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Review Article 

INTRODUCTION 

Arsenic poisoning has been common in various coun-

tries like India, Argentina, Bangladesh, China, Europe-

an countries, Nepal, the United States, Vietnam  

(Krämer, 2005; Shaji et al., 2021). In addition to its nat-

ural sources of occurrences, the excessive usage of 

arsenic as wood preservatives, pesticides, food addi-

tives led to the increased arsenic concentration in soil 

and underground water (Peryea and Creger, 1994; 

Hingston et al., 2001). Consumption/drinking of this 

arsenic polluted water is causing serious health effects 

to humans, plants and animals. The carcinogenicity of 

arsenic is also quite high and can cause cancer of the 

skin, bladder, kidney or lung even with minute expo-

sure. In plants, necrosis, stunted growth, low yield, 

withered leaves and even death are observed with ar-

senic exposure (Mandal and Suzuki, 2002; Abbas et 

al., 2018; Palma-Lara et al., 2020). Therefore, this 

pressing problem has to be addressed efficiently. 

Conventional physical and chemical methods like coag-

ulation, ion exchange, lime softening, adsorption, filtra-

tion etc., though are effective to an extent, can be ex-

pensive, involve high labour in handling, and create 

additional waste products during the process 

(Srivastava and dwivedi, 2015). An environmentally 

friendly process with little maintenance and cost-

effectiveness is the use of plants (phytoremediation) or 

bacteria (bioremediation) for the removal/stabilization/ 

conversion of arsenic into a less toxic form. With the 

advancements in genetic engineering, the usage of 

transgenic plants or bacteria for better and easy remov-

al of arsenic is also in practice (Irshad et al., 2021). 

This review gives a detailed idea of the conventional 

methods in practice and their better alternatives, em-

phasising on the types of plants that aid in the phytore-

mediation of arsenic. The safe disposal of arsenic ad-

sorbed plants has also been discussed here.   
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SOURCES AND OCCURRENCE OF ARSENIC 

Arsenic(Z=33) is the 20th most abundant element in the 

geosphere and it has an average abundance of about 5 

mg/kg in the earth’s crust (Garelick et al., 2008). It is a 

colourless, odourless and tasteless poisonous element 

(Katsoyiannis and Zouboulis, 2006). It occurs naturally 

as ores, usually in combinations with sulphur like Real-

gar (AsS), Orpiment (As2S3), Arsenopyrite (FeAsS) 

(Magalhães, 2002). Weathering of these minerals or 

rocks would form the particulate arsenic (as Arsenic 

trioxide), which then dissolves with rainwater and enters 

the soil /groundwater. Elevated concentration of arsenic 

is seen in the groundwater in countries like Argentina, 

Bangladesh, Chile, China, India, Mexico and the United 

States of America (Melkonian et al., 2011). In the soil 

system, the pH governs the availability of arsenic

(Signes-Pastor et al., 2007).  

Volcanic eruptions, dust storms, forest fires are some of 

the natural causes of the availability of arsenic. The 

process of arsenic occurrence in the environment is 

enhanced due to anthropological usage like mining, 

metallurgy, processing of ores, burning of fossil fuels, 

industrialization, its use as a wood preservative etc. 

(Taylor et al., 2003;  Raj, 2019). Apart from these, the 

use of pesticides and herbicides containing arsenic, 

inclusion as an additive in the feed of livestock has led 

to the drastic elevation of the arsenic concentration in 

the soil and water, causing several toxic effects to 

plants and animals (Smedley and Kinniburgh, 2002; 

Irshad et al., 2021). 

Arsenic is found majorly in four oxidation states: arse-

nate (+5), arsenite (+3), arsenic (0), and arsenide (-3). 

Usually, arsenic in -3 and 0 oxidation states are found 

to be unstable in soil (Xie and Huang, 1998). The inor-

ganic forms of arsenic are common in mineral forms 

and are highly toxic. The inorganic form when enters 

the food chain gets methylated and less toxic organic 

forms like MMA (Monomethyl arsine), DMA (Dimethyl 

arsine), TMA (Trimethyl arsine) are formed. Other or-

ganic forms of arsenic like arsenobetaine (which is pos-

sibly produced by zooplanktons or phytoplanktons)

(Edmonds and Francesconi, 1988; Lee and Wen, 

2019), arsenocholine (immediate precursor of arseno-

betaine) (Landner, 1998; Chen et al., 2020) can be tak-

en up by some fish, shellfish and can be buildup in its 

tissues. This is usually referred to as ‘fish arsenic’ and 

is less harmful (Chou and De Rosa, 2003). Arsenate is 

the chemical analogue of phosphate and is the thermo-

dynamically stable form in aerobic conditions, while 

arsenite is dominant in anaerobic conditions like sub-

merged soil conditions (Abedin et al., 2002; Signes-

Pastor et al., 2007) and also in flooded water condi-

tions. This is the reason for increased arsenite concen-

tration in plants like rice which need flooded water con-

ditions (Yamaguchi et al., 2011; Awasthi et al., 2017). 

HISTORICAL USE OF ARSENIC 

Arsenic was first isolated in 1250 CE. And ever since it 

has been used historically as a drug in the treatment of 

skin infections and for beautification (Shrivastava et al., 

2015). It has also been utilized as a pesticide for grape 

plants, cotton and orchards in arsenate (AsO4
3–) form

(Taylor et al., 2003). About 50% of arsenic is used in 

the production of pesticides, and 30% in the formulating 

of wood preservatives ( e.g. chromated copper arse-

nate- CCA) to make the wood resistant to decay 

(Garelick et al., 2008; Rahman and Hasegawa, 2011). 

CCA has been applied onto the timber that is specially 

used for marine conditions as it preserved it from being 

damaged by wood-boring crustaceans and molluscs 

and decay by soft rot fungi and lignolytic bacteria 

(Brown et al., 2001).   

Arsenite has been used as rodenticide, herbicide, and 

insecticidal bait because of its high solubility and rapid 

toxicity. Johnson grass (Sorghum halepsense), grown 

primarily in cotton fields, can be controlled by the use of 

dimethylarsinic acid and disodium methyl arsenate. 

Cocadylyic acid, marketed with the name ‘Agent Blue’ 

used by military forces in the 1960s for ‘rice-killing op-

erations’ of their enemies, is an organic arsenic com-

pound with high solubility (Bencko and Foong, 2017). 

Arsenic was used as an additive to livestock feed until 

its ban at the end of the 20thcentury (Jones, 2007). 

Roxarsone (3-nitro4-hydroxyphenyl arsonic acid) was 

used in chicken farming feed, as it aided in weight gain, 

control of infectious agents, enhanced feed utilization 

and improved meat pigmentation (Fisher et al., 2015). 

During 1900 - 1955, arsenic was observed to be used 

to control ticks in cattle (Rahman et al., 2019). Other 

applications of arsenic usage are lead-acid batteries for 

automobiles, light-emitting diodes, and semiconductors 

(Chou and De Rosa, 2003).  

Incidents related to the consumption of arsenic-

contaminated food were also recorded historically. The 

Manchester epidemic of 1900 due to consumption of 

arsenic-contaminated beer (Phillips and French, 1998) 

and the acute arsenic poisoning outbreak due to con-

taminated soya sauce in Japan during 1956 (Mizuta et 

al., 1956) are noteworthy episodes in history (Naidu et 

al., 2006). 

TOXIC EFFECTS OF ARSENIC ON BIOSPHERE 

World Health Organization (WHO) has set a limit with a 

concentration of arsenic below 10 μg/L as safe for 

drinking water (https://www.who.int/news-room/fact-she 

ets/detail/arsenic) while the national standard for drink-

ing water in Bangladesh is 50 mgL-1 (Islam et al., 2015). 

However, some studies show that even that leads to 

the mortality risk (D’Ippoliti et al., 2015). Arsenic is a 

highly toxic metal and a class- 1 carcinogen affecting 

https://www.who.int/news-room/fact-sheets/detail/arsenic
https://www.who.int/news-room/fact-sheets/detail/arsenic
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the liver, lung, skin, kidney and bladder (Raj and Singh, 

2015). Substances that are categorized under class-

1 carcinogens can definitely cause cancer with 

enough supporting evidence (McGregor et al., 2010). 

In addition to causing cancer, inorganic arsenic is 

also seen to act as a potential endocrine disruptor, 

specifically influencing glucocorticoid receptor (GR)- 

associated gene expression, although detailed 

mechanism is yet to be under stood (Meakin et al., 

2019). 

In the plant system, arsenic competes with phosphate 

and enters through phosphate channels, leading to 

phosphate imbalance, formation of unstable adducts 

and thereby leading to lesser production of ATP in the 

cell (Sayantan and Shardendu, 2017). As(V) also hin-

ders the phosphate of nucleic acid, thereby the DNA 

synthesis, while As(III) binds to sulfhydryl groups of 

peptides and proteins and interferes with their activities

(Mishra et al., 2017). Additional toxic effects of arsenic 

include oxidative stress, alterations in cell signalling 

and DNA repair (Kozul et al., 2009). Toxicity of arsenic 

is in the order: arsenite > arsenate > MMA > DMA

(Carbonell-Barrachina et al., 2000). 

Plants  

Arsenic is a non-essential element and is toxic to plants 

as well (Garg and Singla, 2011). When arsenic enters 

the plants, they interfere with the various metabolic 

processes, induces oxidative stress due to the for-

mation of reactive oxygen species (ROS) like superox-

ide radical (O2−), hydroxyl radical (.OH), and hydrogen 

peroxide (H2O2)  during the conversion of As(V) to As

(III) (Sharma, 2012). Diminishing in the tissue respira-

tion and energy supply can also be seen in the plant 

due to impaired glycolysis and the TCA cycle. This is 

due to the replacement/ interaction of phosphate and 

sulfhydryl groups (-SH ) of enzymes /biomolecules with  

As (V) and As (III) respectively (Thakur et al., 2020).  

Visible toxic effects observed in plants include inhibition 

of seed germination, discoloured-stunted roots, necro-

sis, chlorosis, decreased photosynthetic activity, with-

ered leaves, reduced fruit and grain yield, and in ex-

treme cases, even death. In most plants, the arsenic 

toxicity threshold limit in sandy and clay soils is 40 and 

200 mg kg-1, respectively (Vithanage et al., 2012).  

Literature supports the higher accumulation of arsenic 

in plants like paddy because of higher bioavailability in 

soil, which is due to the fact that they are to be cultivat-

ed in water bed conditions. Therefore, they (Oryza sati-

va) are seen to accumulate 10 times more arsenic than 

other cereal plants. Reduced amylolytic activity is seen 

in wheat in arsenic toxic conditions. Arsenic is seen to 

obstruct the pigment biosynthesis through inhibition of 

tetrapyrrole synthesis when it reaches the chloroplast 

(Mishra et al., 2017).  

Animals 

Animals also show certain toxic effects when exposed 

to arsenic like abdominal pain, weakness, nausea, di-

arrhoea and death. Mucosal epithelial necrosis and 

renal tube and gastrointestinal capillaries degeneration 

are seen. Exposure to a long time can induce depres-

sion, dehydration, frequent urination, imbalance in 

body temperature. Cutaneal arsenic exposure can 

cause drying up and deadening of the skin 

(Shrivastava et al., 2015). 

It has also been reported that arsenic inhalation in ro-

dents can lead to nasal flow discharge and irritation in 

the eye. Autopsy reports showed reddened edematous 

gastric and intestinal mucosa, yellowing of liver, and 

lung edema in arsenic exposed animals (Shrivastava et 

al., 2015). Partial fibriosis is noticed in cattle if arsenic 

in the feed concentration in higher than 250ppm lead-

ing to stiffness and unsymmetrical growth of hocks and 

limb joints. In goats, an increase in the heart rate and 

respiratory rate, congested mucosa with drooling of 

saliva, convulsion, polyuria and reduced weight is ob-

served (Mandal, 2017). 

Humans 

Humans show many effects due to exposure to arsenic 

through water and food. Almost every food like rice, 

vegetables and even meat is seen to be contaminated 

with arsenic and with imports and exports of food, even 

people living in non-arsenic contaminated areas are 

getting exposed to arsenic (Upadhyay et al., 2019). 

Oral exposure of arsenic can show certain long term 

effects like melanosis (hyperpigmentation), the appear-

ance of small corns or warts on the palms, soles, and 

torso; leukomelanosis (hypopigmentation), carotid ath-

erosclerosis, and cardiovascular diseases (Chou and 

De Rosa, 2003). Inhalation of arsenic is seen to cause 

respiratory diseases, impaired lung functions

(Slavkovich et al., 2013), peripheral nervous disorders 

and impaired cognitive abilities and motor functions. 

Exposure to arsenic is also observed to be associated 

with diabetes, hypertension (Lalita et al., 2012), devel-

opment of arsenicosis, reproductive and developmental 

defects (Visoottiviseth et al., 2002). As defined by 

WHO, arsenicosis is a “chronic health condition arising 

from prolonged ingestion (not less than 6 months) of 

arsenic above a safe dose, usually manifested by char-

acteristic skin lesions, with or without the involvement 

of internal organs” (Das and Sengupta, 2008). 

