satellite provides a 

set of 13 spectral bands (Vajsováand Aastrand, 2015 

and Segarra et al., 2020). Four Sentinel-2 bands were 

used in this study. These bands were in the blue, 

green, red and near-infrared bands range of the elec-

tromagnetic spectrum available at 10 m resolution. Six 

images covered the study area for each date. 

The used Sentinel-2 data were available in Level-1C, 

which is radiometrically, and geometrically corrected 

reflectance data. Each Level-1C product is a 100 km x 

100 km tile available in Geographic Markup Language 

JPEG2000 (GMLJP2) format and projected into Univer-

sal Transverse Mercator (UTM) and World Geodetic 

System 1984 (WGS 84) with datum-zone 36 N. The 

data were imported into QGIS software, which supports 

the GMLJP2 format and exported as Geotiff (Fig.  3). 

The properties of MODIS bands used in this study and 

the corresponding Sentinel-2 bands are shown in Table 

1 (Ackerman et al. 1998 and Tianxianget al. 2017). 

For downscaling, MODIS data were acquired on the 9th 

of November, 2017 and the 29th of September, 2020 

while Sentinel-2 data were acquired on the 12th Novem-

ber, 2017 and the 27th of September, 2020. MODIS 

data were acquired for predicting turbidity on 1st of 

May, 2009 and the 27th of December, 2013. 

Field survey and geographic database development 

The used field data covering the study area were avail-

able from 23rd of April to 3rd of May, 2009(Central Unit 

for Water Quality Monitoring, 2009) and from 22nd to 

31st of December, 2013 (Nile Research Institute, 2014). 

The turbidity measurements were available at depth 0-

50 cm. Using the QGIS software, the locations of the 

field observations were developed into a geographic 

point database. Fifteen samples were collected in 2009 

and thirty-three samples were collected in 2013 (Fig.  4). 

According to Salem (2011), the studied lake could be 

Fig. 2. Map of the mosiked MODIS images acquired on 

the 29th of September, 2020 (Band 1) 

Fig 1. Map of the study lake 

Fig. 3. Map of the mosiked Sentinel-2 images acquired on 

the 27th of September, 2020 (Band 4)  

1454 



 

Makar, R. S. and Faisal, M.  / J. Appl. & Nat. Sci. 13(4), 1452 - 1461 (2021) 

divided into the transition zone, extending from Second 

Cataract to Abu Simble and the lacustrine zone extend-

ing from Toushka to the Dam (Fig. 5). The lacustrine 

zone experiences long local residence times and is 

characterized by a deeper, lake-like basin with less 

temporal variability in physical conditions. The transi-

tional zone is characterized by intermediate local resi-

dence times, sedimentation and nutrient flushing 

(Hamre et al., 2017).  

Artificial neural networks (ANN) 

In this study, the feed-forward neural network was used 

when designing the network for both downscaling and 

turbidity modeling. The information flow in this neural 

network is unidirectional, i.e. information flow from input 

to output in one direction with no back loops (Krenkeret 

al., 2011). For both downscaling and turbidity modeling, 

the designed neural network utilized 70% of the sam-

ples for training, 15% for testing and 15% for validation. 

The neural network structure was manually alternated 

using a trial-and-error process until the highest correla-

tion coefficient was achieved (Gummadi, 2013 and 

Morgan et al., 2017). 

RESULTS AND DISCUSSION 

MODIS data downscale 

The data flow diagram for the MODIS data downscale 

is shown in Fig.  6. To design the neural network for 

MODIS data downscale, each two matching MODIS 

and Sentinel-2 bands acquired on each of the selected 

dates were stacked together into one image. Within 

these images, MODIS data were resampled into 10m 

spatial resolution. Thereafter, each image was subset-

ted into the study area. This process resulted in eight 

images, every four images represented one of the two 

studied dates and every two images represented one of 

the studied bands. Nevertheless, the resulting images 

could not be processed within MATLAB as a whole due 

to their large size. To enable the processing of these 

images into MATLAB the images were further subset-

ted using the Virtual Dataset (VRT) option of QGIS into 

tiles of 1000 columns x 1000rows. 

