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INTRODUCTION 

Long-term studies play an important role in under-

standing many ecological questions ranging from be-

havioural to community ecology (Franklin, 1989; Fred-

erick and Meyer, 2008; Janzen and Ellert, 2017; Kam-

pichler et al., 2014; Reinke et al., 2019). Long-term 

studies enable us to understand cyclic patterns in a 

given population otherwise impossible in short-term 

studies (Franklin, 1989; Karell et al., 2009). Modelling 

long-term ecosystem dynamics is useful in managing 

and conserving ecosystems (Ma et al., 2004; Shipley 

et al., 2020; Taft et al., 2002; Weimerskirch 2018; 

Wen et al., 2011). Several researchers have modeled 

various aspects of ecosystems concerning bird ecolo-

gy using long-term studies. These aspects include 

wetland productivity, food availability, land use, habi-

tat preferences, climate, hydrological trends, popula-

tion dynamics and conservation (Bowler et al., 2019; 

Briggs et al., 1997; Dean & Milton, 2001; Fewster et al., 
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2000; Frederick and Ogden, 2001; Karell et al., 2009; 

Knape et al., 2016; Maxwell et al., 2019; Messerendino 

et al., 2011; Reid et al., 2013; Reinke et al., 2019; Wei-

merskirch, 2018; Wen et al., 2011). However, the availa-

bility of suitable data requires well designed systematic 

monitoring, skill-based unbiased and continuous obser-

vations (Lindenmayer and Likens 2009; Russell et al., 

2002). 

One of the challenges in a long-term study is missing 

count creating uncertainty in ecological models (Atkinson 

et al., 2006; Franklin, 1989; Lindenmayer & Likens, 

2009; Russell et al., 2002). Many studies have suggest-

ed different statistical models, such as kNN; MICE, to 

overcome missing data problems (Nakagawa and Freck-

leton, 2008; Penone et al., 2014). Some of these models 

were also developed on bird populations (Penone et al., 

2014). These have been used on terrestrial as well as 

water birds, including waterfowls and waders. Most of 

the long-term studies have been conducted on North 

American and European birds, as a systematic census 

of birds is available from these regions (Baker et al., 

2019; Freeman et al., 2007, Kamp et al., 2021; Sauer et 

al., 2017; Shipley et al., 2020; Weimerskirch 2018).  

Painted Stork breeding population is well monitored at 

KNP and hence can be used to model the long-term 

temporal trend and effect of water availability. It is a large 

wader and is listed under the near-threatened category 

of IUCN (Birdlife International, 2019). Being a top preda-

tor in a wetland, it can also be used as a good indicator 

of ecosystem health (Frederick et al., 2009; Sergio et al., 

2008). However, despite the availability of information 

and statistical tools, no long-term based ecological mod-

els are available to predict the long-term impacts on the 

breeding population. This study is the first effort to com-

pile long-term breeding data of a large colonial bird from 

a wetland ecosystem in India. Authors use 36-year (1980

-2015) long-term data to develop a statistical model on 

the breeding population of Painted Stork in Keoladeo 

National Park (KNP). In addition, regional rainfall was 

taken as a surrogate of climate in the study. Such a long-

term-based statistical model will be useful in identifying 

the effect of climatic and hydrological patterns. 

The objective of this study was to first identify  

the trend in the breeding population of Painted Stork and 

water availability in KNP, second to identify, compare 

and assess the performance of a suitable  

imputation based statistical model to predict the  

breeding population; and the third to model the effect of 

climate water availability on the breeding population of 

Painted Stork.  

 MATERIALS AND METHODS 

Study area 

Keoladeo National Park (KNP) is a 29 km2 area situat-

ed on the edge of the Gangetic basin at the old conflu-

ence of Rivers Gambhir and Banganga in district Bha-

ratpur, Rajasthan, India. (Fig. 1). KNP supports a large 

diversity of fauna and flora, and has a unique mosaic of 

habitats that includes wetlands, woodlands, scrub for-

ests and grasslands (Vijayan, 1987). With the begin-

ning of monsoon, large number of colonial birds starts 

to aggregate in KNP. Congregation and nesting start 

from June-July and continue to stay till February-March 

in the park. These birds either forage locally or fly out to 

different wetlands outside the park. Several wetlands in 

the vicinity have been identified where colonial birds 

have been found to be foraging (Vijayan, 1991). Ecolo-

gy of KNP is dependent on monsoonal rainfall and wa-

ter received through the Ajan dam  located south of the 

park(Ali 1953; Ali and Vijayan, 1983). 