Arsenic is observed to impede the metabolic pathways, 

alter the metabolites specially involved in the metabo-

lism of aminoacid, pyruvate and Krebs cycle (Martin et 

al., 2015). They also act as endocrine and mitochondri-

al function disruptors (Howard, 2018; Sodhi et al., 

2019). It also shows effects on hormonal regulation via 

retinoic acid, thyroid hormone and estrogen receptors. 
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Arsenic exposure may even compromise the body’s 

immune response (Kozul et al., 2009). The methylation 

of inorganic arsenic, which is an important process can 

be affected by factors like smoking tobacco. It is shown 

to decrease the methylation process and causes the 

deposition of inorganic arsenic in hair, bone and skin, 

and altering the DNA repair process (Melkonian et al., 

2011). 

METHODS TO REMEDIATE ARSENIC  

CONTAMINATION 

The contaminated sites are hazardous and serve as a 

potential threat to all life forms. Therefore, it is neces-

sary to remediate the contaminated sites. For this con-

ventionally, the methods implemented may be to dig up 

the contaminated soil and transfer it to a landfill 

(Joseph et al., 2018), usually away from the human 

activity, or contain the area of contamination or leach-

ing (use of strong chemicals to desorb/ leach metals 

from the soil) (David, 1995). Any of these conventional 

methods do not solve the issue but simply would carry 

the problem from one place to another. It would also 

create a risk of toxicity during handling, transportation 

and excavation in addition to the high-cost factor (Mary, 

2011).  

Therefore, proper methods are to be employed which 

can destroy or convert the contaminant to a less-toxic 

form. Many physico-chemical methods are employed 

for this process like precipitation, filtration, sedimenta-

tion, ion exchange, etc. Alternatively, biological meth-

ods like phytoextraction, phytostabilization, phytodegra-

dation, rhizodegradation, phyto filtration etc. are also 

used.  

Physico-chemical methods 

Physico- chemical methods involve the separation or 

removal of arsenic from the contaminated soil or water 

samples with the help of certain physical methods like 

sieves, electrodes or through chemicals like alumina, 

alum or the combination of both. Most electro/chemical 

methods help take off or separate As(V) than As (III). 

Therefore, treatment with strong oxidizing agents like 

chlorine, ferric chloride, permanganate, ozone or hydro-

gen peroxide is recommended to convert As(III) into As

(V) (Ortega ., 2017).  The most commonly used meth-

ods are discussed below: 

Coagulation 

Coagulation is the process through which the dissolved 

arsenic can be converted into a solid or a semi-solid 

form with the addition of certain coagulants. The rough 

aggregation with the destabilized metal particles along 

with the coagulants is known as floc (Hashmi and 

Pearce, 2011). The most commonly used coagulants 

for arsenic remediation are alum (aluminium sulphate) 

and ferric chloride. Both of these chemicals are equally 

effective for the removal of arsenic on a molar basis. 

When the low doses of these coagulants are added, it 

leads to the formation of flocs with the rough aggrega-

tion of the colloidal particles, while an amorphous metal 

hydroxide floc is formed with the high doses of coagu-

lants into which the colloidal particles get entrapped 

(Hering et al., 1996). The pH range for coagulation with 

iron is seen to be 5-8, while with alum is 5-7 (Grill et al., 

1987). Adsorption, occlusion, filtration or sedimentation 

methods can be used to remove the coagulated materi-

al. The disadvantage of this method is the use of chem-

icals that can add colour and/or odour to the sample. 

Also, large volumes of contaminated sludge are gener-

ated with this method which causes disposal related 

problems (Kochian, 2004). 

To prevent this problem, electrocoagulation can be 

used where coagulation can be achieved with the help 

of electrodes. The amount of sludge generated gets 

reduced as no coagulants are added. Hence, electro-

coagulation is observed to be effective than the chemi-

cal coagulation method in treating water bodies 

(Nidheesh and Singh, 2017).  The steps involved in this 

method are: Formation of coagulants by electrolytic 

oxidation are i) Contaminants destabilization, suspen-

sion of particulate and breaking of emulsion and ii) Floc 

formation by aggregation of the destabilized particles 

(Ali et al., 2011). Iron and aluminium electrodes are 

most commonly used for this process. Titanium, copper 

and zinc electrodes can also be used. The major draw-

back of this method is passivation and severe corrosion 

of electrodes in field conditions (Nidheesh and Singh, 

2017). 

Lime softening 

Lime softening, a method commonly used for removing 

the hardness of water can also be used to remove arse-

nic in dissolved form. The addition of Ca(OH)2 and 

Na2CO3 to water will increase its pH due to hydroxide 

ion release and precipitates substances other than 

magnesium and calcium. Arsenic also precipitates 

along with this and comes out in the calcifier with the 

lime sludge produced by the process (Kochian, 2004). 

The process is highly pH-dependent with an optimum 

10.5 – 11. About 95% of As can be removed from the 

contaminated water at this pH, whereas only 30% can 

be removed at pH 8.5 (Litynska et al., 2017). The use of 

Cl can increase the removal efficiency of arsenic. At the 

end of the process, treatment with acid is probably nec-

essary to lower the pH to the optimum drinking levels

(Choong et al., 2007). Litynska and Babakov (2019) 

asssed  this method as a non-environmental friendly 

one with high need for chemicals, large quantities of 
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waste generation, and medium treatment efficiency.  

Adsorption 

Adsorption is a process through which the particles will 

bind to a surface and will be held together with chemi-

cal or physical forces (Hashmi and  Pearce, 2011). Ad-

sorption is a process through which the particles will 

bind to a surface and will be held together with chemi-

cal or physical forces (Hashmi  and Pearce, 2011). 

Ion exchange works on adsorption where the charged 

particles in the solution are exchanged with the solid 

particles. Ions would be held electrostatically onto the 

surface of a solid phase which can be exchanged with 

the similarly charged ions in the solution. For arsenic 

removal, traditional ion exchangers like clay can be 

used. The use of hybrid resins like the one made with 

Iron (III) oxides and HFO particles which have high af-

finity to both As(v) and As(III), can be effective as de-

scribed by  Greenleaf et al. (2006). The new form of ion 

exchange material used nowadays is the ion- exchange 

fiber, which is seen to have high adsorption/ desorption 

rates with ease to fabricate (Chaudhary and Farrell, 

2014). Polyacrylonitrile (PAH) fibers, polyethyelene 

coates polyproplylene fibers and cellulose fibers are 

being used recently for arsenic removal. Lee et al. 

(2017) used the affordable and reusable amine-doped 

acrylic ion-exchange fibers, which showed a maximum 

adsorption capacity of 205.3 ± 3.6 mg/g As(V). The 

major drawback of this type of separation process is 

the use of concentrated aggressive chemicals such as 

acid, salt or alkali as regenerants which causes difficul-

ties in disposing of this waste (Hashmi and  Pearce, 

2011).  

Chemical Adsorption occurs when arsenic is adsorbed 

onto a chemical surface. The most commonly used 

adsorbent is the activated alumina (Al2O3). The arsenic 

ions in the solution can be removed by adsorbing onto 

the active sites of an oxide (Al2O3). The optimum pH for 

this process is observed to be between 5 and 5.6

(Katsoyiannis  Zouboulis, 2006). Once the adsorption 

process is completed, the alumina is subjected to a 

caustic bath, which aids in the removal of the arsenic 

adsorbed layer. Then the alumina is to be rinsed with 

sulfuric acid for neutralization to occur. A prime disad-

vantage of this method is the loss of adsorptive capaci-

ty of alumina of about 5- 10% for each run. As a result, 

it has to be replaced typically after every three to four 

generations (Kochian, 2004). The disposal of the 

sludge generated can be done by the cementitious so-

lidification method, i.e., by either combining the sludge 

with the concrete in a controlled ratio or with clay for 

the process of brick manufacturing (Mandal et al., 

2016). Nanotechnology also has applications in this 

process as they are non-toxic and with better sorption 

capacity (Song et al., 2020). For arsenic removal, or-

ganic nanoparticles, silicon-based nanomaterials, car-

bonaceous nanomaterials are in use. Sadeghi et al. 

(2020) synthesised graphene oxide nano ribbon 

(GONR), by unzipping of multiwalled carbon nano-

tubes. GONR are seen to be efficient in this ultrasonic 

assisted adsorption of arsenic. 

Membrane technology 

This technology typically includes methods that use 

membranes as filters to remove the pollutant (arsenic) 

from the sample. Reverse osmosis and dialysis can be 

included in this process. The success of filtration will 

depend on choosing the proper membrane with the 

appropriate pore size. The particulate arsenate larger 

than the given pore size will be rejected/ retained be-

cause of the size exclusion. Improvements with this 

method can be made by choosing membranes with 

certain physicochemical properties like hydrophobicity 

or charge, leading to adsorption or repulsion 

(Katsoyiannis and Zouboulis, 2006). 

Nano filtration and hyperfiltration are the two processes 

of reverse osmosis. Nanofiltration operates at relatively 

low-pressure reverse osmosis. It is primarily used to 

exclude larger dissolved solids. Because of its ability to 

remove the divalent ions like calcium and magnesium 

that causes hardness in water, this method can also be 

called membrane softening. Hyperfiltration, however, 

operates at higher pressures with a greater rejection of 

dissolved solids (Kartinen and  Martin, 1995). The opti-

mum pH for reverse osmosis is between 7.0 and 9.0

(Katsoyiannis and Zouboulis, 2006). Of the different 

membranes used, chitosan, zeolite membranes like Fe- 

exchanged natural zeolite, Alumina-modified zeolite 

and synthetic zeolite etc (Khatamian et al., 2017; Li et 

al., 2018c). A cross-flow filtration experiment performed 

with a combination of zeolite modified chitosan mem-

brane is seen to show a higher rejection rate for As(III) 

(Mukhopadhyay et al., 2018). Cellulose acetate-zinc 

oxide combined matrix membrane prepared by Durthi 

et al. (2018) is shown to exhibit the capability to remove 

arsenic with high efficiency and flex rates when com-

pared with that of the cellulose acetate membranes 

without the nanoparticles. 

Electrodialysis is the process by which the separation 

of particles occurs through the membrane with the ap-

plication of electric current (Ali et al., 2011). The poten-

tial difference applied will aid in the transfer of ions 

through the alternating anionic and cationic mem-

branes, which are aligned in between positive and neg-

ative electrodes. This results in two flow systems- one 

with concentrated ions and the other diluted stream. 

The efficiency of the arsenic removal is seen to be de-

pendent on the applied voltage and the initial concen-

tration (Pham et al., 2021). No addition of chemicals is 

required and this method can also tolerate feed waters 

with high chlorides and sulfates. Highly cleanable, easi-

ly recoverable and durable membranes are being uti-
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lized for this process, which is an added advantage 

(Taylor et al., 2014). The major disadvantage of the 

filtration process is creating larger volumes of sludge, 

causing the problem with disposal.  

Other physicochemical processes of separation of ar-

senic include distillation- where the water is made to 

evaporate with thermal energy and then made to con-

dense onto the roof of the cooler surface. Impurities like 

arsenic will be left behind and thus can be separated

(Hashmi and Pearce, 2011). 

Although these physicochemical methods for remedia-

tion come with drawbacks like generation of larger vol-

umes of sludge, expensive to implement, non-

environmental friendly, complex procedures, labour 

intensive can lead to the destruction of soil texture and 

characteristics (Abdulsalam et al., 2011). Therefore a 

cheaper, sustainable and ecofriendly/green alternative 

methods are to be considered (Abdulsalam et al., 

2011). Biological remediation is an option in which the 

degradation or conversion of harmful contaminants 

occurs by employing plants or microorganisms. Thus, 

the remediation process occurs through a natural bio-

logical phenomenon, causing no damage to the soil 

texture/properties (Joseph et al., 2018). In fact, employ-

ing plants/soil microorganisms would enhance the qual-

ity of the soil in addition to remediation of arsenic and 

usually do not involve high expenditure.  

Phytoremediation 

As discussed earlier, biological remediation is a means 

to remediate the soil using plant and microbes. It is 

divided into phytoremediation and microbial remedia-

tion. Remediation of soil or water sample with the help 

of plants is called phytoremediation and remediation 

with microbes is microbial remediation (Tripti et al., 

2017). A combination of these can also be used for the 

efficient removal of contaminants. Phytoremediation 

includes phytoextraction, phytostabilization, phytodeg-

radation and phytofiltration.  

Phytoextraction 

Phytoextraction, also known as phytoaccumulation, or 

phytosequestration is the easiest and desirable way of 

removing a contaminant from the soil or water medium. 

It involves the extraction of contaminants from the soil 

or water with the help of terrestrial/ aquatic plants. The 

contaminant would be taken up by the roots and trans-

located to the leaves, which can then be harvested 

(Nedjimi, 2021). Thus, a fraction of the contaminant can 

be removed from the soil. 

