Toxicity of diatomaceous earth on seed weevil, *Sitophilus oryzae* L. and its effect on agro-morphological characters of maize seeds

S. Aisvarya*
Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore - 641003 (Tamil Nadu), India

M. Kalyanasundaram
Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore - 641003 (Tamil Nadu), India

M. Kannan
Department of Nano Science and Technology, Tamil Nadu Agricultural University, Coimbatore - 641003 (Tamil Nadu), India

A. Lakshmanan
Department of Nano Science and Technology, Tamil Nadu Agricultural University, Coimbatore - 641003 (Tamil Nadu), India

T. Srinivasan
Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore - 641003 (Tamil Nadu), India

*Corresponding author Email id: aisvaryasrinivasan@gmail.com

INTRODUCTION

Diatomaceous earth (DE) is inert dust with amorphous silica as a major component and is made up of fossilised diatoms. The dust colour varies from white to red. Another major component present in the dust is calcium in addition to minor elements like sodium, phosphorous, zinc etc. (Subramanyam and Roestl, 2000). It is an odourless, non-inflammable inert material with pH varying from slightly acidic to alkaline (4.4-9) (Korunic, 1997). The average size of DE particles ranges from 2.5 to 30 microns. It is said that DE possesses entomotoxic activity because of amorphous silica in uniform size (Korunik, 1997). The major advantage of the usage of inert dust for stored pest management is that they are safe for humans and natural enemies. Hence, DE can be used as a natural insecticide for the long-term protection of stored produces (Korunic et al., 2000).
DE is used against various storage pests. Athanassiou et al. (2004) compared the effect of DE on the adults of *Sitophilus oryzae* and *Tribolium confusum* where adult mortality pattern remained same for the three different concentrations i.e., 0.75, 1, and 1.5 g of DE/kg of grain. Islam et al. (2010) investigated the effects of Protect-It® and SilicoSec® formulations of DE against *Callosobruchus maculatus* and *S. oryzae*. Protect-It® was more effective against *C. maculatus*, whereas SilicoSec® was more effective against *S. oryzae*. Badii et al. (2014) reported that efficacy of DE altered with a change in RH (Relative Humidity). It was found that DE was more effective against *C. maculatus* at 50 % RH than at 80 % RH. Modified formulations of DE were found to be more effective than original DE. Modified DE formulations like Al-DE and Ca-DE had a more toxic effect on the adults of *Sitophilus granarius* in wheat kernels (El-Aziz and El-Ghany, 2018).

Commercial formulations available in the market are Dryacide, Dicalite, Diaocide, DiaFIl, Insecolo, Insectigone, Insecto, Melocide, Organic Plus, PermaGuard, Protect-It, Silicosec, Shellshock, etc. (Subramanyam and Roesli, 2000). The insect species that are more subtle to DE belongs to the genus Cryptolestes whereas the most tolerant insects belong to the genus Prostephanus. In addition, *Oryzaephilus* is said to be less sensitive, *Sitophilus* as less tolerant and *Tribolium* and *Rhizopertha* as the most resistant ones to DE (Maceljski and Korunic, 1972; Desmarchelier and Dines 1987; Fields and Muir, 1996; Korunic et al., 1997; Korunic and Fields, 1998, 2006). Cereals are grown to a larger extent to meet out the food demand of humans. Among them, maize (*Zea mays*) is considered to be a vital crop as it serves as human food and livestock feed. It is grown worldwide and plays a prominent role in the coarse grain trade. According to the Ministry of Agriculture & Farmers welfare, Government of India, 2018-19 maize production and productivity are 9.18 m ha, 27.23 MT and 2965 kg ha⁻¹, respectively. Maize plays a prominent role in coarse grain trade worldwide. The major constraint with maize cultivation is post-harvest loss which accounts for significant yield loss in terms of both production and productivity. Both biotic and abiotic factors bring about post-harvest losses. Storage insect pests play a major role in imposing damage to the maize seeds. More than 37 species of insects inflict damage in storage (Tadese, 2017; Ziaee et al., 2019). The possible mechanism behind the insecticidal activity is that they cause abrasion of the integument, especially the waxy layer by strong adherence onto the body of the insect. Insect mortality is brought about by desiccation (Ebeling, 1971). The cuticular water loss rate (CWLR) was found to be higher in weevils treated with DE than those untreated weevils (Prasanthan et al., 2015).

