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INTRODUCTION 

Maize has emerged as a crucial cereal crop in peninsu-

lar India, where states like Andhra Pradesh, which 

ranks fifth in terms of area (0.79 m ha), have recorded 

the highest production (4.14 m t) and productivity (5.26 

t ha-1) in the country, despite the fact that productivity 

in some of Andhra Pradesh's districts is more or equal 

to that of the United States (Murdia et al., 2016). In the 

recent past, maize crop has been imperilled by the fall 

armyworm (Spodoptera frugiperda, J.E. Smith) (FAW) 

that has caused substantial yield loss in maize. Fall 

armyworm is native to tropical and subtropical America 

and is acknowledged as a sporadic pest in the United 

States since 1797. The spread of fall FAW in India has 

been proclaimed since it is documented in Karnataka in 
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May 2018 (Sharanabasappa et al., 2018). Automatic 

diagnosis of plant diseases from captured images 

through computer vision and artificial intelligence re-

search is feasible to technological advancements 

(Wang et al., 2013; Cheng et al., 2017). This research 

proposes the expert system that will enable to detect 

fall armyworm infestation in the field using the new 

technology of artificial intelligence to identify and classi-

fy the fall armyworm infestation in the maize crop. 

Image processing techniques are now widely employed 

in agriculture and it is concerned with the detection and 

recognition of infestations of plants. Computer vision 

and image processing technology are widely engaged 

in a variety of industries, and they have a wide range of 

applications in modern agriculture (Wang et al., 2013). 

Compared to the visual method of detecting plant  

disease, automatic detection proceeds less time and 

effort and is more accurate (Singh and Misrab, 2016).  

Machine learning technologies afford numerous oppor-

tunities to promote an automatic disease classification. 

However, these consume a lot of time manually extract-

ing the features from the images and feeding them as 

input to the algorithm to classify the plant disease 

(Huddar et al., 2012). 

 Currently, more deep learning models have been delin-

eated to be gaining popularity than others. Deep learn-

ing is a novel technology for image processing and ob-

ject recognition that improves the accuracy of crop dis-

ease classification. Transfer learning is a prominent 

deep learning approach in which pre-trained models are 

converted to perform a new task (Cheng et al., 2017; 

Nanni et al., 2020; Alves et al., 2020). A Convolutional 

Neural Network (CNN) is a deep learning model widely 

used in image processing and simply detects and cate-

gorises the images through its multi-layered structure. 

CNNs are at the heart of most cutting-edge computer 

vision solutions for a spacious range of applications 

(Szegedy et al., 2016). Deep learning has a wide range 

of applications, including computer vision, image cate-

gorization, restoration, speech, and video analysis. 

Since 2015, image categorization research has leaned 

heavily on deep learning (Barbedo et al., 2018). In their 

study, Kawasaki et al. (2015) and Kulkarni (2018) illus-

trated a unique plant disease detection system based 

on convolutional neural networks. CNN can procure 

great classification performance using only training pho-

tos. Deep convolutional networks were employed to 

innovate a plant disease recognition model based on 

leaf image categorization (Sladojevic et al., 2016). In 

the realm of image classification, convolutional neural 

networks (CNN) have rendered excellent results. Yao et 

al. (2017) used image processing to advocate a three-

layer detection approach for detecting and identifying 

White-backed planthoppers. For the identification of 

distinct developmental stages of planthoppers on rice 

plants, the proposed method was proven to be viable 

and successful. it is effective at evaluating graphical 

images and extracting the relevant features. The pre-

sent work aimed to study a convolutional neural net-

work's probability of classifying fall armyworm infested 

plant leaves, cobs, and tassels images taken directly 

from maize research plots of Tamil Nadu Agricultural 

University (TNAU) and eight blocks in Tiruvannamalai 

districts. Fall armyworm infested leaves, cobs and tas-

sels were classified utilising the pretrained Mobile Net 

V2 framework which was adopted for building the neural 

network. Furthermore, the model was deployed in an-

droid mobile. 

MATERIALS AND METHODS 

Architecture of image processing system 

The present system of Image processing system com-

prised of five phases namely as image acquisition, im-

age pre-processing, data augmentation, feature extrac-

tion and classification as used by Akhtar et al. (2013). 