The plants that are chosen for this method are known 

as ‘Hyperaccumulator’ plants. Plants that can accumu-

late more than 0.1% DW of a contaminant are called 

hyperaccumulators (Nedjimi, 2021). The ideal charac-

teristics of these plants involve greater above-ground 

biomass, higher growth rate, efficient translocation, and 

easy to cultivate and harvest. Hyperaccumulators, 

which can accumulate metals naturally in their tissues 

without developing any toxic conditions and plants with 

highly branched root system would be ideal for the bet-

ter uptake of contaminants (Bhargava et al., 2012). 

Hyperaccumulator plants that have the shoot to root 

metal concentration ratio greater than one are chosen 

for this method. Arsenic is usually localised in epider-

mal cells, mesophyll cells, and xylem tissues 

(Vithanage et al., 2012). Plants generally tend to store 

metals in the roots and prevent their transfer to the 

shoots as they can affect the photosynthesis, flowering 

capacity, etc., which is not observed in hyperaccumula-

tors and thus as ideal for phytoextraction.  Examples of 

hyper accumulator plants include Hydrilla verticilata, 

Vallisneria neotropicals (Chen et al., 2015; Li et al., 

2018a), Pteris vittata L., (Poynton et al., 2004; Xie et 

al., 2009) Pityrogramma calomelons (Francesconi et 

al., 2002; Luongo and Ma, 2005). Hyperaccumulators 

might not always have high biomass, yet they would 

have a very high accumulation rate of target metal. Non

-hyper accumulating plants with high biomass can also 

be employed, even though they do not have high speci-

ficity to the target metal as they can give a promising 

result overall, like Brassica juncea (Niazi et al., 2017). 

Once the contaminants get depleted from the soil to a 

certain extent, the plants are harvested. The harvested 

plants can either be smelted for potential metal recov-

ery/ recycling or are to be disposed of safely as hazard-

ous waste.  

The translocation efficiency of the plant can be as-

sessed with the calculation of certain factors like trans-

location factor (TF), enrichment coefficient of the shoot 

(ECS), bioaccumulation factor (BF). The phytoremedia-

tion efficiency of the plant is calculated based on the 

amount of arsenic translocated from the roots to shoots 

(Rahman and Hasegawa, 2011).  

Translocation factor (TF) 

An important aspect of characterising plant capacity in 

phytoremediation techniques is calculating TF. TF de-

termines the ability of the plant to translocate a heavy 

metal from root to shoot parts. It is the ratio of the con-

centration of an element in the shoot (mg g−1) to the 

concentration of the same element in the root (mg g−1). 

Hyperaccumulators show high TF value, while the non- 

hyper accumulators usually have a value of less than 

one (Francesconi et al., 2002).  

      ……………Eq.1 

Enrichment coefficient of shoot (ECS) 

The ECS is another factor that can be used to assess 

the heavy metal uptake capacity of the plant. It is the 

ratio of the concentration of metal in the shoot to that of 
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its concentration in the soil. When the ECS of a plant is 

greater than 1.0, it represents the typical capacity of 

that plant to transfer the metal to the shoot, mostly to 

the vacuoles (Elshamy et al., 2019).  

          ……………..Eq.2 

Bioaccumulation factor (BF) 

The bioaccumulation factor (BF) is used to evaluate the 

capability of the roots to take up the metals from the 

soil. BF is the concentration of an element collected in 

root tissues (mg g−1)/concentration of the same element 

in soil (mg g−1). 

     …………….Eq.3 

Plants like Trifolium spp. with multiple harvest in a sin-

gle growth period can be used. Grasses like barnyard 

grass (Sultana and Kobayashi, 2011), rice cutgrass

(Klaber  and Barker, 2014) are preferred to shrubs/ 

trees as they have high above ground biomass, growth 

rate and are more adaptable to stress (Ali et al., 2013). 

Care should be taken to prevent herbivores from con-

suming these plants leading to the contaminant entry 

into the food chain. 

Phytostabilization 

Phytostabilization or phytoimmobilization or in-place 

activation is a very efficient managing strategy in min-

ing areas. This method stabilizes the contaminants, 

and thereby reduces their bioavailability and mobility. 

Thus, phytostabilization aids in reducing off-site con-

tamination (Shrivastava et al., 2015). Plants secrete 

certain redox enzymes such as arsenate reductase  

and stabilize the contaminant (arsenic) through sorp-

tion, complexation/ metal valence reduction or precipi-

tation it to less toxic forms (Thakur et al., 2020) and 

stabilize the contaminant (arsenic) through sorption, 

complexation/ metal valence reduction or precipitation 

and therefore convert it to less toxic forms. Thus, this 

method does not lead to the formation of any second-

ary waste, but it enhances soil fertility. 

Plants suitable for phytostabilization should develop an 

extensive root system, provide good soil cover, pos-

sess tolerance to the contaminant metals, and ideally 

immobilize the contaminant in the rhizosphere, reduc-

ing leaching or bioavailability of arsenic and wind ero-

sion (Silva Gonzaga et al., 2006). Ideally, plants cho-

sen for Phytostabilization should have low pollutant 

accumulation in the shoots. If the plants  chosen to ac-

cumulate the contaminant into the leaves/ tissues, con-

taminants can enter food chain; hence mostly the non-

edible plants like Eucalyptus, Arundo donax L. can be 

chosen (Bolan et al., 2011; Mirza et al., 2011). When 

introduced with similar arsenic load, Woody plants like 

Eucalyptus species gather arsenic at much lower levels 

than grasses, ferns, or other plants. Although this 

makes them less than ideal for phytoextraction, they 

are still a good choice for phytostabilization.  Also, the 

leaves of these plants are rarely consumed by mam-

mals because of certain defense compounds like ter-

penes, phenolics and cyanogenic glycosides, prevent-

ing their entry into the food chain (King et al., 2008).  

However, it is to be noted that in the process of phyto-

stabilization, only the movement of the metal is restrict-

ed and is not a permanent solution to the problem (Ali 

et al., 2013). The site is to be monitored at regular in-

tervals to ensure that the optimal conditions are main-

tained. However, it is to be noted that in the process of 

phytostabilization, only the movement of the metal is 

restricted and is not a permanent solution to the prob-

lem (Ali et al., 2013). The site is to be monitored at reg-

ular intervals to ensure that the optimal conditions are 

maintained.  

Phytofiltration 

In general, Phytofiltration can be used to filter under-

ground water, stormwater, subsurface water, 

wastewater etc. with a low concentration of contami-

nants and other effluents using aquatic macrophages 

or macroalgae (Garg and Singla, 2011; Shrivastava et 

al., 2015). In this method, the metal contaminants are 

adsorbed/absorbed onto the plant’s surface, leading to 

lessening the concentration of pollutants in the water, 

i.e., filtering metals from water into the root system

(Mykolenko et al., 2013). Therefore, the plants with 

high absorption surface area and those able to tolerate 

hypoxia are to be chosen. For example, Micranthemum 

umbrosum  is seen as a strong accumulator of arsenic 

with the accumulation of about 1000 mg As g -1 in its 

stem and leaf biomasses, potentially reducing the arse-

nic concentration in the solution of about 10-fold (Islam 

et al., 2015).  In phytofiltration, the expulsion of arsenic 

from streaming water must be quick and so relies upon 

the water stream rate (Sandhi et al., 2018). 

Phyto filtration can be of three types based on the part 

of the plant used for this purpose- rhizofiltration (roots), 

blastofiltration (seedling) and caulofiltration (excised 

shoots) (Ali et al., 2013). For Rhizofiltration to be effec-

tive, non-efficient metal transporters (as metal transport 

to the shoot makes rhizofiltration less efficient) and 

plants with extensive root system (e.g. Eucalyptus glob-

ulus, Acacia tortilis, Faidherbia albida) (Anawar et al., 

2008) are to be chosen. Although to treat surface con-

taminated water, plants with shallow roots like grasses, 

Indian mustard or ferns can be used. At the end of the 

process, the roots can be harvested and dried. De-

pending on the purpose, the metals can be extracted 

by acid treatment or can be burned at hazardous waste 

sites (Dushenkov et al., 1995). Thus, phytofiltration 
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becomes a very effective eco-friendly method to reduce 

contamination in the natural wetlands and estuary are-

as. Even arsenic-contaminated run off water from 

mines can be remediated by using  Lemna gibba, 

which has high arsenic accumulation capacity (Anawar 

et al., 2008).   

Phytovoltalization 

The process involves the taking up of the contaminant 

from the soil and its release into the environment in the 

gaseous state in modified/ unmodified form at low con-

centrations through transpiration (Ranjan et al., 2020). 

The toxic pollutant is observed to be diluted in the at-

mosphere or is likely converted into a less toxic form. 

(Guarino et al., 2020). It can be divided into two types: 

direct and indirect. Direct involves the voltalization from 

the stem or roots or the leaves, while indirect involves 

the voltalization from the subsurface due to root activi-

ties (Pandey et al., 2018). It is the most controversial 

form of phytoremediation techniques. It involves the 

transfer of contaminant from one medium to the other, 

which could be redeposited back to the original medi-

um. Thus, there seems to be little or no control over the 

movement of the contaminants (Bolan et al., 2011). 

In contrast, certain studies show that the contaminants 

might not cause any harm to the environment. An addi-

tional advantage of this method is that no labor or effort 

is needed to transfer or dispose of the contaminated 

plant materials physically, thus requiring less manage-

ment force (Heaton et al., 1998). It is seen that the 

presence of sulphate and salinity in the soil can hinder 

the process of volatilization (Vithanage et al., 2012). 

Usually, arsenic is phytovoltalized in the form of trime-

thylarsine [TMAs(III)], the final product of methylation 

pathway in which As(III) is methylated to dimethylarsi-

nic acid [DMA(V)] and then to trimethylarsine oxide 

(TMAO) which is finally reduced to the volatile trime-

thylarsine [TMA(III)] (Mirza et al., 2011). P. vittata, the 

well-known hyperaccumulator of arsenic, can also be 

used in phytovolatilization. It is seen to release arsenic 

compounds into the environment through its secretory 

glands at the edges of the fronds (Sakakibara et al., 

2007). 

PHYTOREMEDIATION OF ARSENIC CONTAMI-

NATED WATER BODIES 

Contamination of water bodies is a serious threat to the 

living systems and it is to be addressed properly. Fig.1 

and 2 show the arsenic contaminated water in different 

districts of India (Reddy, 2019). Among other chemical 

and physical methods, the natural bioremediation/ phy-

toremediation is a cost-effective and efficient method. 

The utilization of rapidly growing plants, like Eichhornia 

crassipes (water hyacinth), whose overpopulation is 

usually not desired, can be used to our advantage in 

decontaminating / remediating the polluted bodies 

(Ajayi and Ogunbayio, 2012). The metal removal rate of 

water hyacinth was reported to be 600 mg As/ha by 

(Alvarado et al., 2008). In addition to water hyacinth, 

those showing hyper tolerance to As and capable of 

hyperaccumulating arsenic are also the key players in 

the game of phytoremediation. Over the years, these 

plants are identified, like Rorippa nasturtium-

aquaticum L., Mentha spp.  (Robinson et al., 2006), 

the Pteris ferns, Hydrilla verticillata (Xue  Yan, 2011) , 

Lepidium sativum (Robinson et al., 2003), Spirodela 

polyrhiza L., (M. A. Rahman et al., 2007) Eleocharis 

acicularis (Ha et al., 2011), Arundo donax L. with a 

high growth rate, the Macrophyte Lemna valdiviana is 

observed to reduce the arsenic concentration in water 

to about 82% of initial concentration under controlled 

factors like pH, nitrate, phosphate concentrations (de 

Souza et al., 2019). In water bodies where the arsenic 

concentration is less than 30ppm, the naturally grown 

Neptunia oleracea (Water mimosa) that has Rhizofil-

tration can be employed (Atabaki et al., 2020). Identi-

fying plants with higher biomass having greater metal 

uptake capacity and employing them for the process 

of remediation is a sustainable and eco-friendly meth-

od to address this serious problem. Destruction of 

these plants from the water surface is to be avoided 

as they help in the control of heavy metal pollution and 

prevent their entry into the food chain (Sasmaz and 

Obek, 2009). 

Another process employed for the phytoremediation of 

polluted water bodies is through constructed wetlands. 

Interactions between plants, soils, sediments and mi-

crobial communities always exist in a wetland and 

hence they are considered to be complex bioreactors 

(Corroto et al., 2019). The concept of constructed wet-

lands has been put into practice ever since the mid 

1980’s. Precipitation, coprecipitation and sorption are 

the major arsenic expulsion mechanisms incorporated 

in this system (Lizama et al., 2011). It is important to 

select metal tolerant plants, immobilize the contami-

nant in roots, and prevent the movement of these met-

als to the aerial parts of the plant, environmentally sus-

tainable and easily implemented (Corroto et al., 2019). 

Table 1 represents various aquatic plants that are in-

volved in the remediation of water bodies. 

PHYTOREMEDIATION OF ARSENIC CONTAMI-

NATED SOIL  

Soil health, defined by the Natural Resources Conser-

vation Service (NRCS, USA) as “the continued capacity 

of soil to function as a vital living ecosystem that sus-

tains plants, animals and humans” (Sanchez-

Hernandez et al., 2019). Of the other factors affecting 

soil health like soil erosion, organic matter decline, bio-

diversity loss, contamination, loss of salinity etc.,  
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heavy metal pollution is also a very serious threat and 

is to be addressed in an eco-friendly manner. 

