INTRODUCTION

Remote sensing offers the opportunity to monitor and manage natural resources at various temporal, spectral and spatial resolutions. It thus offers great potential for developing more effective management strategies (Kumar et al., 2015). In this aspect, water is among the natural resources that require frequent monitoring to better understand its use, particularly in regions where the amount of water is limited, such as in Egypt.

Lake turbidity is highly dynamic and its temporal variations have been attributed to factors such as algal blooms and the concentration and character of suspended sediments and dissolved organic matter etc. (Liu et al., 2007). Lake turbidity spatial variations are not easily revealed by in situ based measurement and are considered time-consuming and expensive and are usually confined to a few monitoring points measured a few times each year (Flores-Anderson et al., 2020). Many studies have used data acquired by multispectral high spatial resolution sensors for lake water quality monitoring, such as Landsat (Guan, 2009; Abdullah, 2010; and Mohsen et al., 2021) and Sentinel-2 (Toming et al., 2016, Blix et al., 2018 and Brescianiet al., 2019). However, the temporal resolution of Landsat cannot capture the rapid changes that may occur within a lake. On the other hand, Sentinel-2 was launched in June 2015 and therefore lacked the historical archive, which allows monitoring the changes occurring within the lakes over time. On the other hand, the MODIS data has been utilized in various lake water quality monitoring studies(Wu et al., 2009; McCullough et al., 2012 and Avdan et al., 2019). Nevertheless, despite having a high temporal resolution that can rapidly catch the water quality changes, MODIS lacks the spatial resolution required for such studies.
In this aspect, downscaling has played an important role in remote sensing, and it allows prediction at a finer spatial resolution than that of the input imagery (Atkinson, 2013). Recently, downscaling using machine learning algorithms, such as artificial neural networks (ANN), has gained more recognition because of their fast operation and high computing precision (Li et al., 2019).

ANN imitate the physical process of learning in the human brain. It consists of artificial neurons that imitate the biological neurons and the synaptic connections among them, regulating them through problem-solving (Canzianiet al., 2008). These neurons are logically arranged in an input layer, an output layer, and one or more hidden layers. The input layer is the mean by which data are presented to the network, and the output layer holds the network’s response to the input. The hidden layers enable these networks to represent and compute complicated associations between the inputs and outputs (Erziniet al., 2010).

The ANN is considered appropriate for dealing with a large set of variables and their nonlinearity is convenient for analyzing complex systems (Canzianiet al., 2008). Various studies have employed neural networks for downscaling image products such as water Chlorophyll (Fu et al., 2018 and Mohebznadeh and Lee, 2020); Land surface temperature (Li et al. 2019 and Yoo et al., 2020); NDVI (Nomura and Oki, 2021) and soil moisture (Senanyakeaet al., 2019). Nevertheless, the studies that discuss the downscaling of the remote sensing reflectance data usually involving more complicated methods are as the smoothing filter-based intensity modulation technique (SFIM) (Santi, 2010), and the recently developed area-to-point regression kriging (ATPRK) approach (Wang et al., 2016), as well as the popular Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) (Cui et al., 2018).

This study proposes a method for spatial downscaling the MODIS reflection data of 250 and 500 m resolution to 10 m utilizing the neural networks and monitoring the changes in water quality (i.e. turbidity) in Lake Nasser, Egypt.

MATERIALS AND METHODS

Study area

Nasser Lake is an artificial basin that was formed due to the construction of Aswan High Dam (Fig. 1). The only source of its water is the River Nile inflow from the south. The flood season always takes place from the end of July to November (AbdEllah, 2020). Lake Nasser is about 35 km at its widest point with an average width of 12 km with a maximum water depth is 120 m near the Aswan High Dam (Salem, 2011). The lake is featured by numerous side extensions located on both sides, known as Khors (AbdEllah and El-Geziry, 2016).