Image acquisition 

A large dataset was used to classify the maize fall 

armyworm infested leaves, cobs, tassels.  Maize FAW 

infested leaves, cobs and tassels dataset of JPEG im-

ages was shot with a Nikon D7500 P-Digital Camera. A 

total of more than 11000 photographs with varying se-

verity levels of infestations were shot from FAW infest-

ed maize field and stored in the system for image pro-

cessing by following the methodology described 

(Kulkarni, 2018; Militante, 2019; Syarief and Setiawan , 

2020). Dataset was collected from various maize grow-

ing research plots of TNAU and various blocks 

(Perunthuraipattu, Thenmudiyanur, Agarampalipattu, 

Allapanur, Rayandapuram, Kankayanur, Varakur and 

Perumanam) of Tiruvannamalai districts of Tamil Nadu. 

Then the collected images were annotated based on 

the symptoms caused by the FAW (Table 1). 

Image classification used for model development 

Maize tassel was also classified as “Healthy tassel” and 

“Fall armyworm infested tassel” (Fig. k-l). The image 

dataset in maize is shown in Fig.1. A leaf was identified 

and deemed as a “Healthy maize leaf” when it re-

mained entirely green (Fig.1a). However, if there were 

pinholes on the leaves, that could be considered as the 

“Pinhole symptom” caused by fall armyworm (Fig.1b). 

“Circular hole symptom caused by the FAW” can be 

identified if there were any circular holes on the leaves 

(Fig.1c). If there were elongated lesions on the leaves, 

it could be considered as the “Elongated lesion-

symptom” caused by fall armyworm (Fig.1d). If the 

whorl leaf had any fall armyworm infestation, it was 

considered as “Whorl leaf  eaten by FAW symp-

tom” (Fig. 1e). Maize cob was classified based on the 

per cent infestation of fall armyworm (Fig.1f-j).  
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Maize Leaves 

Classes Number of photos taken 

Healthy leaves 1000 

Pinhole caused by FAW 1963 

Circular hole caused by FAW 2271 

Small to several lesions caused by FAW 3374 

Whorl leaf is eaten by FAW 1000 

Maize cob 

Classes Number of photos taken 

Nil damage to slight damage at tips of the cobs 196 

< 25 % of cob area showing FAW infestation 384 

26 - 50 % of cob area showing FAW infestation 151 

51 – 75% of cob area showing FAW infestation 124 

> 75 % of cob area showing FAW infestation 238 

Maize tassel 

Classes Number of photos taken 

Healthy tassel 100 

FAW infested tassel 459 

Table 1. Description and total number of image dataset 

 Fig.(1a)               Fig.(1b)                       Fig.(1c)             Fig.(1d)    

 Fig.(1e)              Fig.(1f)                     Fig.(1g)           Fig.(1h)         

 Fig.(1i)              Fig.(1j)                     Fig.(1k)           Fig.(1l)         

Fig.1 a-l. Showing Images of the dataset in maize  
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Image pre-processing 

Images were reduced in size and cropped to fit a cer-

tain input. It improves and processes the image to the 

required colour scale. Image pre-processing is done for 

reducing noise and segmenting the image, which 

boosts the accuracy of the CNN model. The acquired 

images are usually messy and un-normalized since it 

comes from different sources. To feed them to the algo-

rithm, they need to be pre-processed, normalized and 

cleaned up. More often, image pre-processing and nor-

malization is done to cut down the complexity and 

strengthen the accuracy of the applied algorithm by 

generating accurate results.  

Data augmentation 

When training a deep learning model, data augmenta-

tion is necessary to avoid the overfit problem produced 

by a small dataset.  Supplemented the dataset ac-

quired in the image acquisition to increase the dataset 

size and offer some variation (Random rotation, ran-

dom flip, random brightness, random zoom) in image 

distortion. Augmentor, a Python image augmentation 

package for machine learning, is used in the data aug-

mentation process. 

Feature extraction and image analysis 

Image analysis entails breaking down an image into its 

constituent parts to retrieve useful data. Image analysis 

includes finding shapes, recognising edges, eliminating 

noise, counting objects, and computing texture analysis 

or image quality. Feature extraction is a step in the fea-

ture dimensionality reduction process, which divides 

and reduces a large amount of raw data into smaller 

groupings to make processing easier. Convolution and 

pooling layers of Convolutional Neural Networks (CNN) 

are used to accomplish this process.  

Image classification  

Fully connected layers of Convolutional neural network 

(CNN) are used for the classification of image datasets, 

whereas convolutional and pooling layers are used for 

feature extraction. The categorization technique classi-

fies plant portions infested with fall armyworm  

Background  knowledge 

Convolutional Neural Network (CNN) 

The CNN is a sort of artificial neural network that is 

used for image identification (the capacity to recognise 

objects) and processing pixel data for a specific design. 

It consists of an input layer, many hidden layers, and an 

output layer in the CNN architecture. In the hidden lay-

er, it has a convolutional layer, a Rectified Linear Unit 

(ReLu), a pooling layer, and a fully connected layer.  