Growth and establishment of hyperaccumulating fern 

species like Pteris vittata can take up arsenic upto 4100 

mg Kg-1 (Fayiga et al., 2004), Pityrogramma calo-

melanos up to 8350 μg As g−1 dry mass (Frances coni 

et al., 2002) in arsenic-contaminated area has shown to 

give promising results. Pteris vittata can accumulate 

about 10 times the concentration of arsenic in the soil 

when grown in arsenic-contaminated sites (Raj  Singh, 

2015). Harvesting these mature fronds on a regular 

basis will aid in the maximum removal of arsenic from 

the site of contamination. Brassica species like Brassi-

ca juncea, B. carinata and Isatis capadocica with the 

ability to produce high aboveground biomass and accu-

mulate high arsenic concentrations in their shoots also 

aid in extracting high quantities of the heavy metals 

from soil (Karimi et al., 2003). Apart from these, even 

Mimosa pudica, a herb and Melastoma malabrathri-

cum, a shrub, are also shown to phytoremediate the 

arsenic-contaminated soils (Rahman et al., 2007). Hyper-

accumulator plants are generally used for phytoextraction. 

However, non-hyperaccumulating plants can also be ma-

nipulated to enhance their arsenic uptake efficiency by 

providing certain factors or conditions, e.g. the use of non-

As-hyperaccumulating Brassica sp. like Brassica juncea, 

Brassica napus with the assistance of phosphate, the 

chemical analogue of As(V) (Niazi et al., 2017). Table 2 

represents various terrestrial plants that are involved in 

the remediation of soil. 

PLANTS CHARACTERISTICS SOURCE 

Hydrilla verticilata 

It is a submerged macrophyte which acts as a bio-

indicator of arsenic pollution. It is also a phytofiltra-

tor, hyperaccumulator with fast growth and high 

biomass. 

(Chen et al., 2015) 

(Favas et al., 2012) 

(Xue and Yan, 2011) 

  

Vallisneria natans 

It is a submerged rooted macrophyte, hyperaccu-

mulator, phytofiltrator with greater survival and 

growth potential 

(Chen et al., 2015) 

(Li et al., 2018a) 

Eichhornia crassipes 

It is a free- floating perennial extensively used to 

phytoremediation with rapid multiplication and 

greater biomass production. It can survive in wide 

range of temperatures between 1- 40o C 

(Jasrotia et al., 2014) 

(Rahman and Hasegawa, 2011) 

(Misbahuddin and Fariduddin, 2010) 

(Newete and Byrne, 2016) 

Spirodela polyrhiza 

 It is a free-floating macrophyte and is an efficient 

phytofiltrator in contaminated water bodies and 

paddy soils. It has high multiplication rates, short 

life spans and easy to grow in various habitats. 

(Jasrotia et al., 2014) 

(Favas et al., 2012) 

(Rahman and Hasegawa, 2011) 

(Islam et al., 2015) 

(Zhang et al., 2011) 

Micranthemum  

umbrosum 

It is a rooted vascular plant, a strong accumulator 

and an efficient phytofiltrator of arsenic without 

showing any phytotoxic effect. 

(Jasrotia et al., 2014) 

(Islam et al., 2015) 

(Islam et al., 2017) 

Azolla caroliniana 
It is an annual floating fern and is a very good arse-

nic indicator. 

(Jasrotia et al., 2014) 

(Favas et al., 2012) 

(Islam et al., 2015) 

Ulothrix cylindricum 

It is a green algae and has been used as a cost 

effective method of biosorption of As(III) from solu-

tions 

(Jasrotia et al., 2014) 

Cladophora sp. 

It is a filamentous algae. It can be used to remedi-

ate arsenic- bearing waste water and make it suita-

ble for irrigation 

(Jasrotia et al., 2014) 

Lemna gibba L. 
It is a free-floating aquatic angiosperm and an effi-

cient accumulator of arsenic 

(Sasmaz and Obek, 2009) 

(Favas et al., 2012) 

Ceratophyllum  

demersum 

 It is a rootless submerged aquatic plant shown to 

accumulate arsenic with a 20000-fold concentration 

factor 

(Favas et al., 2012) 

Myriophyllum  

propinquum 

It is a submerged macrophyte with high arsenic 

accumulation potential 

(Favas et al., 2012) 

(Rahman and Hasegawa, 2011) 

Lepidium sativum 

It is fast- growing shrub. It has high arsenic uptake 

ability even from water containing relatively low 

concentration of this element 

(Favas et al., 2012) 

(Rahman and Hasegawa, 2011) 

Wolffia globose 
It is a root less duckweed with higher uptake effi-

ciency and tolerance competence 

(Rahman and Hasegawa, 2011) 

(Islam et al., 2015) 

Table 1: List of aquatic plants involved in phytoremediation of arsenic. 
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GENETIC ENGINEERING FOR PHYTOREMEDIA-

TION 

Genetic engineering can also aid in phytoremediation 

by creating transgenic plants that have the ability to 

phytoremediate the metal. Higher tolerance is seen in 

the plants with higher AR activity. AR possesses the 

CDC25 – tyrosine phosphatase activity with a con-

served HCX5R motif. The genes encoding AR are 

found in Arabidopsis (AtAsr / At ACR2), Holcus (HlAsr) 

and Pteris (PuACR2) (Tripathi et al., 2007). Transgenic 

tobacco is a genetically modified plant that had the 

AtACR2 gene of Arabidopsis thaliana expressed in 

them, and this plant was seen to survive in concentra-

tions up to 200µM As, where the wild type cannot sur-

vive. Also, the arsenic accumulation in the above-

ground biomass (edible part) was seen to be much low-

er than wild, preventing arsenic entry into the food 

chain even when grown in contaminated lands (Nahar 

et al., 2017). 

Another strategy for enhancing metal remediation was 

by elevating the synthesis of chelators like GSH and 

PCs, as the overexpression of phytochelatin synthase 

(PCS) showed encouraging outcomes in plants and 

bacteria. ATP-binding cassette class-C (ABCC) trans-

porters, involved in ATP- powered translocation of 

many substrates across the membranes are also in-

volved in the active transport of PC-conjugated As(III) 

into vacuoles. The over-expression of these transport-

ers of Saccharomyces cerevisiae origin enhanced arse-

nic tolerance and accumulation in Arabidopsis thaliana 

(Song et al., 2010). The PCS enzyme is seen to be 

active only during the stressed conditions; otherwise, 

they remain inactive (Grill et al., 1987; Vatamaniuk et 

al., 2000). 

In certain edible plant cases, the alternate mechanism 

of preventing the accumulation of arsenic in the plant is 

also in practice. The potential of biochar-DOM 

(Dissolved organic matter) interactions is found to be 

crucial for the suppression of movement and bioaccu-

mulation of arsenic which is brought about by amend-

ing the agricultural paddy soils with biochar (Li et al., 

2018b). 

FATE OF ARSENIC IN PLANTS 

Uptake of arsenic from soil to plants 

The process of transpiration serves as a driving force to 

absorb nutrients and other soil substances into the 

plant root and further to the shoots (Taylor et al., 2003). 

As (V) and P are chemical analogues and therefore As

(V) enters the plant through the inorganic phosphate 

Fig. 2. Percentage of districts having arsenic (between 0.01 to 0.05mg/L) in ground water in different states of India. 

Fig. 1. Percentage of districts having arsenic (>0.05mg/L) 

in ground water in different states of India. 
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(Pi) channels. The enhanced uptake of arsenate is ob-

served in the plants when there is a presence of As(V) 

in the growth medium or a deficiency of phosphorus

(Sayantan and Shardendu, 2017). Most of the arsenic 

uptake is through the phosphate transport system, 

(active uptake). A suppression in this system would 

reduce the arsenic influx. This strategy is employed by 

the arsenic- tolerant plants like Holcus lanatus and 

Cytisus striatus (Tripathi et al., 2007). 

Although most of the arsenic is taken up by the plant in 

As (V) state, arsenic also enters the plants as As(III)  in 

its neutral As(OH)3 form through aquaglyceroporins 

(passive uptake) (Tripathi et al., 2007). Methylarseni-

cals (DMAA and MMAA) are observed to enter the 

plant through this same pathway (Rahman, 2011). Nod-

ulin 26- like intrinsic (NIPs) aquaporin channels medi-

ate As(III) uptake along with neutral solutes like glycer-

ol, ammonia and silicic acid. Because NIP transporters 

are bidirectional, the movement of As(III) occurs in both 

ways between the plant cell and growth medium based 

on its concentration (Abbas et al., 2018). In rice, meth-

ylated arsenic species uptake is mediated through aq-

uaporin influx Si transporter (Lsi1) and silicon efflux 

transporter (Lsi2), owing to the similarities between As

(III) and Si. 

ARSENIC DETOXIFICATION MECHANISMS IN 

PLANTS 

 One of the protection mechanisms from the generation 

of ROS due to arsenic presence in plants is the produc-

tion of antioxidant enzymes like superoxide dismutase 

(SOD), catalase (CAT), glutathione reductase (GR), 

and ascorbate peroxidase (APX) to balance the free 

radicals. The production/accumulation of certain osmo-

lites like proline (Sayantan and  Shardendu, 2017), gly-

cinebetaine and  mannitol are also seen in plants under 

oxidative stress as a means of protection and survival 

(Abbas et al., 2018). The major pathway of antioxidant 

defense to detoxify H2O2 is the Ascorbate-Glutathione 

pathway (AsA- GSH). Along with AsA and GSH, four 

enzymes viz. ascorbate peroxidase, monodehy-

droascorbate reductase, dehydroascorbate reductase, 

and glutathione reductase, play a vital role in detoxify-

ing ROS in this pathway and plays a vital role in pro-

tecting the plant from various abiotic stresses as well 

(Hasanuzzaman et al., 2019).  

Another mechanism includes the complexation of arse-

nic with ligands followed by the vacuolar compartmen-

tation. Once arsenic enters the plant, As(V) would be 

reduced to As (III) form, with the help of enzyme arse-

nate reductase (AR) (Zhao et al., 2003). Arsenite is 

highly disruptive to the metabolomic process in the cy-

toplasm and hence detoxification occurs. This is ob-

served in many plants like H. verticillata (with >94% in 

As(III) form in shoots), Brassica juncea (with 96 -100% 

in roots and shoots), tomato and rice (about 92-99%) 

(Chen et al., 2015). Methyl arsonate [MA(V)] also re-

duces to MA(III) in rice shoots (Mishra et al., 2017). 

Inorganic arsenic and MA form complexes with metal-

binding proteins like glutathione (GSH) or  phytochela-

tins (PCs), which are then sequestrated into the vacu-

oles (Mishra et al., 2017; Pickering et al., 2000). GSH is 

a precursor of phytochelatins (PCs) (Thakur et al., 

PLANTS CHARACTERISTICS SOURCE 

Pteris vittata L. It is a fern with high translocation factor that can grow 

well on highly arsenic contaminated sites. It also has the 

potential to phytoremediate multiple toxic chemicals. 

(Taylor et al., 2003) 

(Chen et al., 2015) 

(Raj and Singh, 2015) 

(Visoottiviseth et al., 2002) 

(Kochian, 2004) 

(Xie et al., 2009) 

Pteris cretica It is a fern with greater arsenate influx in roots. (Raj and Singh, 2015) 

(Poynton et al., 2004) 

(Luongo and Ma, 2005) 
Pityrogramma  

calomelanos 

It is a fern that accumulates arsenic mostly in the fronds 

with ability to grow in highly contaminated areas. It can 

take up arsenic even from less contaminated areas. 

However, it is seen to be used as food in countries like 

Thailand. 

(Luongo and Ma, 2005) 

(Francesconi et al., 2002) 

Pteris umbrosa It is a fern and are efficient root uptakers. They are fast 

growing plant and are also aesthetically pleasing. 

(Luongo and Ma, 2005) 

(Koller et al., 2007) 

Adiantum capillus ven-

eris 

It is a fern with a strong arsenic resistance. (Raj and Singh, 2015) 

(Singh et al., 2010) 

Brassica juncea It is a herbaceous plant. It is a highly resistant plant with 

ability to grow on soils of different nature. 

(Pickering et al., 2000) 

(Vocciante et al., 2019) 

Table 2. List of hyperaccumulator plants involved in phytoremediation of arsenic. 
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2020). Phytochelatins are cysteine-rich, low molecular 

weight peptides. The exposure of arsenate induces the 

synthesis of PCs in several plant species (Mirza et al., 

2014). This is the general strategy of detoxification em-

ployed by all plants irrespective of being hyperaccumu-

lators or hypertolerants or non-hyperaccumulators 

(Chen et al., 2015). In hyperaccumulators, thiols have 

limited role and most a rsenic is stored as As (III) 

(Mishra et al., 2017). In leguminous plants, homo-PCs 

(hPCs) are synthesized along with PCs. Increased syn-

thesis of PCs is observed in tolerant plants like H. la-

natus (Tripathi et al., 2007). 