The water levels in the lake vary from year to year, according to the coming flood, and from month to another, according to the discharge from the lake across the High Dam. This fluctuation of water level affects the water quality status of the lake and its Khors due to the change of their morphometric configuration (Salem, 2011).

Remote sensing data

Both MODIS and Sentinel-2 data were used in this study, and they were acquired free of charge via the internet (https://earthexplorer.usgs.gov). The data were processed using two sets of software. The remote sensing and GIS software included the QGIS version 3.16, while the ANN processing employed used the MATLAB software.

MODIS data

Aqua and Terra are two polar-orbiting satellites launched by the US National Aeronautics and Space Agency (NASA). The Terra spacecraft launched on December 18, 1999, and the Aqua spacecraft launched on May 4, 2002. Both Terra and Aqua satellites operate in near sun-synchronous polar orbits with a nominal orbit altitude of 705 km. MODIS is carried on both satellites with 36 spectral bands and provide near-daily observations. Four bands were used in this study. Two bands were at 250 m spatial resolution, one in the red range and the other in the near-infrared. On the other hand, band three and four were available at 500 m. Band 3 was in the blue range, while band 4 was in the green range (Moreno-Madrianet al., 2010).

Terra MODIS data in the form of MOD09A1 and MOD09Q1 Version 6 products were used. These products provided surface spectral reflectance of Terra MODIS corrected for atmospheric conditions. For each pixel, a value was selected from all the acquisitions within the 8-day composite period. The criteria for the pixel choice include cloud and solar zenith. When several acquisitions meet the criteria, the pixel with the minimum band 3 value is used. MOD09A1 provides an estimate of the first seven reflectance MODIS bands at 500 m, while MOD09Q1 provide spectral reflectance Bands 1 and 2 at 250 m (Vermote, 2015 a and b). For each of the studied dates, the first two bands were of the MOD09Q1, 250 m data, while bands three and four were of the MOD09A1, 500 m data. Furthermore, the study area was covered by two MODIS images. Therefore, four images were downloaded for each date. The MODIS products are distributed in the Hierarchical Data Format - Earth Observing System (HDF-EOS). The MODIS data were imported and converted into Tiff format using the QGIS’s Semi-Automatic Classification Plug-in (SCP). For each date, the two images that covered the study area were mosiked using the same tool (Fig. 2).
Sentinel-2 data

Sentinel-2 (S2) was developed by the European Space Agency (ESA) and provided high spatial, spectral and temporal resolution images of the earth. Sentinel-2 had two launches; Sentinel-2A was launched on 23rd of June 2015 and Sentinel-2B on the 7th of March 2017. Those two satellites are at a mean altitude of 786 km with a revisit time of 5 days. Each satellite provides a set of 13 spectral bands (Vajsova and Aastrand, 2015 and Segarra et al., 2020). Four Sentinel-2 bands were used in this study. These bands were in the blue, green, red and near-infrared bands range of the electromagnetic spectrum available at 10 m resolution. Six images covered the study area for each date.

The used Sentinel-2 data were available in Level-1C, which is radiometrically, and geometrically corrected reflectance data. Each Level-1C product is a 100 km x 100 km tile available in Geographic Markup Language JPEG2000 (GMLJP2) format and projected into Universal Transverse Mercator (UTM) and World Geodetic System 1984 (WGS 84) with datum-zone 36 N. The data were imported into QGIS software, which supports the GMLJP2 format and exported as Geotiff (Fig. 3). The properties of MODIS bands used in this study and the corresponding Sentinel-2 bands are shown in Table 1 (Ackerman et al. 1998 and Tianxiang et al. 2017).

For downscaling, MODIS data were acquired on the 9th of November, 2017 and the 29th of September, 2020 while Sentinel-2 data were acquired on the 12th November, 2017 and the 27th of September, 2020. MODIS data were acquired for predicting turbidity on 1st of May, 2009 and the 27th of December, 2013.