Furthermore, selected tiles covering all the visual differ-

Fig. 4. Map of the sampling locations (Background: 

MODIS Image (Bands 1,2,3) acquired on April 29, 2009) 

MODIS 

Band No 1 2 3 4 

Band code BM1 BM2 BM3 BM4 

Pixel size 250 250 500 500 

Central wavelength(nm) 659 865 470 555 

Sentinel-2 

Band No 4 8 2 3 

Band code BS4 BS8 BS2 BS3 

Pixel size 10 10 10 10 

Central wavelength(nm) 665 842 490 560 

Table 1. Characteristics of the used MODIS and Sentinel-2 bands  

Fig.  5. Map of the different zones of lake Nasser 
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ences were selected. Thereafter, these tiff tiles were 

imported into MATLAB and merged into a single file for 

each band. The total count of pixels used reached 

800K pixels for each band, which were subsequently 

used to build the neural network using MATLAB’s Neu-

ral Network Toolbox. The neural network structure was 

manually alternated using a trial-and-error process until 

the best performance expressed as coefficient of corre-

lation, r, was achieved. The designed network included 

one node input layer representing MODIS band and 

one output layer with one node representing the esti-

mated downscaled MODIS data and a hidden layer 

with 3 nodes for downscaling MODIS bands 1, 2 and 3 

(Fig. 7A) while MODIS band 4 included a hidden layer 

with 10 nodes (Fig. 7B).  

When designing these networks, the highest r was be-

tween BM3 and BS2 (r= 0.83) followed by BM2 with 

BS8 (r= 0.78) then BM1 with BS4 (r= 0.74). The least 

correlation was between BM4 and BS3, reaching 

r=0.71. These designed networks were used to pro-

duce downscaled MODIS images acquired on 1st of 

May, 2009 and 27th of December, 2013.  The resulting 

images were exported from MATLAB in GeoTIFFformat 

for analysis and visualization in QGIS (Fig.  8a and b).  

Lake water turbidity prediction 

 

Empirical regression model  

The downscaled MODIS image reflectance values cor-

responding to the turbidity acquired on both 1st of May 

2009 and 27th of December2013were extracted and 

their values were developed into an Excel file for pro-

cessing. The deigned empirical regression model used 

the downscaled MODIS reflectance data as independ-

Fig. 6. Data flow diagram of the MODIS data downscale  

Fig.  7. Architecture of the downscale neural networks 

1456 

A B 



 

Makar, R. S. and Faisal, M.  / J. Appl. & Nat. Sci. 13(4), 1452 - 1461 (2021) 

ent variables and the water quality components (i.e. 

turbidity) as the dependent variable. Various combina-

tions of MODIS bands were used to design this model. 

These combinations included the use of single and/or 

multi bands or bands equations. These equations in-

cluded the blue and red bandsas recommended by Cox 

et al. (1998) in equation 1 and the blue, green and red 

bands defined by Zhuet al. (2004) in Equation 2.  

13.8 (MB1/MB3)4.63     Equation 1 

MB1+lnMB2/lnMB3   Equation 2 

where MB1, MB2, and MB3 are blue, green, and red 

band reflections, respectively.  

The regression analysis between the water turbidity 

and MODIS bands revealed that the highest correlation 

coefficient was between the near-infrared band(MB4) 

and turbidity, while the lowest was between turbidity 

Band & Band combination Correlation coefficient 

MB1 0.42 

MB2 0.27 

MB3 0.41 

MB4 0.46 

Eq. 1 0.43 

Eq. 2 -0.17 

MB1&MB2&MB3&MB4 0.68 

MB1&MB3&MB4 0.68 

MB1&MB2&MB3 0.60 

MB1& MB3 0.46 

Table 2. The results of the correlation between turbidity 

and MODIS bands 

Fig. 8. Map of the downscaled MODIS images (Bands 1,2.3) acquired on the a)1st of May, 2009 and b) 27th of  

December, 2013 

Fig.  9. Architecture of the first neural network for turbidity prediction 

Fig.  10.  Performance of the first designed ANN for  

turbidity prediction 
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and the green band (MB2). The blue and red bands 

(MB1 and MB3, respectively) had almost similar moder-

ate correlations. Furthermore, utilizing Equation 1 

slightly increased the strength of the correlation than 

each of the first three single bands but still was less 

than of MR. On the other hand, Equation 2 decreased 

the correlation more than all the single bands or combi-

nations (Table 2). Furthermore, the correlation coeffi-

cient was highest when using the four bands combina-

tion of the blue, red and near-infrared bands combina-

tion. Therefore, both combinations were used in de-

signing the neural network for turbidity prediction. 

Artificial neural networks  

The first designed neural network included one input 

layer with four nodes indicating the four MODIS bands, 

a hidden layer with 5 nodes, and one output layer with 

one node indicating the water turbidity (Fig. 9). The 

network performance reached r of 0.83 (Fig. 10). The 

second network included one input layer with three 

nodes, including the MB1, MB3 and MB4, a hidden 

layer with 5 nodes, and one output layer with one node 

indicating the water turbidity (Fig. 11). The network per-

formance reached r of 0.80 (Fig. 12).  

Based on these results, the first designed network was 

used for predicting the water turbidity in Lake Nasser. 