DISPOSAL OF PLANTS AFTER REMEDIATION 

The objective of phytoremediation will not be met if the 

plants used are not properly disposed of or handled 

after removing metals from the environment due to their 

storage in the biomass of the plants (Ghosh and Singh, 

2005). The reutilization of end products of phytoremedi-

ation makes the process even more eco-friendly. 

One option for the safe disposal of heavy metal-laden 

remediator plants would be composting. Composting 

will aid in the reduction of the volume of the biomass 

and also help in easy transport (Mohanty, 2016; 

Newete  Byrne, 2016). The major drawback would be 

to transfer the hazardous substance from one place to 

another (Ghosh and Singh, 2005). Although techniques 

like stabilization/inertization by the application of lime 

can reduce the leachability of the metals (Vocciante et 

al., 2019), the plants have to dispose of not just any-

where but in specialized areas like tail mining. The dis-

posal on the slopes of the tailing dam can act as mulch-

es to put down the dust and would also give an oppor-

tunity for heavy metals to go back to where they belong 

after the process of decomposition and can reinstate 

the soil fertility for revegetation(Ghosh and Singh, 

2005).  Another method commonly used is incineration 

and the produced charcoal can be used as an energy 

source for cooking fires(Ghosh  Singh, 2005). This 

method would obviously make sure that the biomass 

cannot be used for any other purposes like fertilizers or 

animal feed.  But this could be a source of air pollution. 

Hence, its recommended that incineration is not per-

formed in the open.  

The next best alternative is pyrolysis – heating the bio-

mass at temperatures typically between 350 and 650 °

C in anaerobic conditions (Vocciante et al., 2019). The 

end products of pyrolysis are pyrolytic fluid oil and coke

(Newete  Byrne, 2016). The coke contains heavy met-

als which can be used in the smelter. The arsenate is 

also seen to reside in the pyrolytic residue when CCA 

treated wood is pyrolyzed at low temperatures, hence a 

better alternative (Helsen et al., 1997). Also, the gases 

like methanol or other liquids can be produced through 

the process of bio gasification, which can be utilized as 

a source of fuel (Mohanty, 2016). It is also seen that 

the biochar produced can be used to adsorb dye like 

methylene blue (Gong et al., 2018). 

Conclusion 

Arsenic, a potent carcinogen is seen to show its toxicity 

in both plants and animals. It is seen to impede the 

body’s metabolism and hormone regulation.  The in-

creased anthropological activities leading to arsenic 

contamination in both soil and water systems is an is-

sue in many countries and is to be properly addressed. 

Employing conventional methods like coagulation, lime 

softening, and adsorption may be effective to a certain 

level but might cause additional problems like large 

volumes of sludge generation, soil texture destruction, 

and being non-environmentally friendly. The greener 

alternative is phytoremediation. Proper identification 

and use of the arsenic hyperaccumulators and metal-

tolerant plants like Pteris vittata, Hydrilla verticilata, 

Micranthemum umbrosum will aid in the management 

of the arsenic problem naturally. In addition, genetically 

modified plants like transgenic tobacco, transgenic Ara-

bidopsis thaliana can be utilised. However, the whole 

process would be to no purpose if the proper disposal 

methods are not followed. Apart from the scientific ad-

vancement, it is also crucial to increase awareness in 

the society regarding the measures that can be taken 

up, the type of plants that can be grown to control the 

arsenic pollution and the necessary precautions to be 

taken to prevent the pollution.  

ACKNOWLEDGEMENTS 

The authors are thankful to the Department of Life  

Sciences and Mr. Sreekumar Nair, Christ University, 

Bengaluru- 560029 (Karnataka), India. 

Conflict of interest 
The authors declare that they have no conflict of  

interest. 

REFERENCES 

1. Abbas, G., Murtaza, B., Bibi, I., Shahid, M., Niazi, N. K., 

Khan, M. I., Amjad, M., Hussain, M., & Natasha (2018). 

Arsenic uptake, toxicity, detoxification, and speciation in 

plants: Physiological, biochemical, and molecular aspects. 

International Journal of Environmental Research and Pub-

lic Health, 15(1), 59.  https://doi.org/10.3390/ijerph150 

10059 

2. Abdulsalam, S., Bugaje, I. M., Adefila, S. S., & Ibrahim, S. 

(2011). Comparison of biostimulation and bioaugmenta-

tion for remediation of soil contaminated with spent motor 

oil. International Journal of Environmental Science and 

Technology, 8(1), 187–194. https://doi.org/10.1007/



 

873 

Meghana, K M and Sayantan, S / J. Appl. & Nat. Sci. 13(3), 861 - 879 (2021) 

BF03326208 

3. Abedin, M. J., Feldmann, J., & Meharg, A. A. (2002). 

Uptake kinetics of arsenic species in rice plants. Plant 

Physiology, 128(3), 1120–1128. https://doi.org/10.1104/

pp.010733 

4. Ajayi, T. O., & Ogunbayio, A. O. (2012). Achieving envi-

ronmental sustainability in wastewater treatment by phy-

toremediation with water hyacinth (Eichhornia Cras-

sipes). Journal of Sustainable Development, 5(7), 80–90. 

https://doi.org/10.5539/jsd.v5n7p80 

5. Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremedia-

tion of heavy metals-Concepts and applications. Chemo-

sphere, 91(7), 869–881. https://doi.org/10.1016/

j.chemosphere.2013.01.075 

6. Ali, I., Khan, T. A., & Asim, M. (2011). Removal of arse-

nic from water by electrocoagulation and electrodialysis 

techniques. Separation and Purification Reviews, 40(1), 

25–42. https://doi.org/10.1080/15422119.2011.542738 

7. Alvarado, S., Guédez, M., Lué-merú, M. P., Nelson, G., 

Alvaro, A., Jesús, A. C., & Gyula, Z. (2008). Bioresource 

technology arsenic removal from waters by bioremedia-

tion with the aquatic plants water hyacinth ( Eichhornia 

crassipes ) and Lesser Duckweed ( Lemna minor ). Bio-

resource Technology, 99(17), 8436–8440. https://

doi.org/10.1016/j.biortech.2008.02.051 

8. Anawar, H. M., Garcia-Sanchez, A., Tari Kul Alam, M., & 

Majibur Rahman, M. (2008). Phytofiltration of water pol-

luted with arsenic and heavy metals. International Jour-

nal of Environment and Pollution, 33(2–3), 292–312. 

https://doi.org/10.1504/IJEP.2008.019400 

9. Atabaki, N., Shaharuddin, N. A., Ahmad, S. A., Nulit, R., 

& Abiri, R. (2020). Assessment of water mimosa 

(Neptunia oleracea L.) morphological, physiological, and 

removal efficiency for phytoremediation of arsenic-

polluted water. Plants, 9(11), 1500. https://

doi.org/10.3390/PLANTS9111500 

10. Awasthi, S., Chauhan, R., Srivastava, S., & Tripathi, R. 

D. (2017). The journey of arsenic from soil to Grain in 

Rice. Frontiers in Plant Science, 8, 1007. https://

doi.org/10.3389/fpls.2017.01007 

11. Bencko, V., & Foong, F. Y. L. (2017). The history of ar-

senical pesticides and health risks related to the use of 

Agent Blue. Annals of Agricultural and Environmental 

Medicine, 24(2), 312–316. https://doi.org/10.26444/aae 

m/74715 

12. Bhargava, A., Carmona, F. F., Bhargava, M., & Srivasta-

va, S. (2012). Approaches for enhanced phytoextraction 

of heavy metals. Journal of Environmental Management, 

105, 103–120. https://doi.org/10.1016/j.jenvman.2012.0 

4.002 

13. Bolan, N. S., Park, J. H., Robinson, B., Naidu, R., & Huh, 

K. Y. (2011). Phytostabilization. A green approach to 

contaminant containment. Advances in Agronomy (Vol. 

112). Academic Press. https://doi.org/10.1016/B978-0-12

-385538-1.00004-4 

14. Brown, C. J., Eaton, R. A., & Thorp, C. H. (2001). Effects 

of Chromated Copper Arsenate (CCA) wood preservative 

on early fouling community formation. Marine Pollution 

Bulletin, 42(11), 1103–1113. https://doi.org/10.1016/

S0025-326X(01)00095-9 

15. Carbonell-Barrachina, A. A., Jugsujinda, A., Burlo, F., 

Delaune, R. D., & Patrick, W. H. (2000). Arsenic chemis-

try in municipal sewage sludge as affected by redox 

potential and pH. Water Research, 34(1), 216–224. 

https://doi.org/10.1016/S0043-1354(99)00127-X 

16. Chaudhary, B. K., & Farrell, J. (2014). Preparation and 

characterization of homopolymer polyacrylonitrile-based 

fibrous sorbents for arsenic removal. Environmental En-

gineering Science, 31(11), 593–601. https://doi.org/10.10 

89/EES.2014.0169 

17. Chen, G., Liu, X., Brookes, P. C., & Xu, J. (2015). Op-

portunities for Phytoremediation and Bioindication of 

Arsenic Contaminated Water Using a Submerged Aquat-

ic Plant : Vallisneria natans ( lour .) Hara . International 

Journal of Phytoremediation, 17, 1–6. https://doi.or 

g/10.1080/15226514.2014.883496 

18. Chen, J., Garbinski, L. D., Rosen, B., Zhang, J., Xiang, 

P., & Ma, L. Q. (2020). Organoarsenical compounds: 

Occurrence, toxicology and biotransformation. Critical 

Reviews in Environmental Science and Technology, 50

(3), 217–243. https://doi.org/10.1080/10643389.201 

9.1619375 

19. Choong, T. S. Y., Chuah, T. G., Robiah, Y., Gregory 

Koay, F. L., & Azni, I. (2007). Arsenic toxicity, health 

hazards and removal techniques from water: an over-

view. Desalination, 217(1–3), 139–166. https://

doi.org/10.1016/j.desal.2007.01.015 

20. Chou, C. H. S. J., & De Rosa, C. T. (2003). Case studies 

- Arsenic. International Journal of Hygiene and Environ-

mental Health, 206(4–5), 381–386. https://doi.org/10.10 

78/1438-4639-00234 

21. Corroto, C., Iriel, A., Cirelli, A. F., & Carrera, A. L. P. 

(2019). Constructed wetlands as an alternative for arse-

nic removal from reverse osmosis effluent. Science of 

the Total Environment, 691, 1242–1250. https://

doi.org/10.1016/j.scitotenv.2019.07.234 

22. D’Ippoliti, D., Santelli, E., De Sario, M., Scortichini, M., 

Davoli, M., & Michelozzi, P. (2015). Arsenic in drinking 

water and mortality for cancer and chronic diseases in 

Central Italy, 1990-2010. PLoS ONE, 10(9). https://

doi.org/10.1371/journal.pone.0138182 

23. Das, N. K., & Sengupta, S. R. (2008). Arsenicosis : Diag-

nosis and treatment. Indian Journal of Dermatology, 

Venereology and Leprology, 74(6), 571–581. 10.4103/0 

378-6323.45098 

24. David E. Salt, Michael Blaylock, Nanda P.B.A. Kumar, 

Viatcheslav Dushenkov, I. C. & I. R. (1995). Phytoreme-

diation: A Novel Strategy for the Removal of Toxic Met-

als from the Environment Using Plants. Nature Biotech-

nology, 13, 468–474. https://doi.org/https://doi.org/10.10 

38/nbt0595-468 

25. de Souza, T. D., Borges, A. C., Braga, A. F., Veloso, R. 