Field survey and geographic database development

The used field data covering the study area were available from 23rd of April to 3rd of May, 2009 (Central Unit for Water Quality Monitoring, 2009) and from 22nd to 31st of December, 2013 (Nile Research Institute, 2014). The turbidity measurements were available at depth 0-50 cm. Using the QGIS software, the locations of the field observations were developed into a geographic point database. Fifteen samples were collected in 2009 and thirty-three samples were collected in 2013 (Fig. 4). According to Salem (2011), the studied lake could be...
divided into the transition zone, extending from Second Cataract to Abu Simble and the lacustrine zone extending from Toshka to the Dam (Fig. 5). The lacustrine zone experiences long local residence times and is characterized by a deeper, lake-like basin with less temporal variability in physical conditions. The transitional zone is characterized by intermediate local residence times, sedimentation and nutrient flushing (Hamre et al., 2017).

Artificial neural networks (ANN)
In this study, the feed-forward neural network was used when designing the network for both downscaling and turbidity modeling. The information flow in this neural network is unidirectional, i.e. information flow from input to output in one direction with no back loops (Krenker et al., 2011). For both downsampling and turbidity modeling, the designed neural network utilized 70% of the samples for training, 15% for testing and 15% for validation. The neural network structure was manually alternated using a trial-and-error process until the highest correlation coefficient was achieved (Gummadi, 2013 and Morgan et al., 2017).

RESULTS AND DISCUSSION
MODIS data downscale
The data flow diagram for the MODIS data downscale is shown in Fig. 6. To design the neural network for MODIS data downscale, each two matching MODIS and Sentinel-2 bands acquired on each of the selected dates were stacked together into one image. Within these images, MODIS data were resampled into 10m spatial resolution. Thereafter, each image was subsetted into the study area. This process resulted in eight images, every four images represented one of the two studied dates and every two images represented one of the studied bands. Nevertheless, the resulting images could not be processed within MATLAB as a whole due to their large size. To enable the processing of these images into MATLAB the images were further subsetted using the Virtual Dataset (VRT) option of QGIS into tiles of 1000 columns x 1000 rows. Furthermore, selected tiles covering all the visual differ-

Table 1. Characteristics of the used MODIS and Sentinel-2 bands

<table>
<thead>
<tr>
<th></th>
<th>MODIS</th>
<th></th>
<th>Sentinel-2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Band No</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Band code</td>
<td>BM1</td>
<td>BM2</td>
<td>BM3</td>
</tr>
<tr>
<td></td>
<td>Pixel size</td>
<td>250</td>
<td>250</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>Central wavelength(nm)</td>
<td>659</td>
<td>865</td>
<td>470</td>
</tr>
<tr>
<td></td>
<td>Band No</td>
<td>4</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Band code</td>
<td>BS4</td>
<td>BS8</td>
<td>BS2</td>
</tr>
<tr>
<td></td>
<td>Pixel size</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Central wavelength(nm)</td>
<td>665</td>
<td>842</td>
<td>490</td>
</tr>
</tbody>
</table>

Fig. 4. Map of the sampling locations (Background: MODIS Image (Bands 1,2,3) acquired on April 29, 2009)
Fig. 5. Map of the different zones of lake Nasser
ences were selected. Thereafter, these tiff tiles were imported into MATLAB and merged into a single file for each band. The total count of pixels used reached 800K pixels for each band, which were subsequently used to build the neural network using MATLAB’s Neural Network Toolbox. The neural network structure was manually alternated using a trial-and-error process until the best performance expressed as coefficient of correlation, r, was achieved. The designed network included one node input layer representing MODIS band and one output layer with one node representing the estimated downscaled MODIS data and a hidden layer with 3 nodes for downscaling MODIS bands 1, 2 and 3 (Fig. 7A) while MODIS band 4 included a hidden layer with 10 nodes (Fig. 7B).