A nominal process of a convolutional neural network 

can easily encounter and categorize the images. 

Through its multi-layered structure, it is compelling at 

evaluating graphical images and extracting the relevant 

features. The architecture of the CNN model was de-

picted in Fig.2.  

Convolution layer 

The feature map of the input image is extracted in con-

volution layer through a series of mathematical algo-

rithms. The convolution layer is used to reduce the size 

of a 6x6 image input into a 4x4 output image matrix 

using 3x3 filter.  'Convolved feature' refers to the output 

matrix obtained by sliding the filter over the image from 

the upper left corner of the input image and computing 

the dot product. The results are the added values for 

each step multiplied by the filter's values. The in-

put image is converted into a new matrix with a smaller 

size (4x4). Fig. 3 depicts the convolution operation. 

Fig. 2. Architecture of convolutional neural network 
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Padding 

Padding is used to preserve the original dimensions of 

the input. In this step, zeros are added to outside of the 

input image. Numbers of zero layers depend upon the 

size of the kernel. Padding operation was depicted in 

Fig.4.   

 Pooling layers 

For the down sampling layer, this layer reduces overfit-

ting and shrinks the neuron size. Pooling operation in 

action was depicted in Fig.5. This layer minimises the 

size of the feature map, as well as the number of pa-

rameters, training time, computation rate, and overfit-

ting. A model is said to overfit if it achieves 100% accu-

racy on the training dataset and 50% accuracy on the 

test data. To reduce the size of the feature map, ReLU 

and max-pooling were used.  

Activation layer 

Every convolution layer makes use of a non-linear 

ReLU (Rectified Linear Unit) activation layer. Dropout 

layers are also used in this layer to prevent overfitting. 

Fully connected layers  

This layer employs the SoftMax classifier, a well-known 

input classifier, to recognise and categorise maize fall 

armyworm infestation. 

Train, validation and test dataset 

In this study, the dataset of fall armyworm infested 

maize was split into 70 per cent, 20 per cent and 10 per 

cent for training, validation and testing, respectively. 

Software and hardware system 

The list of hardware and software used in this study are 

depicted in Table 2. In the Google Colaboratory editing 

platform, python 3 was exerted for algorithm implemen-

tation and data wrangling scripts. TensorFlow, a so-

phisticated framework built by Google, was practised to 

train and infer models. This library supported both CPU 

and GPU training and inference. 

Google Colaboratory 

Google Colaboratory is a free cloud service granted by 

google to anybody with a Gmail account and allows 

anyone to evolve and execute Python code in their 

browser. People who don't have enough resources can 

use Google Colab to acquire a GPU for research. The 

Fig. 3. Convolution operation of input image data A) First mathematical algorithm convolution operation B) Second 

mathematical algorithm convolution operation C) Third mathematical algorithm convolution operation D) Fourth mathe-

matical algorithm convolution operation 

   A        B 

   C       D 

Fig. 4. Padding operation 
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Google Colab service delivers 12.72 GB of RAM and 

358.27 GB of hard disc space in one playtime. Every 

runtime lasts for 12 hours before being reset and the 

user has to re-establish a connection. This is to hinder 

anyone from using the GPU service to mine cryptocur-

rency. A new notebook was built where all Python cod-

ing was used to train the model (Fig. 6). The selection 

box was positioned in Runtime -> Change runtime type 

and appears as shown below (Fig. 7). The file was con-

nected to a runtime. This connect button was at the top 

right corner of the page, as shown in the illustration 

below (Fig. 8).  

To run a cell, Ctrl + Enter or click on the cell was used. 

The play button on the far left of each cell, as indicated 

in fig.9. The code snippet below (Fig.10) was used to 

link Google Colab to Google drive. The user was be-

stowed with a URL and a text box when the code snip-

pet was run. The user  clicked on the URL and provid-

ed Google Colab permission to access our Google 

Drive and its data. Once permission was granted, the 

user was  given a one-time token that must be input 

into the textbox below the URL. 

Google Drive is contentedly mounted onto Google 

Colab if the token is detected and authenticated. Once 

         A                  B     C 

Fig. 5. Pooling operations. A. Max pooling operation. B. Average pooling operation. C. Min pooling operation 

Hardware and Software Specification 

Memory 8.00 GB (5.88 GB usable) 

Processor AMD Ryzen 5, 3500U with Radeon Vega Gfx 2.10 GHz 

Operating system Windows 10 

Editor platform Google colaboratory 

Deep learning libraries Keras and TensorFlow 

Deep learning architecture Convolutional neural network 

Deep learning model Mobile Net V2 

Table 2. Hardware and software used in this study 

Fig.6. New notebook in Google colab Fig. 7. Change runtime in  notebook  
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Google Drive is mounted onto Google Colab, working 

code into the cell could be written. 