W., & Teixeira de Matos, A. (2019). Phytoremediation of 

arsenic-contaminated water by Lemna Valdiviana: An 

optimization study. Chemosphere, 234, 402–408. https://

doi.org/10.1016/J.CHEMOSPHERE.2019.06.004 

26. Durthi, C. P., Rajulapati, S. B., Palliparambi, A. A., Kola, 

A. K., & Sonawane, S. H. (2018). Studies on removal of 

arsenic using cellulose acetate–zinc oxide nanoparticle 

mixed matrix membrane. International Nano Letters, 8

(3), 201–211. https://doi.org/10.1007/S40089-018-0245-3 

27. Dushenkov, V., Nanda Kumar, P. B. A., Motto, H., & 

Raskin, I. (1995). Rhizofiltration: The Use of Plants To 

Remove Heavy Metals from Aqueous Streams. Environ-



 

874 

Meghana, K M and Sayantan, S / J. Appl. & Nat. Sci. 13(3), 861 - 879 (2021) 

mental Science and Technology, 29(5), 1239–1245. 

https://doi.org/10.1021/es00005a015  

28. Dwivedi, A., & Bioremed Biodeg, J. (2015). Biological 

Wastes the Tool for Biosorption of Arsenic Bioremediation 

& Biodegradation. Bioremediation & Biodegradation, 7(1), 

1. https://doi.org/10.4172/2155-6199.1000323 

29. Edmonds, J. S., & Francesconi, K. A. (1988). The origin of 

arsenobetaine in marine animals. Applied Organometallic 

Chemistry, 2(4), 297–302. https://doi.org/10.1002/aoc.59 

0020404 

30. Elshamy, M. M., Heikal, Y. M., & Bonanomi, G. (2019). 

Phytoremediation efficiency of Portulaca oleracea L. natu-

rally growing in some industrial sites, Dakahlia District, 

Egypt. Chemosphere, 225, 678–687. https://doi.org/10.10 

16/j.chemosphere.2019.03.099 

31. Favas, P. J. C., Pratas, J., & Prasad, M. N. V. (2012). 

Accumulation of arsenic by aquatic plants in large-scale 

field conditions : Opportunities for phytoremediation and 

bioindication. Science of the Total Environment, 433, 390–

397. https://doi.org/10.1016/j.scitotenv.2012.06.091 

32. Fayiga, A. O., Ma, L. Q., Cao, X., & Rathinasabapathi, B. 

(2004). Effects of heavy metals on growth and arsenic 

accumulation in the arsenic hyperaccumulator Pteris vit-

tata L. Environmental Pollution, 132(2), 289–296. https://

doi.org/10.1016/j.envpol.2004.04.020 

33. Fisher, D. J., Yonkos, L. T., & Staver, K. W. (2015). Envi-

ronmental concerns of roxarsone in broiler poultry feed 

and litter in Maryland, USA. Environmental Science and 

Technology, 49(4), 1999–2012. https://doi.org/10.1021/

es504520w 

34. Francesconi, K., Visoottiviseth, P., Sridokchan, W., & 

Goessler, W. (2002). Arsenic species in an arsenic hyper-

accumulating fern, Pityrogramma calomelanos: A potential 

phytoremediator of arsenic-contaminated soils. Science of 

the Total Environment, 284(1–3), 27–35. https://doi.org/1 

0.1016/S0048-9697(01)00854-3 

35. Garelick, H., Jones, H., Dybowska, A., & Valsami-Jones, 

E. (2008). Arsenic pollution sources. Reviews of Environ-

mental Contamination and Toxicology, 197, 17–60. https://

doi.org/10.1007/978-0-387-79284-2_2 

36. Garg, N., & Singla, P. (2011). Arsenic toxicity in crop 

plants: Physiological effects and tolerance mechanisms. 

Environmental Chemistry Letters, 9(3), 303–321. https://

doi.org/10.1007/s10311-011-0313-7 

37. Ghosh, M., & Singh, S. P. (2005). A Review on Phytore-

mediation of Heavy Metals and Utilization of It’s by Prod-

ucts. Asian Journal on Energy and Environment, 6(04), 

214–231.  

38. Gong, X., Huang, D., Liu, Y., Zeng, G., Wang, R., Wei, J., 

Huang, C., Xu, P., Wan, J., & Zhang, C. (2018). Pyrolysis 

and reutilization of plant residues after phytoremediation 

of heavy metals contaminated sediments: For heavy met-

als stabilization and dye adsorption. Bioresource Technol-

ogy, 253, 64–71. https://doi.org/10.1016/j.biortech.201 

8.01.0 18 

39. Greenleaf, J. E., Lin, J. C., & Sengupta, A. K. (2006). Two 

novel applications of ion exchange fibers: Arsenic removal 

and chemical-free softening of hard water. Environmental 

Progress, 25(4), 300–311. https://doi.org/10.1002/ep.1 

0163 

40. Grill, E., Winnacker, E. L., & Zenk, M. H. (1987). Phyto-

chelatins, a class of heavy-metal-binding peptides from 

plants, are functionally analogous to metallothioneins. 

Proceedings of the National Academy of Sciences of the 

United States of America, 84(2), 439–443. https://

doi.org/10.1073/pnas.84.2.439  

41. Guarino, F., Miranda, A., Castiglione, S., & Cicatelli, A. 

(2020). Arsenic phytovolatilization and epigenetic modifi-

cations in Arundo donax L. assisted by a PGPR consorti-

um. Chemosphere, 251, 126310. https://doi.org/10.1016/

J.CHEMOSPHERE.2020.126310 

42. Ha, N. T. H., Sakakibara, M., & Sano, S. (2011). Accumu-

lation of Indium and other heavy metals by Eleocharis 

acicularis: An option for phytoremediation and phytom-

ining. Bioresource Technology, 102(3), 2228–2234. 

https://doi.org/10.1016/j.biortech.2010.10.014 

43. Hasanuzzaman, M., Borhannuddin Bhuyan, M. H. M., 

Anee, T. I., Parvin, K., Nahar, K., Al Mahmud, J., & Fujita, 

M. (2019). Regulation of ascorbate-glutathione pathway in 

mitigating oxidative damage in plants under abiotic stress. 

Antioxidants, 8(9). https://doi.org/10.3390/antiox8090384 

44. Hashmi, F., & Pearce, J. M. (2011). Viability of Small-

Scale Arsenic-Contaminated-Water Purifi cation Technol-

ogies for Sustainable Development in Pakistan. Sustaina-

ble Development, 19(4), 223–234. https://doi.org/https://

doi.org/10.1002/sd.414 

45. Heaton, A. C. P., Rugh, C. L., Wang, N. J., & Meagher, R. 

B. (1998). Phytoremediation of mercury- and methylmer-

cury-polluted soils using genetically engineered plants. 

Soil and Sediment Contamination, 7(4), 497–509. https://

doi.org/10.1080/10588339891334384 

46. Helsen, L., Van den Bulck, E., Van den Broeck, K., & 

Vandecasteele, C. (1997). Low-temperature pyrolysis of 

CCA-treated wood waste: Chemical determination and 

statistical analysis of metal input and output; mass balanc-

es. Waste Management, 17(1), 79–86. https://

doi.org/10.1016/S0956-053X(97)00040-8 

47. Hering, J. G., Chen, P. Y., Wilkie, J. A., Elimelech, M., & 

Liang, S. (1996). Arsenic removal by ferric chloride. Jour-

nal / American Water Works Association, 88(4), 155–167. 

https://doi.org/10.1002/j.1551-8833.1996.tb06541.x  

48. Hingston, J. A., Collins, C. D., Murphy, R. J., & Lester, J. 

N. (2001). Leaching of chromated copper arsenate wood 

preservatives: A review. Environmental Pollution, 111(1), 

53–66. https://doi.org/10.1016/S0269-7491(00)00030-0 

49. Howard, S. G. (2018). Developmental exposure to endo-

crine disrupting chemicals and type 1 diabetes mellitus. 

Frontiers in Endocrinology, 9(9), 513. https://

doi.org/10.3389/fendo.2018.00513 

50. Irshad, S., Xie, Z., Mehmood, S., Nawaz, A., Ditta, A., & 

Mahmood, Q. (2021). Insights into conventional and re-

cent technologies for arsenic bioremediation: A systematic 

review. Environmental Science and Pollution Research, 

28(15), 18870–18892. https://doi.org/10.1007/s11356-021

-12487-8 

51. Islam, M. S., Saito, T., & Kurasaki, M. (2015). Phytofiltra-

tion of arsenic and cadmium by using an aquatic plant, 

Micranthemum umbrosum: Phytotoxicity, uptake kinetics, 

and mechanism. Ecotoxicology and Environmental Safety, 

112, 193–200. https://doi.org/10.1016/j.ecoenv.2014.11.0 

06 

52. Islam, M. S., Sikder, M. T., & Kurasaki, M. (2017). Poten-

tial of Micranthemum umbrosum for phytofiltration of or-

ganic arsenic species from oxic water environment. Inter-



 

875 

Meghana, K M and Sayantan, S / J. Appl. & Nat. Sci. 13(3), 861 - 879 (2021) 

national Journal of Environmental Science and Technolo-

gy, 14(2), 285–290. https://doi.org/10.1007/s13762-016-

1142-9 

53. Jasrotia, S., Kansal, A., & Kishore, V. V. N. (2014). Arse-

nic phyco-remediation by Cladophora algae and measure-

ment of arsenic speciation and location of active absorp-

tion site using electron microscopy. Microchemical Jour-

nal, 114, 197–202. https://doi.org/10.1016/j.microc.2014.0 

1.005 

54. Jones, F. T. (2007). A broad view of arsenic. Poultry Sci-

ence, 86(1), 2–14. https://doi.org/10.1093/ps/86.1.2 

55. Joseph, J., Reddy, J., & Sayantan, D. (2018). Effect of 

nickel uptake on selected growth parameters of Amaran-

thus viridis L. Journal of Applied and Natural Science, 10

(3), 1011–1017. https://doi.org/10.31018/jans.v10i3.1838 

56. Karimi, N., Seyed Majid Ghaderian, A. R., Feldmann, J., & 

Meharg, A. A. (2003). An arsenic-accumulating, hyper-

tolerant brassica, Isatis capadocica. The Journal of Physi-

ology, 547(3), 971–976. https://doi.org/10.1111/j..2003.t01

-2-00971.x 

57. Kartinen, E. O., & Martin, C. J. (1995). An overview of 

arsenic removal processes. Desalination, 103(1–2), 79–

88. https://doi.org/10.1016/0011-9164(95)00089-5 

58. Katsoyiannis, I. A., & Zouboulis, A. I. (2006). Comparative 

evaluation of conventional and alternative methods for the 

removal of arsenic from contaminated groundwaters. Re-

views on Environmental Health, 21(1), 25–41. https://

doi.org/10.1515/REVEH.2006.21.1.25  

59. Khatamian, M., Khodakarampoor, N., & Saket-Oskoui, M. 

(2017). Efficient removal of arsenic using graphene-zeolite 

based composites. Journal of Colloid and Interface Sci-

ence, 498, 433–441. https://doi.org/10.1016/J.JC 

IS.2017.03.052 

60. King, D. J., Doronila, A. I., Feenstra, C., Baker, A. J. M., & 

Woodrow, I. E. (2008). Phytostabilisation of arsenical gold 

mine tailings using four Eucalyptus species: Growth, arse-

nic uptake and availability after five years. Science of the 

Total Environment, 406(1–2), 35–42. https://

doi.org/10.1016/j.scitotenv.2008.07.054 

61. Klaber, N. S., & Barker, A. V. (2014). Accumulation of 

Phosphorus and Arsenic in Two Perennial Grasses for 

Soil Remediation. Communications in Soil Science and 

Plant Analysis, 45(6), 810–818. https://

doi.org/10.1080/00103624.2013.857681 

62. Kochian, L. V. (2004). Phytofiltration of Arsenic from 

Drinking Water Using Arsenic-Hyperaccumulating Ferns. 

Environmental Science and Technology, 38(12), 3412–

3417. https://doi.org/https://doi.org/10.1021/es0351645 

63. Koller, C. E., Patrick, J. W., Rose, R. J., Offler, C. E., & 

MacFarlane, G. R. (2007). Pteris umbrosa R. Br. as an 

arsenic hyperaccumulator: accumulation, partitioning and 

comparison with the established As hyperaccumulator 

Pteris vittata. Chemosphere, 66(7), 1256–1263. https://

doi.org/10.1016/j.chemosphere.2006.07.029 

64. Kozul, C. D., Ely, K. H., Enelow, R. I., & Hamilton, J. W. 

(2009). Low-dose arsenic compromises the immune re-

sponse to influenza A infection in vivo. Environmental 

Health Perspectives, 117(9), 1441–1447. https://

doi.org/10.1289/ehp.0900911 

65. Krämer, U. (2005). Phytoremediation: Novel approaches 

to cleaning up polluted soils. Current Opinion in Biotech-

nology, 16(2), 133–141. https://doi.org/10.1016/

j.copbio.2005.02.006 

66. Lalita N Abhyankar, Miranda R Jones, Eliseo Guallar, A. 

N.-A. (2012). Review Arsenic Exposure and Hyperten-

sion : A Systematic Review. Environmental Health Per-

spectives, 120(4), 494–500. https://doi.org/10.1289/

ehp.1103988 

67. Lee, C. G., Alvarez, P. J. J., Nam, A., Park, S. J., Do, T., 

Choi, U. S., & Lee, S. H. (2017). Arsenic(V) removal using 

an amine-doped acrylic ion exchange fiber: Kinetic, equi-

librium, and regeneration studies. Journal of Hazardous 

Materials, 325, 223–229. https://doi.org/10.1016/

J.JHAZMAT.2016.12.003 

68. Lee, C. P., & Wen, L. S. (2019). Physical and chemical 

characterization of dissolved arsenic in the South China 

Sea. Marine Chemistry, 209(January), 128–138. https://

doi.org/10.1016/j.marchem.2019.02.001 

69. Li, B., Gu, B., Yang, Z., & Zhang, T. (2018a). The role of 

submerged macrophytes in phytoremediation of arsenic 

from contaminated water: A case study on Vallisneria 

natans (Lour.) Hara. Ecotoxicology and Environmental 

Safety, 165(August), 224–231. https://doi.org/10.1016/

j.ecoenv.2018.09.023 

70. Li, G., Khan, S., Ibrahim, M., Sun, T. R., Tang, J. F., Cot-

ner, J. B., & Xu, Y. Y. (2018b). Biochars induced modifica-

tion of dissolved organic matter (DOM) in soil and its im-

pact on mobility and bioaccumulation of arsenic and cad-

mium. Journal of Hazardous Materials, 348(October 

2017), 100–108. https://doi.org/10.1016/j.jhazmat.2018.0 

1.031 

71. Lizama A., K., Fletcher, T. D., & Sun, G. (2011). Removal 

processes for arsenic in constructed wetlands. Chemo-

sphere, 84(8), 1032–1043. https://doi.org/10.1016/

j.chemosphere.2011.04.022  

72. Li, Z., Wang, L., Meng, J., Liu, X., Xu, J., Wang, F., & 

Brookes, P. (2018c). Zeolite-supported nanoscale zero-

valent iron: New findings on simultaneous adsorption of 

Cd(II), Pb(II), and As(III) in aqueous solution and soil. 