MATERIALS AND METHODS

Rearing of *Sitophilus oryzae*

The weevils of *S. oryzae* were collected from the infested cereal produces from storage godowns at the Department of Millets, Tamil Nadu Agricultural University (TNAU), Coimbatore, for mass culturing. The weevils were reared on maize grains at room temperature of 27 ± 3°C. Subculturing was done at 15 to 20 days intervals to maintain a continuous supply of insects. Uniform aged adults of one week old were used for bioassay studies. The study material of diatomaceous earth was purchased from SGP industries, Bikaner, India. DE is mainly composed of amorphous silica, alumina and iron oxide.

Toxicity assessment of DE against *S. oryzae*

Bioassay was performed in a small plastic container and 100g of maize seeds were taken in each container. Maize seeds were treated with DE at different concentrations (0.25 mg, 0.5 mg, 0.75 mg, 1 mg, 1.5 mg, 2 mg, 100 mg, 3 mg, 4 mg, 5 mg, 7.5 mg, 10 mg, 12.5 mg and 15 mg) and a control (without any DE treatment) was maintained. Then the containers were shaken manually for approximately 1min to achieve equal distribution (Subramanyam and Roesli, 2000). Fifteen pairs of adults were introduced into each container. Four replications were maintained for each treatment in a completely randomized design. Experiments were carried out at 27 ± 3°C, 70% RH. Insect mortality (lack of locomotion and or response to repeated probing) was recorded at 24 h intervals for seven days. The corrected mortality was worked out by the formula given by Abbott. The observations on the percent mortality were subjected to probit analysis and LD₅₀ value was worked out.

Corrected (%) mortality = (X - Y) / (100 - X) x 100

\[X = \text{Percentage mortality in DE treated treatments.} \]
Y = Percentage mortality in the untreated check.

Seed germination assessment
Seed germination studies were carried out by following the methodology given by ISTA (International Seed Testing Association) and Govindaraju et al. (2020). Maize seeds were sterilised with 10% sodium hypochlorite solution. The seeds were washed and treated with two different concentrations of DE solutions (LC50 and LC95). A control was maintained by soaking the seeds in water. Twenty-five seeds from each treatment were taken and kept on the germination sheet in equidistant manner. Then, they were rolled and tightened using rubber band. Each treatment was replicated seven times. At the end of 7 days, the seedling parameters like shoot length (cm), root length (cm), dry matter production (g), germination percentage (%) and vigour index were recorded.

Germination percentage (%) = Number of strongly Germinated seeds /Total number of seeds × 100

Vigour index = Germination (%) × Seedling length

Statistical analysis
The data were analyzed by completely randomized design (CRD) using SPSS statistical software. Probit regression analysis was carried out by Finney's method (1971). Analysis of variance (ANOVA) was done to determine whether significant difference exists between treatments.

RESULTS AND DISCUSSION

Toxicity assessment against S. oryzae
The results of the bioassay studies revealed the entomotoxic ability of diatomaceous earth against S. oryzae. Probit regression analysis displayed LD50 as 1.27 mg/100 g and LD95 as 86.11 mg/100 g (Table 1.). Calculated chi-square value was less than the tabular value which indicated that the data perfectly fit into the probit model. 1.27 mg of DE was able to kill 50% of the insect population in 100 g of seeds within a period of 7 days. These results are in accordance with the findings of Athanassiou et al. (2004, 2005). They have reported that DE at the dose of 1 and 1.5 g/kg resulted in higher mortality in the adults of S. oryzae and T. confusum. Fig. 1. shows the light microscopic images of DE treated and untreated rice weevil. DE adheres onto the surface of rice weevil when it comes in contact with DE treated seeds. By adhering to the integument, DE gets coated on the whole body especially on the head, thorax, abdomen and its appendages. Similarly, the effect of commercial formulation of amorphous DE (Fossil Shield®) on confused flour beetle, granary weevil, mealworm and Indian meal moth was higher at the dose of 2 and 4 g/m² and caused more lethal effects to adults than late larval stages (2-3 weeks old). In general, DE on contact with insects' cuticle causes disruption and dehydration (Mewis and Ulrichs, 2000). Erturk et al. (2020) founded that wettable powder formulation of DE - Detech® was highly working against S. oryzae at the concentration of 2 g/m². The present results showed LD50 value was ten times lower than the previous studies indicating that DE was more toxic at low dose i.e., high insecticidal efficacy.