Data collection and analysis 

Breeding population (Nest count) 

Breeding population data was extracted from second-

ary data, i.e., published reports and park management. 

The data source included a decade-long (1980-1990) 

study of Keoladeo National Park by BNHS (Ali and Vi-

jayan, 1983; Sankhala 1990; Vijayan, 1987; Vijayan, 

1991). After 1990, KNP management started a heronry 

monitoring program (1991–till date). Above monitoring 

and research data includes nest count of 15 heronry 

species, including Painted Stork. Data from the above 

sources were compiled, and a series of nest counts 

were prepared from 1980 to 2015. There were few 

missing data (25%) in the nest count either because of 

nesting/breeding failure. 

Water availability 

Water released from Ajan Dam and local rainfall 

(rainfall observed at Ajan rainfall station) were correlat-

ed. Hence the volume of water released in the nesting 

year from various water dams/canals was designated 

as water availability in the nesting year (WR). In few 

years (2002, 2006, 2007, and 2009), it was observed 

that no water was released from Ajan Dam to the park, 

hence some zero values are present in the data. To 

remove zero value, data was transformed by adding a 

one-unit value to each data point (NYWR = WR+1). 

Water availability was represented at two temporal 

scales: the nesting year water availability and water 

availability five years before the nesting year. Two vari-

ables were derived from this information, one nesting 

year water availability (NYWR) and mean water availa-

bility in the five years before nesting (MPYWR5). 

NYWR represented immediate habitat quality and 

MPYWR5 long-term habitat quality. WR data was ob-

tained from the park management and rainfall data was 

downloaded from the Water Resource Department of 

Rajasthan Government website (Water Resource De-

partment Rajasthan, 2019). 
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Keoladeo is located in the Bharatpur district of eastern 

Rajasthan and hence rainfall received in the Eastern 

Rajasthan region was also used to represent regional 

water availability (RFR). This parameter was taken  

as a surrogate of habitat quality at a large spatial scale. 

Rainfall data was downloaded from the website of  

the Water Resource Department, Government of  

Rajasthan, India (Water Resource Department  

Rajasthan, 2019). 

Statistical analysis 

Trend identification of water availability and breed-

ing population 

All parameters, nesting year water availability (NYWR), 

mean water availability five years before nesting 

(MPYWR5), regional rainfall (RFR) and nest count 

were tested for long-term trend using Modified-

Kendall’s (MK) test (Hamed and Rao 1998). MK test is 

not affected by autocorrelation in the data hence used 

in the trend detection. Trend detection requires continu-

ous data which was a limitation in this study. This limi-

tation was overcome by generating imputed series of 

nest counts. Multiple Imputation Chained Equation 

(MICE) was used to generate five imputed series 

(imp1, imp2, imp3, imp4, and imp5) of nest count 

(Groothuis-Oudshoorn and Van Buuren, 2011,  Penone 

et al., 2014). Hence, two nest count series were tested 

for further analysis, 1) Imputed nest count series, with 

no missing values and 2) Observed nest counts, with 

missing values removed from the data. 

Data assessment and pre-modelling considerations 

A generalized additive model (GAM) was used to mod-

el the breeding population using GAMLSS package 

available in programme R (Stasinopoulos and Rigby, 

2007). Nest count data had several missing values with 

non-normal distribution (Shapiro-Wilk Test, W = 

0.91198, p value = 0.03374). Therefore other GAM 

distribution functions were tested for best fit. GAM can 

be used with non-normal distribution functions for pop-

ulation (count) data, giving more flexibility in data fitting 

(Lindén and Mäntyniemi, 2011; Stasinopoulos and 

Rigby, 2007; Wen et al., 2011). It is suitable to use 

negative binomial distribution for bird count data 

(Fewster et al., 2000; Knape, 2016; Miserendino et al., 

2011; Ramo et al., 2013; Wen et al., 2011). Therefore 

nest count data was tested only for negative binomial 

distributions (BNB, NBI, NBII, ZIBNB, NBF, ZINBF, 

ZINBI, and ZANBI) available in GAMLSS package (see 

Stasinopoulos and Rigby, 2007 for more details). The 

best distribution function was selected using the Gen-

eralized Akaike Information Criterion (GAIC, smaller 

values show a better fit) (Akaike, 1974).  