Journal of Hazardous Materials, 344, 1–11. https://

doi.org/10.1016/J.JHAZMAT.2017.09.036 

73. Litynska, M., Ihor, A., Tolstopalova, N., Astrelin, I., & Tol-

stopalova, N. (2017). Ways of Arsenic Compounds Get-

ting into Natural Waters . Modern Environmental Science 

and Engineering, 3(1), 50–60. https://doi.org/10.15341/

mese(2333-2581)/01.03.2017/007 

74. Litynska, M. & Babakov, O. (2019). Ecological assess-

ment of different arsenic removal methods in water treat-

ment. Seventh International Scientific and Practical Con-

ference, 301–305. https://ela.kpi.ua/handle/1234567 

89/27908 

75. Luongo, T., & Ma, L. Q. (2005). Characteristics of arsenic 

accumulation by Pteris and non- Pteris ferns. Plant and 

Soil, 277, 117–126. https://doi.org/10.1007/s11104-005-

6335-9 

76. Magalhães, M. C. F. (2002). Arsenic . An environmental 

problem limited by solubility. Pure and Applied Chemistry, 

74(10), 1843–1850. https://doi.org/https://doi.org/10.1351/

pac200274101843 

77. Mandal, P., Debbarma, S. R., Saha, A., & Ruj, B. (2016). 

Disposal Problem of Arsenic Sludge Generated During 

Arsenic Removal from Drinking Water. Procedia Environ-

mental Sciences, 35, 943–949. https://doi.org/10.1016/

j.proenv.2016.07.084 



 

876 

Meghana, K M and Sayantan, S / J. Appl. & Nat. Sci. 13(3), 861 - 879 (2021) 

78. Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the 

world: A review. Talanta, 58(1), 201–235. https://

doi.org/10.1016/S0039-9140(02)00268-0 

79. Mandal, P. (2017). An insight of environmental contamina-

tion of arsenic on animal health. Emerging Contaminants, 

3(1), 17–22. https://doi.org/10.1016/j.emcon.2017.01.004 

80. Martin, E., González-Horta, C., Rager, J., Bailey, K. A., 

Sánchez-Ramírez, B., Ballinas-Casarrubias, L., Ishida, M. 

C., Gutiérrez-Torres, D. S., Cerón, R. H., Morales, D. V., 

Terrazas, F. A. B., Jesse Saunders, R., Drobná, Z., Men-

dez, M. A., Buse, J. B., Loomisk, D., Jiakj, W., García-

Vargaskk, G. G., Del Razo, L. M., … Fry, R. (2015). 

Metabolomic characteristics of arsenic-associated diabe-

tes in a prospective cohort in Chihuahua, Mexico. Toxico-

logical Sciences, 144(2), 338–346. https://doi.org/10.1093/

toxsci/kfu318 

81. Mary Kensa, V. (2011). Bioremediation - An overview. 

Journal of Industrial Pollution Control, 27(2), 161–168. 

82. McGregor, D., Boobis, A., Binaglia, M., Botham, P., Hoff-

stadt, L., Hubbard, S., Petry, T., Riley, A., Schwartz, D., & 

Hennes, C. (2010). Guidance for the classification of car-

cinogens under the globally harmonised system of classifi-

cation and labelling of chemicals (GHS). Critical Reviews 

in Toxicology, 40(3), 245–285. https://doi.org/10.3109/10 

40 8440903384717 

83. Meakin, C. J., Martin, E. M., Szilagyi, J. T., Nylander-

French, L. A., & Fry, R. C. (2019). Inorganic Arsenic as an 

Endocrine Disruptor: Modulation of the Glucocorticoid 

Receptor Pathway in Placental Cells via CpG Methylation. 

Chemical Research in Toxicology, 32(3), 493–499. https://

doi.org/10.1021/acs.chemrestox.8b00352 

84. Melkonian, S., Argos, M., Pierce, B. L., Chen, Y., Islam, 

T., Ahmed, A., Syed, E. H., Parvez, F., Graziano, J., 

Rathouz, P. J., & Ahsan, H. (2011). A prospective study of 

the synergistic effects of arsenic exposure and smoking, 

sun exposure, fertilizer use, and pesticide use on risk of 

premalignant skin lesions in bangladeshi men. American 

Journal of Epidemiology, 173(2), 183–191. https://doi.or 

g /10.1093/aje/kwq357 

85. Mirza, N., Mahmood, Q., Maroof Shah, M., Pervez, A., & 

Sultan, S. (2014). Plants as useful vectors to reduce envi-

ronmental toxic arsenic content. The Scientific World Jour-

nal, 2014, 11. https://doi.org/10.1155/2014/921581 

86. Mirza, N., Pervez, A., Mahmood, Q., Shah, M. M., & 

Shafqat, M. N. (2011). Ecological restoration of arsenic 

contaminated soil by Arundo donax L. Ecological Engi-

neering, 37(12), 1949–1956. https://doi.org/10.1016/

j.ecoleng.2011.07.006 

87. Misbahuddin, M., & Fariduddin, A. (2010). Water Hyacinth 

Removes Arsenic from Arsenic- Contaminated Drinking 

Water Water Hyacinth Removes Arsenic from Arsenic-

Contaminated Drinking Water. Archives of Environmental 

Health: An International Journal, 57(May 2012), 3–6. 

https://doi.org/https://doi.org/10.1080/0003989020960208 2 

88. Mishra, S., Mattusch, J., & Wennrich, R. (2017). Accumu-

lation and transformation of inorganic and organic arsenic 

in rice and role of thiol-complexation to restrict their trans-

location to shoot. Scientific Reports, 7(40522). https://

doi.org/10.1038/srep40522 

89. Mizuta, N., Mizuta, M., Ito, F., Ito, T., Uchida, H., 

Watanabe, Y., Akama, H., Murakami, T., Hayashi, F., 

Nakamura, K., Yamaguchi, T., Mizuta, W., Oishi, S., & 

Matsumura, H. (1956). An outbreak of acute arsenic poi-

soning caused by arsenic contaminated soy-sauce 

(shoyu): a clinical report of 220 cases. Nihon Naika 

Gakkai Zasshi, 45(8), 867–880. https://doi.org/10.2169/

naika.45.867 

90. Mohanty, M. (2016). Post-harvest management of phy-

toremediation technology. Journal of Environmental & 

Analytical Toxicology, 6(5). https://doi.org/10.4172/2161-

0525.1000398 

91. Mykolenko, S., Liedienov, V., Kharytonov, M., Makieieva, 

N., Kuliush, T., Queralt, I., Marguí, E., Hidalgo, M., Par-

dini, G., Gispert, M., Wali, A., Colinet, G., Ksibi, M., Mun-

tau, H., Quevauviller, P., Griepink, B., Dukši, I., Vincek, 

D., Horváth, M., Jiménez, M. N. (2013). Phytoremediation 

of metal enriched mine waste: a review. Global Journal of 

Environmental Research, 70(4), 135–151. http://

dx.doi.org/10.1016/j.gexplo.2016.09.013%0Ahttps://

doi.org/10.1016/j.envpol.2018.02.053  

92. Mukhopadhyay, M., Lakhotia, S. R., Ghosh, A. K., & 

Bindal, R. C. (2018). Removal of arsenic from aqueous 

media using zeolite/chitosan nanocomposite membrane. 

Separation science and technology, 54(2), 282–288. 

https://doi.org/10.1080/01496395.2018.1459704 

93. Nahar, N., Rahman, A., Nawani, N. N., Ghosh, S., & Man-

dal, A. (2017). Phytoremediation of arsenic from the con-

taminated soil using transgenic tobacco plants expressing 

ACR2 gene of Arabidopsis thaliana. Journal of Plant 

Physiology, 218, 121–126. https://doi.org/10.1016/

j.jplph.2017.08.001 

94. Naidu, R., Smith, E., Owens, G., & Bhattacharya, P. 

(2006). Managing Arsenic in the Environment: From Soil 

to Human Health (Google eBook) (Issue May 2014). 

CSIRO publishing. http://books.google.com/books?

hl=en&lr=&id=izVjtgwO_8kC&pgis=1 

95. Nedjimi, B. (2021). Phytoremediation: a sustainable envi-

ronmental technology for heavy metals decontamination. 

SN Applied Sciences, 3(3). https://doi.org/10.1007/s42452

-021-04301-4 

96. Newete, S. W., & Byrne, M. J. (2016). The capacity of 

aquatic macrophytes for phytoremediation and their dis-

posal with specific reference to water hyacinth. Environ-

mental Science and Pollution Research, 23(11), 10630–

10643. https://doi.org/10.1007/s11356-016-6329-6 

97. Niazi, N. K., Bibi, I., Fatimah, A., Shahid, M., Javed, T., 

Wang, H., Ok, Y. S., Bashir, S., Murtaza, B., Ahmad, Z., 

Shakoor, M. B., Geoscience, S. C., Road, A. I., Biochar, 

K., & Science, E. (2017). Phosphate-assisted phytoreme-

diation of arsenic by Brassica napus and Brassica juncea: 

Morphological and physiological response. International 

Journal of Phytoremediation, 19(7), 670–678. https://

doi.org/10.1080/15226514.2016.1278427 

98. Nidheesh, P. V., & Singh, T. S. A. (2017). Arsenic removal 

by electrocoagulation process: Recent trends and removal 

mechanism. Chemosphere, 181, 418–432. https://

doi.org/10.1016/j.chemosphere.2017.04.082 

99. Ortega, A., Oliva, I., Contreras, K. E., González, I., Cruz-

Díaz, M. R., & Rivero, E. P. (2017). Arsenic removal from 

water by hybrid electro-regenerated anion exchange resin/

electrodialysis process. Separation and Purification Tech-

nology, 184, 319–326. https://doi.org/10.1016/j.seppur.20 

17.04.050 

100.Palma-Lara, I., Martínez-Castillo, M., Quintana-Pérez, J. 



 

877 

Meghana, K M and Sayantan, S / J. Appl. & Nat. Sci. 13(3), 861 - 879 (2021) 

C., Arellano-Mendoza, M. G., Tamay-Cach, F., Valenzue-

la-Limón, O. L., García-Montalvo, E. A., & Hernández-

Zavala, A. (2020). Arsenic exposure: A public health prob-

lem leading to several cancers. Regulatory Toxicology 

and Pharmacology, 110, 104539. https://doi.org/10.1016/

j.yrtph.2019.104539 

101.Pandey, D., Zoomi, I., Akhtar, O., Srivastava, P., & Kehri, 

H. K. (2018). Approaches for Remediation of Arsenic Con-

tamination from Soil and Water: A Review . International 

Journal of Life Sciences Research, 6(3), 146–162. https://

www.researchgate.net/publication/327402965 

102.Peryea, F. J., & Creger, T. L. (1994). Vertical distribution 

of lead and arsenic in soils contaminated with lead arse-

nate pesticide residues. Water, Air, & Soil Pollution, 78(3–

4), 297–306. https://doi.org/10.1007/BF00483038 

103.Pham, M. T., Nishihama, S., & Yoshizuka, K. (2021). 

Effect of Operational Conditions on Arsenic Removal from 

Aqueous Solution Using Electrodialysis. Solvent Extrac-

tion and Ion Exchange. https://

doi.org/10.1080/07366299.2021.1876987 

104.Phillips, J., & French, M. (1998). The pure beer campaign 

and arsenic poisoning, 1896-1903. Rural History, 9(2), 

195–209. https://doi.org/10.1017/s0956793300001576 

105.Pickering, I. J., Prince, R. C., George, M. J., Smith, R. D., 

George, G. N., & Salt, D. E. (2000). Reduction and Coor-

dination of Arsenic in Indian Mustard 1. Plant Physiology, 

122(4), 1171–1178. https://doi.org/10.1104/pp.122.4.1171 

106.Poynton, C. Y., Huang, J. W., Blaylock, M. J., Kochian, L. 