Toxicity pattern of DE against S. oryzae
The cumulative pattern of mortality of DE at different concentrations against S. oryzae in maize seeds is shown in table 2. Among the various doses used, higher mortality of 80% was obtained at 7.5 mg/100 g on the 7th day of exposure. On 1st day after release (DAR), more insect death (6.67%) was seen at the concentration of 3 mg/100 g with the mortality of 20%, 40% and 60% in the subsequent days. At the highest dose of 15 mg/100 g, cent percent mortality was achieved within six days of exposure. However, higher mortality at lower dose of 0.25 mg/100 g was only 26.67%. The results revealed that insecticidal activity increased with con-

Table 1. Probit regression analysis of mortality data of DE against S. oryzae

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Particulars</th>
<th>LD50 mg/100 g of seeds (95 % fiducial limits)</th>
<th>LD95 mg/100 g of seeds (95 % fiducial limits)</th>
<th>Slope</th>
<th>χ²*</th>
<th>Degrees of freedom</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>DE</td>
<td>1.27 (0.74-2.16)</td>
<td>86.11 (10.84-683.96)</td>
<td>1.011</td>
<td>0.147</td>
<td>6</td>
</tr>
</tbody>
</table>

* - Calculated χ² value was less than the tabular value (p=0.05), indicating that the data fit the probit model
Table 2. Toxicity pattern of DE against S. oryzae

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Dose/ 100g</th>
<th>No. of insects used</th>
<th>% Mortality (Cumulative mortality)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 day</td>
</tr>
<tr>
<td>1.</td>
<td>0.25 mg</td>
<td>30</td>
<td>0.00±0.00</td>
</tr>
<tr>
<td>2.</td>
<td>0.5 mg</td>
<td>30</td>
<td>0.00±0.00</td>
</tr>
<tr>
<td>3.</td>
<td>0.75 mg</td>
<td>30</td>
<td>0.00±0.00</td>
</tr>
<tr>
<td>4.</td>
<td>1 mg</td>
<td>30</td>
<td>0.00±0.00</td>
</tr>
<tr>
<td>5.</td>
<td>1.5 mg</td>
<td>30</td>
<td>3.33±0.01</td>
</tr>
<tr>
<td>6.</td>
<td>2 mg</td>
<td>30</td>
<td>3.33±0.01</td>
</tr>
<tr>
<td>7.</td>
<td>3 mg</td>
<td>30</td>
<td>6.67±0.01</td>
</tr>
<tr>
<td>8.</td>
<td>4 mg</td>
<td>30</td>
<td>3.33±0.03</td>
</tr>
<tr>
<td>9.</td>
<td>5 mg</td>
<td>30</td>
<td>6.67±0.10</td>
</tr>
<tr>
<td>10.</td>
<td>7.5 mg</td>
<td>30</td>
<td>6.67±0.07</td>
</tr>
<tr>
<td>11.</td>
<td>10 mg</td>
<td>30</td>
<td>6.67±0.03</td>
</tr>
<tr>
<td>12.</td>
<td>12.5 mg</td>
<td>30</td>
<td>6.67±0.07</td>
</tr>
<tr>
<td>13.</td>
<td>15 mg</td>
<td>30</td>
<td>6.67±0.06</td>
</tr>
<tr>
<td>14.</td>
<td>Control</td>
<td>30</td>
<td>0.00±0.00</td>
</tr>
</tbody>
</table>

SEd: 0.0723 0.1256 0.1544 0.2007 0.4762 0.6060 0.9301

CD (0.05): 0.1459 0.2535 0.3117 0.4051 0.9612 1.2233 1.8775

Means ± SE within a column followed by the same letter is not significantly different from each other at 5% level of significance (LSD).
Concentration and time of exposure of dusts with the insects. By enhancing the formulations of DE (i.e., DE + bitterbarkomyacin, DE + Abamectin) higher toxicity can be achieved at very lower doses (≤100 ppm). At the same time, DE can be effectively included in an integrated storage pest management programme (Shah and Khan, 2014). DE can be effectually combined with insecticide Spinosad and *Trichoderma harzianum* to protect wheat grains from rice weevil (Gad et al., 2020). Diatomaceous earth has also been found to be compatible with the fungus *Metarhizium anisopliae* used against *S. oryzae* (Athanassiou et al., 2008).