Model consideration and assessment 

It was hypothesized that the breeding population of 

Painted Stork (Nest Count) is a function of the present 

(NYWR), long-term (MPYWR5) and regional (RFR) 

water availability. So, the following model was tested 

for its validity and performance, 

Nest Count ~ Year + NYWR + MPYWR5+RFR  ….Eq.1 

Fig. 1. Map showing location of Keoladeo National Park in India 
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Year (time) was included to test the effect of any other 

temporal factors on the breeding population. GAM 

models were run in the program R, which included all 

possible predictor variables as mentioned in the above-

hypothesized model. Final predictor variables were 

shorted using the stepGAIC() function in the GAMLSS 

package. This method excludes a variable with the 

highest p-value based on Chi-square statistics. Further 

other alternate models are assessed and compared 

using GAIC values. Model suitability was tested using 

Worm plots. Worm plot, a de-trended Quantile-quantile 

(Q-Q) plot, allows visual assessment of model fit to the 

data. Pseudo R Squared value (Generalized R 

Squared) was used to find the selected model’s good-

ness of fit. Pseudo R square is a method to calculate 

deviance justified by the model. The above model was 

applied to both imputed nest count and observed nest 

count series to identify the effect of missing values on 

model performance. 

RESULTS 

Trend identification of water availability and  

breeding population 

Water released in the nesting year (NYWR) showed 

large variation (Mean = 320.7 mcf, SD= 203.03) with 

insignificant negative trend (Corrected Zc=-1.02, Tau= -

0.12, Sen’s slope= -3.0, New p-value= 0.31). Water 

availability in the five years prior to nesting (MPYWR5) 

showed significant negative trend over 36-years 

(Corrected Zc=-2.7, Tau= -0.34, Sen’s slope= -4.97, 

New p-value= 0.007). A small increase was detected in 

regional rainfall (RFR) (Corrected Zc= 1.33, Tau= 0.21, 

Sen’s slope= 3.28, New p-value= 0.08). Breeding popu-

lation showed a significant negative trend (Corrected 

Zc=-3.16, Tau= -0.49, Sen’s slope= -56.18, New p-

value= 0.002) over 36-years (1980 - 2015). Above re-

sults were obtained using observed nest count series, 

similar negative trends were observed with the imputed 

series of nest count in the trend detection (Table 1).  

Pre-modelling distribution fit assessment and GAM 

model performance 

All tested negative binomial distributions performed well 

for nest count distribution fit (see Fig. 2) except for 

ZIBNB, for which algorithms did not converge. Negative 

binomial I and II distribution function were found to be 

the most appropriate to model the data sets (see Table 

2). Performance of NBI and NB II were assessed in the 

final GAM model. 

GAIC values obtained from stepwise GAMLSS are sum-

marized in Table 3. NB II model performed better than 

the NB I GAM model (see worm plot in Fig. 3). Visualiza-

tion of worm plot clearly shows the few values are outside 

the confidence range of the tested model for NBI. NB II 

performed better, hence results obtained from it were 

used to interpret the model outcome. NBII based GAM 

model adequately explained the variance of the nest 

count (Pseudo R Square = 0.63). Time and water re-

leased in the nesting year (NYWR) were selected as the 

predictor of the nest count in the final model. Water avail-

ability prior to nesting year (MPYWR5) and regional rain-

fall (RFR) were excluded from the final model. Imputed 

series -based model also performed similarly (Table 4 

and Fig. 4). Imputation-based models could explain 43% 

to 63% variability in the nest count (Table 3). 