When designing these networks, the highest r was between BM3 and BS2 ($r=0.83$) followed by BM2 with BS8 ($r=0.78$) then BM1 with BS4 ($r=0.74$). The least correlation was between BM4 and BS3, reaching $r=0.71$. These designed networks were used to produce downscaled MODIS images acquired on 1st of May, 2009 and 27th of December, 2013. The resulting images were exported from MATLAB in GeoTIFF format for analysis and visualization in QGIS (Fig. 8a and b).

Lake water turbidity prediction

Empirical regression model

The downscaled MODIS image reflectance values corresponding to the turbidity acquired on both 1st of May 2009 and 27th of December 2013 were extracted and their values were developed into an Excel file for processing. The designed empirical regression model used the downscaled MODIS reflectance data as independ-
The regression analysis between the water turbidity and MODIS bands revealed that the highest correlation coefficient was between the near-infrared band (MB4) and turbidity, while the lowest was between turbidity and MODIS bands.

Table 2. The results of the correlation between turbidity and MODIS bands

<table>
<thead>
<tr>
<th>Band & Band combination</th>
<th>Correlation coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB1</td>
<td>0.42</td>
</tr>
<tr>
<td>MB2</td>
<td>0.27</td>
</tr>
<tr>
<td>MB3</td>
<td>0.41</td>
</tr>
<tr>
<td>MB4</td>
<td>0.46</td>
</tr>
<tr>
<td>Eq. 1</td>
<td>0.43</td>
</tr>
<tr>
<td>Eq. 2</td>
<td>-0.17</td>
</tr>
<tr>
<td>MB1&MB2&MB3&MB4</td>
<td>0.68</td>
</tr>
<tr>
<td>MB1&MB3&MB4</td>
<td>0.68</td>
</tr>
<tr>
<td>MB1&MB2&MB3</td>
<td>0.60</td>
</tr>
<tr>
<td>MB1 & MB3</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Fig. 8. Map of the downscaled MODIS images (Bands 1, 2, 3) acquired on the a) 1st of May, 2009 and b) 27th of December, 2013

Fig. 9. Architecture of the first neural network for turbidity prediction

Fig. 10. Performance of the first designed ANN for turbidity prediction
and the green band (MB2). The blue and red bands (MB1 and MB3, respectively) had almost similar moderate correlations. Furthermore, utilizing Equation 1 slightly increased the strength of the correlation than each of the first three single bands but still was less than of MR. On the other hand, Equation 2 decreased the correlation more than all the single bands or combinations (Table 2). Furthermore, the correlation coefficient was highest when using the four bands combination of the blue, red and near-infrared bands combination. Therefore, both combinations were used in designing the neural network for turbidity prediction.

Artificial neural networks

The first designed neural network included one input layer with four nodes indicating the four MODIS bands, a hidden layer with 5 nodes, and one output layer with one node indicating the water turbidity (Fig. 9). The network performance reached \(r \) of 0.83 (Fig. 10). The second network included one input layer with three nodes, including the MB1, MB3 and MB4, a hidden layer with 5 nodes, and one output layer with one node indicating the water turbidity (Fig. 11). The network performance reached \(r \) of 0.80 (Fig. 12). Based on these results, the first designed network was used for predicting the water turbidity in Lake Nasser. The images were subsetted to the study area using a shapefile of the lake and its Khores area. As with processing the downscaling of the images, the whole images could not be processed within MATLAB and therefore were subsetted into tiles of 1000 columns x 1000 rows. These tiff tiles were imported into MATLAB and processed using the first designed neural network. The resulting processed images of water turbidity were