The images were subsetted to the study area using a 

shapefile of the lake and its Khores area. As with pro-

cessing the downscaling of the images, the whole im-

ages could not be processed within MATLAB and 

therefore were subsetted into tiles of 1000 columns x 

1000 rows. These tiff tiles were imported into MATLAB 

and processed using the first designed neural network. 

The resulting processed images of water turbidity were 

Class 
May 2009 December 2013 

Km2 % Km2 % 

0-1 NTU 1320.4 18.96 780.1 11.20 

1-5 NTU 1530.0 21.97 4378.1 62.86 

5-10 NTU 2476.6 35.56 925.0 13.28 

10-15 NTU 713.1 10.24 274.3 3.94 

15-20 NTU 359.2 5.16 256.6 3.68 

20-25 NTU 226.1 3.25 115.6 1.66 

25-30 NTU 63.6 0.91 9.3 0.13 

30-35 NTU 37.8 0.54 0.0 0.00 

35-40 NTU 12.2 0.18 0.0 0.00 

Islands 225.8 3.24 225.8 3.24 

Total 6964.8 100.00 6964.8 100.00 

Table 3. Acreage of the different turbidity classes in Nasser lake 

Fig. 11. Architecture of the second neural network for turbidity prediction 

Fig. 12. Performance of the second designed ANN for 

turbidity prediction 
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thereafter imported into QGIS and merged into one 

image for each date. Later on, the islands were masked 

from the resulting images. Thereafter, the images were 

classified according to the turbidity within each image 

of 2009 and 2013 (Fig.  13 and 14, respectively). 

The measurements were taken in early May 2009 and 

at the end of December 2013. In other words, it was 

taken two months before the flood season in 2009 and 

one month after the flood in 2013.  The turbidity range 

in May 2009 was higher than in December 2013. While 

the highest turbidity value reached 36.9 NTU in May 

2009, it only reached 28.2 NTU in December 2013. 

Furthermore, in December 2013, the turbidity below 5 

NTU represented 74.06% of the studied lake while it 

only 40.93 % of the lake in May 2009 (Table 3). As 

seen in the images, in both dates, the turbidity was 

higher in the transitional zone (located in the southern 

part of the lake) than in the lacustrine zone. Similar 

results were obtained by Salem (2011) and were  

explained by the longer local residence times in the 

lacustrine compared to the transitional zone in Lake 

Nasser. Moreover, the results of our study revealed 

that the turbidity in most of Lake Nasser was less than 

10 NTU, especially in the lacustrine zone. Furthermore, 

most of the Khores and lake shoreline areas and sur-

rounding islands were characterized by high turbidity 

(more than 20 NTU) on both dates. 

Conclusion 

Lake Nasser represents Egypt’s freshwater reservoir 

and it is vital to monitor its characteristics, especially 

turbidity. MODIS images represent a free source of 

information that could help fulfil that task. It has been 

one of the rarely continuous sources of remote sensing 

data available since 1999. Nevertheless, it is  

constrained by its low spatial resolution that limits its 

use. The data could be downscaled into a high-

resolution image such as Sentinel-2 to overcome the 

low resolution of MODIS images. The present work  

developed a downscale method utilizing neural  

networks applied to the first four MODIS bands to reach 

a resolution of 10 m. This approach reached an  

accuracy represented as the correlation coefficient of 

more than 0.70. Furthermore, in this research, it was 

possible to demonstrate the use of the downscaled 

image archive to produce turbidity maps of the lake 

using neural networks approach as well at dates 

where no Sentinel-2 data were available. The estima-

tion accuracy of turbidity expressed as a correlation 

coefficient reached 0.83. Among the obvious results 

in this research was that turbidity in most of the main-

stream in Nasser Lake was less than 10 NTU. Fur-

thermore, most of the Khores and shoreline areas and 

surrounding islands were characterized by high tur-

bidity of more than 20 NTU. The developed 

downscale and turbidity neural network models could 

be used to predict Lake Nasser water turbidity using 

the historical and present MODIS data and, therefore, 

to monitor the changes of the lake over time at a spa-

tial resolution of 10 m. The approach provides a low 

cost continuous and accurate monitoring data of the 

lake. Moreover, this approach could be tried to other 

water quality parameters of the lake. This research 

recommends further scientific work to be continued in 

integrating the neural network approach with satellite 

images processors and GIS to reach more accurate 

results of the environmental phenomena like water 

quality in large water bodies such as lakes.      
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Fig. 13. Map of Lake Nasser turbidity acquired on 1st of 

May, 2009 

Fig. 14. Map of Lake Nasser turbidity acquired on 27th of 

December, 2013 
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