Effect of predictor variables on the breeding  

population of Painted Stork 

The breeding population has significantly declined in 

the past 36 years (Estimates= -0.04, Fig. 5A). Data fit-

ted well except for one year (1986) when an extremely 

low number of nests were recorded. Maximum reduc-

tion in the nest count was observed between 2000-

2009 (45%) from the base decade's mean population 

(Table 5). Periodic observation of mean nest count 

shows >80% decline in the breeding population com-

pared to the base decade, i.e., 1980-1989 ( Table 5). 

Local water availability (NYWR) has a positive effect on 

nest count (Estimates = 0.00213). Nest count has a log-

linear relationship with local water availability ( Fig. 5B). 

Nest Count is higher when local water availability 

(NYWR) is between 400-600 million cubic feet (Fig. 

5B). It is observed that in few years, despite no rainfall 

deficit, KNP received less than the long-term mean of 

water released (NYWRMean = 320 million cubic feet) 

(Fig. 6). The breeding population was negatively affect-

ed by time (year) (Table 3), confirming a negative tem-

Variables/  

Parameters 
Corrected Zc Tau Sen's slope New Variance New p- value  

Imp 1 -4.91E+00 -5.65E-01 -2.91E+01 5.82E+03 8.92E-07 

Imp 2 -4.01E+00 -4.61E-01 -2.61E+01 5.82E+03 6.02E-05 

Imp 3 -4.65E+00 -4.83E-01 -2.93E+01 4.77E+03 3.36E-06 

Imp 4 -4.85E+00 -5.57E-01 -3.21E+01 5.83E+03 1.26E-06 

Imp 5 -3.86E+00 -4.44E-01 -2.78E+01 5.83E+03 1.12E-04 

Table 1. Summary of Mann-Kendall’s trend test with imputed series of nest count 
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poral trend as observed in MK-Kendall’s test. 

DISCUSSION 

Water availability and breeding population of Paint-

ed Stork 

Water availability has declined significantly in the KNP, 

and the expectedly breeding population of Painted 

Stork has also declined in the past 36-years. The maxi-

mum population decline was observed between 2000-

2009, a decade of frequent droughts. However, the 

sharp decline in the breeding population started imme-

diately after the severe drought of 1987, after 1987 it 

never matched the historical levels (Mean1980-1989 = 

1061, Fig. 7). Post-1998, there have been frequent 

droughts in the district of Bharatpur, hence limited wa-

ter supply to KNP.  

The volume of water released to the park explains the 

food abundance (fish) in the KNP (Vijayan, 1991), and 

hence it is expected to limit the breeding population of 

Painted Stork. The relationship between water availa-

bility and the breeding population is log-linear and not 

linear (Fig. 5B). It can be attributed to the reduction in 

prey density with an increase in the volume of water; 

hence too much volume could indicate poor habitat for 

breeding of Painted Stork (Chastant and Gawlik, 2018). 

Also, the Painted Stork is a tactile forager, and it is de-

pendent on physical contact for capturing the prey than 

visual senses; hence the volume of water can be detri-

mental to foraging efficiency (Urfi, 2011). Gawlik (2002) 

manipulated the depth of water and found that the wad-

ers are more successful in capturing the prey in shal-

lower water than deeper, indicating the significance of 

water volume. Shallow water is a better habitat than 

deeper water for waders such as Painted Stork. An 

optimum volume of water is required to ensure the 

availability of prey, and if the volume becomes high, it 

decreases the effective density of the prey and hence 

reduces prey availability. 

A significant relation of the breeding population was 

expected with water availability before the nesting year 

(MPYWR5) as observed in few studies (Reid et al., 

2013, Wen et al., 2011). Though mean five-year water 

availability before nesting season (MPYWR5) was not 

Distribution Mu (SE) Sigma (SE) Nu (SE) Tau (SE) GAIC 

BNB 6.602583 (0.0001367) -2.797e+01  (5.184e-04) -2.642e-01  (6.098e-06) - 384.8499 