Table 3. Acreage of the different turbidity classes in Nasser lake

<table>
<thead>
<tr>
<th>Class</th>
<th>May 2009</th>
<th>December 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Km²</td>
<td>%</td>
</tr>
<tr>
<td>0-1 NTU</td>
<td>1320.4</td>
<td>18.96</td>
</tr>
<tr>
<td>1-5 NTU</td>
<td>1530.0</td>
<td>21.97</td>
</tr>
<tr>
<td>5-10 NTU</td>
<td>2476.6</td>
<td>35.56</td>
</tr>
<tr>
<td>10-15 NTU</td>
<td>713.1</td>
<td>10.24</td>
</tr>
<tr>
<td>15-20 NTU</td>
<td>359.2</td>
<td>5.16</td>
</tr>
<tr>
<td>20-25 NTU</td>
<td>226.1</td>
<td>3.25</td>
</tr>
<tr>
<td>25-30 NTU</td>
<td>63.6</td>
<td>0.91</td>
</tr>
<tr>
<td>30-35 NTU</td>
<td>37.8</td>
<td>0.54</td>
</tr>
<tr>
<td>35-40 NTU</td>
<td>12.2</td>
<td>0.18</td>
</tr>
<tr>
<td>Islands</td>
<td>225.8</td>
<td>3.24</td>
</tr>
<tr>
<td>Total</td>
<td>6964.8</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Fig. 11. Architecture of the second neural network for turbidity prediction

Fig. 12. Performance of the second designed ANN for turbidity prediction
thereafter imported into QGIS and merged into one image for each date. Later on, the islands were masked from the resulting images. Thereafter, the images were classified according to the turbidity within each image of 2009 and 2013 (Fig. 13 and 14, respectively). The measurements were taken in early May 2009 and at the end of December 2013. In other words, it was taken two months before the flood season in 2009 and one month after the flood in 2013. The turbidity range in May 2009 was higher than in December 2013. While the highest turbidity value reached 36.9 NTU in May 2009, it only reached 28.2 NTU in December 2013. Furthermore, in December 2013, the turbidity below 5 NTU represented 74.06% of the studied lake while it only 40.93% of the lake in May 2009 (Table 3). As seen in the images, in both dates, the turbidity was higher in the transitional zone (located in the southern part of the lake) than in the lacustrine zone. Similar results were obtained by Salem (2011) and were explained by the longer local residence times in the lacustrine compared to the transitional zone in Lake Nasser. Moreover, the results of our study revealed that the turbidity in most of Lake Nasser was less than 10 NTU, especially in the lacustrine zone. Furthermore, most of the Khores and lake shoreline areas and surrounding islands were characterized by high turbidity (more than 20 NTU) on both dates.

Conclusion

Lake Nasser represents Egypt's freshwater reservoir and it is vital to monitor its characteristics, especially turbidity. MODIS images represent a free source of information that could help fulfill that task. It has been one of the rarely continuous sources of remote sensing data available since 1999. Nevertheless, it is constrained by its low spatial resolution that limits its use. The data could be downscaled into a high-resolution image such as Sentinel-2 to overcome the low resolution of MODIS images. The present work developed a downscale method utilizing neural networks applied to the first four MODIS bands to reach a resolution of 10 m. This approach reached an accuracy represented as the correlation coefficient of more than 0.70. Furthermore, in this research, it was possible to demonstrate the use of the downscaled image archive to produce turbidity maps of the lake using neural networks approach as well at dates where no Sentinel-2 data were available. The estimation accuracy of turbidity expressed as a correlation coefficient reached 0.83. Among the obvious results in this research was that turbidity in most of the mainstream in Nasser Lake was less than 10 NTU. Furthermore, most of the Khores and shoreline areas and surrounding islands were characterized by high turbidity of more than 20 NTU. The developed downscale and turbidity neural network models could be used to predict Lake Nasser water turbidity using the historical and present MODIS data and, therefore, to monitor the changes of the lake over time at a spatial resolution of 10 m. The approach provides a low cost continuous and accurate monitoring data of the lake. Moreover, this approach could be tried to other water quality parameters of the lake. This research recommends further scientific work to be continued in integrating the neural network approach with satellite images processors and GIS to reach more accurate results of the environmental phenomena like water quality in large water bodies such as lakes.

Conflict of interest

The authors declare that they have no conflict of interest.
REFERENCES