Working with libraries 

TensorFlow is an open-source machine learning library 

for research that is fast, versatile and scalable. Tensor-

Flow Lite and TensorFlow Serving, which offers the 

same features for mobile platforms and high-

performance servers that allow to construct and train 

ML models on computers and mobile devices and serv-

ers. Keras is a popular open-source python neural net-

work and it was hastily integrated into TensorFlow's 

core library, allowing it to be used on top of the frame-

work. Neural layers such as activation and cost func-

tions, goals, batch normalisation, dropout, and pooling 

are a few of Keras's building blocks and techniques for 

constructing a neural network. 

Steps involved in training an image dataset with 

Google Colaboratory 

Uploading image dataset  

A Gmail account is required to submit image datasets 

and uploaded all of the image datasets to Google Drive 

in their original image sizes. 

Splitting image dataset in google drive 

The image datasets were divided into train and valida-

tion datasets once the uploading is completed. Two 

folders entitled train and validation dataset were estab-

lished in the maize dataset folder. 

Import libraries in google colaboratory 

After the uploading process is complete, create a 

Google collaborative workspace and write Python code 

to train the model A few key Python libraries were im-

ported to get started.  

Creating base dataset  

Set the base dataset and add extra layers to the model 

after installing the Python libraries. 

Generating model summary  

The model summary was then generated, which in-

cludes numerous layers, parameters, and gradients 

based on the given base dataset. 

Print the layers  

The layers were printed once the model summary has 

been generated.  

Mounting google drive  

Using the Google authorisation code, there is a need to 

mount Google Drive. So, all of the files were uploaded 

using this method to train the deep learning model. 

Creating training and validation dataset directory 

For both training and validation,  provide a directory 

and set goal size, colour mode, bath size, class mode, 

and subset. 

Compile the model  

The model was constructed by setting the number of 

epochs, decay rate, learning rate, and Adam optimizer 

after generating the train and validation directories. 

Call back set for training the model 

A callback is a function that is passed as an argument 

to another function. From Keras, import the model 

check point and tensor board.call back. 

Training the model  

Training the dataset was done after configuring the call 

back function. On 10 and 100 epochs, the model was 

trained. As a result, training the model will take a long 

Fig. 8. File connect  Fig. 9. A cell with run button 

Fig. 10. Google colab with Google drive authentication 
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time. Attention was paid to this until the end of the 

epoch. 

Visualize and saving the model  

Plot history can also be used to visualise the model's 

output. The trained model was then saved to Google 

Drive as model1.hdf5, and the model inference was 

also shown. THen first pre-process the image dataset 

by resizing it, then generating the class indices.  

Prediction the dataset  

The Imread function must be used to upload any test 

dataset. After having given the cell, execute it. It will 

deliver the desired result. 

Testing 

A test was done to test the accuracy of the results of 

the classification of training data features with 100 

maize FAW infestation data on each class in the re-

search on corn plant FAW detection using the CNN 

approach, as shown in Table 3. 

RESULTS AND DISCUSSION 

Output of the model 

 An algorithm was trained and generated the results at 

10 epochs and 100 epochs shown in (Fig.11) and 

(Fig.12) by using photos of symptoms of fall armyworm 

infestation in maize as the training dataset. It manifests 

the training outcome for every 10 epochs and 100 

epochs.  

The training data set was able to achieve 100 per cent 

accuracy, whereas the validation accuracy was about 

74 per cent on completion of 10 epochs during training 

the dataset. The visualisation of train and validation 

accuracy plots demonstrates that the model effectively 

identifies and distinguishes the symptoms caused by 

fall armyworm in maize (Fig.11a). Train and validation 

loss per epoch decreased as the number of epochs 

increased (Fig.11b).  

The model was additionally trained across 100 epochs, 

ensuing in a training data set that was 100 per cent 

accurate and a validation data set that was roughly 87 

per cent accurate (Fig.12). This implies that the trained 

model is neither overfitting nor underfitting. The model 

accuracy plots for both train and validation data are 

represented in Fig.12a. The model loss plots for both 

train and validation data are represented in Fig.12b. 

Training loss was only about 0.1 per cent, thus this 

model performs better and this implies that the trained 

model can perform accurate predictions based on im-

ages that will be fed to the system.  