NBI 6.593 (0.178) -0.2352 (0.2560) - - 382.9027 

NBII 6.5918 (0.1778) 6.3562 (0.3114) - - 382.9028 

NBF 6.593 (0.178) -0.2356 (13.9878) 0.6932 (1.0609) - 384.9027 

ZINBF 6.593 (0.205) -0.2356 ( 0.2203) 0.69318 (0.01672) 
-36.04   

20000.00 
386.9027 

ZIBNB Algorithm did not converge 

ZINBI 6.5932 (0.2049) -0.2352 (0.2202) -36.04 (20000.00) - 384.9027 

ZANBI 6.5928 (0.1783) -0.2316 (0.2592) -12.61 (109.52) - 384.8866 

Table 2. Summary of the tested GAM distribution function 

Table 3. Performance of selected GAM model 

Distribution Parameters Estimates 
Standard Error/

Total Variance* 
t value p value AIC 

Pseudo R 

Square 

NB II 

(Intercept) 92.0829055 18.2442744 5.047 4.70E-05 

362.07 0.63 Year         -0.0435887 0.0091491 -4.764 9.34E-05 

NYWR         0.0031346 0.0008044 3.897 0.000775 

NBI 

(Intercept) 1.09E+02 3.59E+00 30.438 <2e-16 

368.22 0.53 Year         -5.20E-02 1.79E-03 -29.032 <2e-16 

NYWR         2.13E-03 9.33E-04 2.283 0.0329 

1076 



 

Dwevedi, R. et al. / J. Appl. & Nat. Sci. 13(3), 1072 - 1082 (2021) 

found significant in this study, it may be affecting the 

habitat quality in the long term. Frederick and Ogden 

(2001) showed infrequent drought (poor water availabil-

ity) could positively impact the breeding population of 

colonial birds. Infrequent droughts allow nutrition en-

richment of wetlands and hence more fish/

macroinvertebrates productivity (Grutreuter et al., 

1999). An observation of breeding population Painted 

Stork, between 1980-1989, show presence of infre-

quent droughts rather continuous and hence more fluc-

tuation in nest count during this period.  However, post-

1997, there have been frequent droughts and less wa-

ter was released to the park, resulting in the continuous 

degradation of habitat. Authors are of the view that 

these frequent droughts resulted in poor habitat quality 

and prey availability. This limited the breeding popula-

tion, even when some water was released to the park.  

Regional rainfall has increased slightly ( Fig. 8); there-

fore, the authors expected an increase in the breeding 

population of Painted Stork. Nager et al. (2010) ob-

served that the breeding population of Flamingos and 

Little Egret were dependent not only on the local wet-

lands but also on the network of wetlands at a regional 

scale, suggesting the importance of regional rainfall. 

However, in this study breeding population of Painted 

did not show a significant link with regional rainfall. 

Application of GAM and MICE model 

The negative binomial II GAMLSS model was found to 

be the best to model the Painted Stork breeding popu-

lation expectedly. Though the tested model explained a 

large variability in the breeding population, exploration 

of other factors is essential to explain it completely. 

Unexplained variability in the breeding population could 

be because of factors that are not tested in the model, 

such as human disturbance, prey diversity, intra/

interspecific competition, nest substrate quality, and 

sex-ratio (Brooks and Dean, 2008, Urfi, 2011, 

Konovolav et al., 2019). 

Many studies have obtained similar results with other 

waterbirds as well (Fewster et al., 2000, Wen et al., 

2011, Reid et al., 2013). Wen et al., 2011 and Reid et 

al., 2013 found a negative binomial GAM model ex-

plaining the waterbird abundance and assemblage in 

relation to climate and hydrology of the Murray Basin in 

Australia. Fewster et al., 2000 applied GAM models to 

identify the population trend of 13 farmland species of 

Britain. Most studies suggest that both negative binomi-

al I and II are suitable in describing population models 

(Lindén and Mäntyniemi 2011). However, in our study 

negative binomial, I GAMLSS model performed poorly 

(Fig. 3A). 