Effect of DE on agro-morphological characters of maize seeds

The germination studies of maize seeds by roll towel method confirmed the significant differences among the treatments used (LD$_{50}$, LD$_{95}$ and control). The observed seedling parameters such as germination%, root length, shoot length, seedling length, vigour index and dry matter production are listed in table 3. Germination per cent was higher (98%) in LD$_{95}$ concentration, whereas it was only 94% in LD$_{50}$ concentration. Thus, % germination differed significantly @ 0.05 level of significance in the two different concentrations. On taking seedling length (Shoot length + Root length) into consideration, it was higher (53.02 cm) in LD$_{95}$ concentration when compared with control (46.99 cm) and LD$_{50}$ concentration (47.37 cm) (Fig.2). Vigour index was maximum (5195.96) at LD$_{95}$ concentration whereas it was lower in untreated control (4511.04). Diatomaceous Earth is rich in minerals like silica, alumina and iron oxide and considered beneficial for plant growth that enhances seedling relative growth rate, vigour and seedling cotyledon growth (Sun et al., 2021). By taking this into consideration, the current results showed higher seedling growth rates in LD$_{95}$ concentration, indicating that amorphous silica has been absorbed by the maize seeds and thus actively involved in the germination process. Similarly, higher dry matter production was noticed in LD$_{95}$ treatment (2.6 g) than LD$_{50}$ concentration (2.5 and 2.1 g, respectively). Further, DE is mainly composed of amorphous silica and it can be used as a supplement to silica in the fertilization of crops for biotic and abiotic stresses. Pati et al. (2016) proved that the application of DE enhanced

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Germination (%)</th>
<th>Shoot length (cm)</th>
<th>Root length (cm)</th>
<th>Seeding length (cm)</th>
<th>Vigor index</th>
<th>Initial fresh weight (g)</th>
<th>After dry weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>96.0±0.94</td>
<td>21.30±0.06</td>
<td>25.69±0.22</td>
<td>46.99±0.43</td>
<td>4511.04</td>
<td>14.2±0.03</td>
<td>2.1±0.01</td>
</tr>
<tr>
<td>DE LD$_{50}$</td>
<td>94.4±1.11</td>
<td>22.29±0.24</td>
<td>25.08±0.13</td>
<td>47.37±0.20</td>
<td>4547.52</td>
<td>16.2±0.17</td>
<td>2.5±0.02</td>
</tr>
<tr>
<td>DE LD$_{95}$</td>
<td>98.0±0.18</td>
<td>26.26±0.21</td>
<td>26.75±0.09</td>
<td>53.02±0.63</td>
<td>5195.96</td>
<td>18.0±0.20</td>
<td>2.6±0.03</td>
</tr>
<tr>
<td>SEd</td>
<td>1.8389</td>
<td>0.2650</td>
<td>0.2182</td>
<td>0.6444</td>
<td>0.2159</td>
<td>0.0294</td>
<td></td>
</tr>
<tr>
<td>CD (0.05)</td>
<td>4.0066</td>
<td>0.5775</td>
<td>0.4755</td>
<td>1.4041</td>
<td>0.4705</td>
<td>0.0640</td>
<td></td>
</tr>
</tbody>
</table>

Means ± SE within a column followed by the same letter is not significantly different from each other at 5% level of significance (LSD)
the development and uptake of nutrients in field crops. Similarly, Mills-Ibibofoiri et al. (2019), revealed that DE supplementation in ornamentals resulted in positive effects against stress tolerance in flower and leaf features development. The earlier findings are in accordance with the present results. Therefore, treating DE in storage acts as an effective protectant against storage pests and as a potential supplement to silicon fertilizer which may be considered as an added advantage.

Conclusion

Contact toxicity studies of DE on S. oryzae revealed LD_{50} at the concentration of 1.27 mg/100 g and LD_{95} at the concentration of 86.11 mg/100 g. Among the treatments, LD_{95} was more effective in the case of both entomotoxic and germination studies. At LD_{95} concentration, almost 95% of the weevils were killed, thus making it an effective dose. Maximum mortality could be obtained within 5 days of exposure and insect mortality increased with an increase in dosage and period of exposure. In addition to toxicity, DE positively affected the agro-morphological characters (shoot length, root length, germination percentage, dry matter production and seedling vigour) of maize seeds. Thus, DE can be effectively deployed in the field of storage as a potent seed protectant against major storage pests like S. oryzae.

Conflict of interest

The authors declare that they have no conflict of interest.

REFERENCES