Lu et al. (2017) claimed that using their own convolu-

tional neural network model, and they were able to 

achieve an accuracy of 95.48 per cent on a 500-leaf 

dataset of rice. Kulkarani (2018) reported that training 

data sets with 99.62 per cent accuracy of Mobile Net 

V2 model on the Plant Disease dataset, which is an 

open-source dataset that contains 54,306 photos of 

crop leaves classified into 38 different disease classifi-

cations. Ma et al. (2018) claimed that using their own 

convolutional neural network model, and they were 

able to achieve an accuracy of 93.4 per cent on 14,208 

Cucumber leaf photos. Chen et al. (2019) claimed that 

using their own convolutional neural network model, 

and they were able to achieve an accuracy of 90.16 per 

Classification Test dataset True False 

Healthy maize leaves 100 95 05 

Pin hole caused by FAW 100 80 20 

Circular hole caused by FAW 100 91 09 

Ragged hole caused by FAW 100 98 02 

Whorl damage caused by FAW 100 89 11 

Nil damage to slight damage at tip of the cobs 100 91 09 

<25% of cob area showing FAW infestation 100 83 17 

26-50% of cob area showing FAW infestation 100 87 13 

51-75% of cob area showing FAW infestation 100 94 06 

<75% of cob area showing FAW infestation 100 96 04 

Healthy maize tassel 100 98 02 

Fall armyworm infested maize tassel 100 92 08 

Total 1200 1094 106 

Table 3. Testing the image dataset 
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cent on 3810 tea leaf photos. The present study em-

ployed its own convolutional neural network model, 

which achieved 100% training accuracy on a dataset of 

11,251 images of fall armyworm infestation maize di-

vided into 12 classes as the present deep learning 

model performed well. 

Learning rate analysis 

The learning rate is a hyper parameter. This reduces 

the model's inaccuracy by minimising the loss function. 

On a collection of 1088 ladies finger leaf image da-

tasets, the exceptional accuracy of 94 percent was 

reached using CNN at a learning rate of 0.001 (Selvam 

and Kavitha, 2020). In this present study, at a learning 

rate of 0.00001, the outstanding accuracy of 100 per 

cent was reached on the classification of maize fall 

armyworm infestation. It was found that as the learning 

rate was increased or decreased beyond the ideal rate 

of 0.00001, the accuracy decreased. 

Development of mobile application 

Hidayat et al. (2019) used CNN to construct an android 

app via android studio for maize corn diseases, using a 

total dataset of 3854 pictures of diseases in corn 

plants, including three different forms of corn diseases 

including  Common Rust, Gray Leaf Spot, and Northern 

Fig.11. Accuracy and loss for train and validation dataset at 10 epochs, a) Model accuracy plot for train and validation 

dataset. b) Model loss plot for train and validation dataset  

   a          b 

1347 



 

Prabha, R. et al. / J. Appl. & Nat. Sci. 13(4), 1339 - 1349 (2021) 

Fig.12. Accuracy and loss for train and validation dataset at 100 epochs. a) Model accuracy  plot for train and  

validation dataset. b) Model loss plot for train and validation dataset  

   a          b 

Leaf Blight. The accuracy in recognising disease in 

corn plants is 99 per cent. 

 In my research, the android application (AIPES) was 

built using the trained model with the assistance of An-

droid Studio. It was appended to the system as a li-

brary. App interface of the developed android applica-

tion is shown in Fig.13. The fall armyworm infested 

maize can be identified in two possibilities available in 

the application. One is to select the file, and the other is 

to use the camera. Images can either uploaded  from 

the gallery where the test data was stored , or a cam-

era can be used to shoot field photos of fall armyworm 

infested photos. A maize leaf, cob and tassel sample 

screen from the mobile application that uses the test 

dataset to classify the fall armyworm symptom as seen 

in Fig.14, Fig.15, Fig.16 respectively. The image was 

fed into the classifier, which was then matched against 

the maize fall armyworm infection database to get the 
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relevant symptom classification description. 

Conclusion 

The agricultural industry relies on early detection and 

recognition of these FAW infestations. In the present 

study, CNN was used to classify photos of maize af-

fected by the autumn armyworm. Using images collect-

ed from maize research plots, the CNN architecture 

was trained. The present model had a training accuracy 

of 100% and a validation accuracy of 87% in terms of 

classification. This demonstrated that the CNN extracts 

essential information from photos with an unmanaged 

backdrop, which is necessary for classifying plant pest 

infestations. Experiments further revealed that the sug-

gested CNN architecture could classify fall armyworm-

infested maize into twelve categories. The number of 

datasets will be increased as part of this project's ex-

tension as the study can boost the high accuracy in the 

validation.  
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