This study successfully demonstrates the utility of 

Data Parameters Estimates 
Standard Error/

Total Variance* 
t value P value 

Pseudo R 

Square 

Imputed 1 

  

  

(Intercept)  1.15E+02 1.47E+01 7.827 0.000 

0.63 Year         -5.47E-02 7.35E-03 -7.443 0.000 

NYWR         1.56E-03 4.11E-04 3.793 0.000 

Imputed 2 

  

  

(Intercept)  1.26E+02 1.63E+01 7.759 0.000 

0.63 Year         -6.04E-02 8.13E-03 -7.425 0.000 

NYWR         1.68E-03 4.35E-04 3.867 0.000 

Imputed 3 

  

  

(Intercept)  93.6973967 19.6312925 4.773 0.000 

0.43 Year         -0.0439721 0.0098215 -4.477 0.000 

NYWR         0.0015847 0.0005664 2.798 0.000 

Imputed 4 

  

  

(Intercept)  1.37E+02 1.55E+01 8.825 0.000 

0.65 Year         -6.56E-02 7.75E-03 -8.467 0.000 

NYWR         1.58E-03 4.32E-04 3.662 0.000 

Imputed 5 

  

  

(Intercept)  99.4452923 16.1885062 6.143 0.000 

0.59 Year         -0.0470955 0.0081015 -5.813 0.000 

NYWR         0.0024047 0.0004881 4.927 0.000 

Pooled Estimates 

of Imputed Data 

  

  

Intercept 114.2285 660.3739 

  

0.000   

Year -0.05435952 0.000165594 0.000   

NYWR 0.00176288 3.78E-07 0.000   

Table 4. Performance of imputed nest count series based GAM models 
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Fig. 3. Worm plot comparison of selected A) NBI and B) NB II models  

Fig. 2. Worm plot of tested GAMLSS distribution 
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MICE imputation in modelling the breeding population. 

Both, imputed nest count series (no missing values) 

and real nest count series (with missing data) per-

formed well and can be used for modelling. Poor per-

formance of real data was expected because it had few 

missing values; however, model fit of both imputed and 

real data proves otherwise (compare NBI and NBII 

worm plots in Fig. 3 and Fig. 4). However, inconsistent 

nest count series is not suitable in interpreting temporal 

patterns, as it eliminates missing value, resulting in loss 

of information and a biased interpretation (Nakagawa 

and Freckeleton 2008, Atkinson et al., 2006). There-

fore, it is best to use imputation-based models to pre-

dict the population pattern when data is missing from a 

data series. 

This study is an important step in finding the effects of 

long-term phenomenon such as rainfall patterns and 

climate change on the breeding population. This study 

becomes even more significant because of limited evi-

dence from the Indian subcontinent. It will help in ac-

quiring more knowledge on modeling the breeding pop-

ulation of other waterbird species and provide valuable 

information for the conservation of the species and their 

habitat. 

Conclusion 

The Generalised Additive Model (GAM) and Multiple 

Imputation Chained Equation (MICE) model performed 

well in modelling long-term Painted Stork breeding pop-

Fig. 4. Worm plot of imputation data based GAM models, First row: NBI and Second row: NBII (Imputed data sets imp1, 

imp2, imp 3, imp4 and imp5 are arranged from right to left) 

Fig. 5. Partial regression plot of A) ‘Year’ (Time) and B) ‘NYWR’ (Water released in the park during nesting) for fitted 

GAM model. 

Fig. 6. Annual variation in volume of water released in the 

nesting season (NYWR), solid blue line show the long-

term mean (320.1 mcf). 
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ulation. Negative binomial II was preferred over other 

binomial distributions to model the breeding population 

variation. MICE base models are suggested to be used 

if missing data is present in the population count. Local 

water availability, i.e., water released to the park each 

nesting season, is the most important factor explaining 

the variability in the breeding population. It is observed 

that frequent disruption in water release has led to the 

large population decline indicating poor habitat. There-

fore, there is an urgent need to restore continuous wa-

ter release in each nesting season to ensure the revival 

of Painted Stork breeding population to historical levels. 

Though water availability explains the large variability 

of Painted Stork breeding population, other factors, 

such as human activity, pollution; also needs consider-

ation to further explain the variability in the breeding 

population. In the authors’ view that a long-term  

systematic, landscape-level and institutional monitoring 

of breeding population is needed for better understand-

ing and conservation initiative of Painted Stork, and in 

general, breeding birds at Keoladeo National Park. 
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