V., & Elless, M. P. (2004). Mechanisms of arsenic hyper-

accumulation in Pteris species: Root As influx and translo-

cation. Planta, 219(6), 1080–1088. https://doi.org/10.1007/

s00425-004-1304-8 

107.Rahman, M. A., & Hasegawa, H. (2011). Aquatic arsenic : 

Phytoremediation using floating macrophytes. Chemo-

sphere, 83(5), 633–646. https://doi.org/10.1016/

j.chemosphere.2011.02.045 

108.Rahman, M. A., Hasegawa, H., Ueda, K., Maki, T., Oku-

mura, C., & Rahman, M. M. (2007). Arsenic accumulation 

in duckweed (Spirodela polyrhiza L.): A good option for 

phytoremediation. Chemosphere, 69(3), 493–499. https://

doi.org/10.1016/j.chemosphere.2007.04.019 

109.Rahman, M. S., Clark, M. W., Yee, L. H., & Burton, E. D. 

(2019). Arsenic(V) sorption kinetics in long-term arsenic 

pesticide contaminated soils. Applied Geochemistry, 111

(June), 104444. https://doi.org/10.1016/

j.apgeochem.2019.104444 

110.Raj, A., & Singh, N. (2015). Phytoremediation of Arsenic 

Contaminated Soil by Arsenic Accumulators : A Three 

Year Study. Bulletin of Environmental Contamination and 

Toxicology, 94(3). https://doi.org/10.1007/s00128-015-

1486-8 

111.Raj, D. (2019). Bioaccumulation of mercury, arsenic, cad-

mium, and lead in plants grown on coal mine soil. Human 

and Ecological Risk Assessment, 25(3), 659–671. https://

doi.org/10.1080/10807039.2018.1447360  

112.Ranjan, A., Singh, S., Kumar, V., & Majhi, M. (2020). 

Remediation Measures for Arsenic Pollution of Soil. Bioti-

ca Research Today, 2(7), 680–683. https://

bioticainternational.com/ojs/index.php/biorestoday/article/

view/331 

113.Robinson, B., Duwig, C., Bolan, N., Kannathasan, M., & 

Saravanan, A. (2003). Uptake of arsenic by New Zealand 

watercress (Lepidium sativum). Science of the Total Envi-

ronment, 301(1–3), 67–73. https://doi.org/10.1016/S0048-

9697(02)00294-2 

114.Robinson, B., Kim, N., Marchetti, M., Moni, C., Schroeter, 

L., Dijssel, C. Van Den, Milne, G., & Clothier, B. (2006). 

Arsenic hyperaccumulation by aquatic macrophytes in the 

Taupo Volcanic Zone , New Zealand. Environmental and 

Experimental Botany, 58(1–3), 206–215. https://

doi.org/10.1016/j.envexpbot.2005.08.004  

115.Reddy, S. (2019). Arsenic contamination in Ground Water 

in India — Vikaspedia. Retrieved July 15, 2021, https://

vikaspedia.in/energy/environment/know-your-

environment/water/arsenic-contamination-in-ground-water

-in-india 

116.Sadeghi, M. H., Tofighy, M. A., & Mohammadi, T. (2020). 

One-dimensional graphene for efficient aqueous heavy 

metal adsorption: Rapid removal of arsenic and mercury 

ions by graphene oxide nanoribbons (GONRs). Chemo-

sphere, 253, 126647. https://doi.org/10.1016/

J.CHEMOSPHERE.2020.126647 

117.Sakakibara, M., Watanabe, A., Sano, S., Inoue, M., & 

Kaise, T. (2007). Phytoextraction and phytovolatilization of 

arsenic from as-contaminated soils by Pteris vit-

tata.Proceedings of the Annual International Conference 

on Soils, Sediments, Water and Energy, 12(January), 258

–263. 

118.Sanchez-Hernandez, J. C., Ro, K. S., & Díaz, F. J. 

(2019). Biochar and earthworms working in tandem: Re-

search opportunities for soil bioremediation. Science of 

the Total Environment, 688, 574–583. https://

doi.org/10.1016/j.scitotenv.2019.06.212 

119.Sandhi, A., Landberg, T., & Greger, M. (2018). Phytofil-

tration of arsenic by aquatic moss (Warnstorfia fluitans). 

Environmental Pollution, 237, 1098–1105. https://

doi.org/10.1016/j.envpol.2017.11.038 

120.Sasmaz, A., & Obek, E. (2009). The accumulation of 

arsenic , uranium , and boron in Lemna gibba L . exposed 

to secondary effluents. Ecological Engineering, 35(10), 

1564–1567. https://doi.org/10.1016/j.ecoleng.2009.06.007 

121.Sayantan, D., & Shardendu. (2017). Phosphate Amend-

ments Moderate the Arsenate Accumulation and Its Sub-

sequent Oxidative and Physiological Toxicities in Amaran-

thus viridis L. Proceedings of the National Academy of 

Sciences India Section B - Biological Sciences, 87(4), 

1343–1353. https://doi.org/10.1007/s40011-016-0711-5 

122.  Shaji, E., Santosh, M., Sarath, K. V., Prakash, P., Deep-

chand, V., & Divya, B. V. (2021). Arsenic contamination of 

groundwater: A global synopsis with focus on the Indian 

Peninsula. Geoscience Frontiers, 12(3), 101079. https://

doi.org/10.1016/j.gsf.2020.08.015 

123.Sharma, I. (2012). Arsenic induced oxidative stress in 

plants. Biologia, 67(3), 447–453. https://doi.org/10.2478/

s11756-012-0024-y 

124.Shrivastava, A., Ghosh, D., Dash, A., & Bose, S. (2015). 

Arsenic Contamination in Soil and Sediment in India: 

Sources, Effects, and Remediation. Current Pollution Re-

ports, 1(1), 35–46. https://doi.org/10.1007/s40726-015-

0004-2 

125.Signes-Pastor, A., Burló, F., Mitra, K., & Carbonell-

Barrachina, A. A. (2007). Arsenic biogeochemistry as 



 

878 

Meghana, K M and Sayantan, S / J. Appl. & Nat. Sci. 13(3), 861 - 879 (2021) 

affected by phosphorus fertilizer addition, redox potential 

and pH in a west Bengal (India) soil. Geoderma, 137(3–4), 

504–510. https://doi.org/10.1016/j.geoderma.2006.10.012 

126.Silva Gonzaga, M. I., Gonzaga Santos, J. A., & Ma, L. Q. 

(2006). Arsenic phytoextraction and hyperaccumulation by 

fern species. Scientia Agricola, 63(1), 90–101. https://

doi.org/10.1590/s0103-90162006000100015 

127.Singh, N., Raj, A., Khare, P. B., Tripathi, R. D., & Jamil, 

S. (2010). Arsenic accumulation pattern in 12 Indian ferns 

and assessing the potential of Adiantum capillus-veneris , 

in comparison to Pteris vittata , as arsenic hyperaccumu-

lator. Bioresource Technology, 101(23), 8960–8968. 

https://doi.org/10.1016/j.biortech.2010.06.116 

128.Slavkovich, V., Argos, M., Hasan, R., Ahmed, A., & Islam, 

T. (2013). Arsenic Exposure and Impaired Lung Function. 

Findings from a Large Population-based Prospective Co-

hort Study. American Journal of Respiratory and Critical 

Care Medicine, 188(7), 813–819. https://doi.org/10.1164/

rccm.201212-2282OC 

129.Smedley, P. L., & Kinniburgh, D. G. (2002). A review of 

the source , behaviour and distribution of arsenic in natu-

ral waters. Applied Geochemistry, 17(5), 517–568. https://

doi.org/https://doi.org/10.1016/S0883-2927(02)00018-5  

130.Sodhi, K. K., Kumar, M., Agrawal, P. K., & Singh, D. K. 

(2019). Perspectives on arsenic toxicity, carcinogenicity 

and its systemic remediation strategies. Environmental 

Technology and Innovation, 16, 100462. https://doi.org/1 

0.1016/j.eti.2019.100462 

131.Song, Z., Chen, X., Gong, X., Gao, X., Dai, Q., Nguyen, 

T. T., & Guo, M. (2020). Luminescent carbon quantum 

dots/nanofibrillated cellulose composite aerogel for moni-

toring adsorption of heavy metal ions in water. Optical 

Materials, 100, 109642. https://doi.org/10.1016/J.OPTMA 

T.2019.109642 

132.Song, W. Y., Park, J., Mendoza-Cózatl, D. G., Suter-

Grotemeyer, M., Shima, D., Hörtensteiner, S., Geisler, M., 

Weder, B., Rea, P. A., Rentsch, D., Schroeder, J. I., Lee, 

Y., & Martinoia, E. (2010). Arsenic tolerance in Arabidop-

sis is mediated by two ABCC-type phytochelatin transport-

ers. Proceedings of the National Academy of Sciences of 

the United States of America, 107(49), 21187–21192. 

https://doi.org/10.1073/pnas.1013964107  

133.Srivastava, S., & Dwivedi, A. (2015). Biological Wastes 

the Tool for Biosorption of Arsenic. Bioremediation & Bio-

degradation, 7(1), 1. https://doi.org/10.4172/2155-6199.10 

00323 

134.Sultana, R., & Kobayashi, K. (2011). Potential of barnyard 

grass to remediate arsenic-contaminated soil. Weed Biol-

ogy and Management, 11(1), 12–17. https://doi.org/10.1 

111/j.144 5-6664.2011.00400.x 

135.Taylor, P., Mendoza, R. M. O., Kan, C., Chuang, S., & 

Pingul-ong, S. M. B. (2014). Feasibility studies on arsenic 

removal from aqueous solutions. Journal of Environmental 

Science and Health , Part A : Toxic / Hazardous Sub-

stances and Environmental engineering, 49(5), 545-554 . 

https://doi.org/10.1080/10934529.2014.859035 

136.Taylor, P., Salido, A. L., Hasty, K. L., Lim, J., Butcher, D. 

J., Salido, A. L., Hasty, K. L., Lim, J., & Butcher, D. J. 

(2003). Phytoremediation of Arsenic and Lead in Contami-

nated Soil Using Chinese Brake Ferns ( Pteris vittata ) 

and Indian Mustard ( Brassica juncea ). International Jour-

nal of Phytoremediation, 5, 89–103. https://

doi.org/10.1080/713610173 

137.Thakur, S., Choudhary, S., Majeed, A., Singh, A., & 

Bhardwaj, P. (2020). Insights into the Molecular Mecha-

nism of Arsenic Phytoremediation. Journal of Plant 

Growth Regulation, 39(2), 532–543. https://

doi.org/10.1007/s00344-019-10019-w 

138.Tripathi, R. D., Srivastava, S., Mishra, S., Singh, N., Tuli, 

R., Gupta, D. K., & Maathuis, F. J. M. (2007). Arsenic 

hazards : strategies for tolerance and remediation by 

plants. Trends in Biotechnology, 25(4), 158–165. https://

doi.org/10.1016/j.tibtech.2007.02.003 

139.Tripti, K., Narain Singh, D., & Sayantan, D. (2017). Evalu-

ation of arsenic removal potential of arsenic resistant bac-

teria with the role of physiological and genomic fac-

tors.Indian Journal of Experimental Biology  55, 251- 261. 

140.Tripti, K., Sayantan, D., Shardendu, S., Singh, D. N., & 

Tripathi, A. K. (2014). Potential for the uptake and removal 

of arsenic [As (V) and As (III)] and the reduction of As (V) 

to As (III) by Bacillus licheniformis(DAS1) under different 

stresses. Korean Journal of Microbiology and Biotechnolo-

gy, 42(3), 238–248. https://doi.org/10.4014/kjmb.1401.0 

1004  

141.Upadhyay, M. K., Shukla, A., Yadav, P., & Srivastava, S. 

(2019). A review of arsenic in crops, vegetables, animals 

and food products. Food Chemistry, 276, 608–618. https://

doi.org/10.1016/j.foodchem.2018.10.069 

142.Vatamaniuk, O. K., Mari, S., Lu, Y. P., & Rea, P. A. 

(2000). Mechanism of heavy metal ion activation of phyto-

chelatin (PC) synthase. Blocked thiols are sufficient for PC 

synthase-catalyzed transpeptidation of glutathione and 

related thiol peptides. Journal of Biological Chemistry, 275

(40), 31451–31459. https://doi.org/10.1074/jbc.M002 997 

200 

143.Visoottiviseth, P., Francesconi, K., & Sridokchan, W. 

(2002). The potential of Thai indigenous plant species for 

the phytoremediation of arsenic contaminated land. Envi-

ronmental Pollution, 118(3), 453–461. https://doi.org/

https://doi.org/10.1016/S0269-7491(01)00293-7 

144.Vithanage, M., Dabrowska, B. B., Mukherjee, A. B., San-

dhi, A., & Bhattacharya, P. (2012). Arsenic uptake by 

plants and possible phytoremediation applications: A brief 

overview. Environmental Chemistry Letters, 10(3), 217–

224. https://doi.org/10.1007/s10311-011-0349-8 

145.Vocciante, M., Caretta, A., Bua, L., Bagatin, R., Franchi, 

E., Petruzzelli, G., & Ferro, S. (2019). Enhancements in 

phytoremediation technology: Environmental assessment 

including different options of biomass disposal and com-

parison with a consolidated approach. Journal of Environ-

mental Management, 237(November 2018), 560–568. 

https://doi.org/10.1016/j.jenvman.2019.02.104 

146.Xie, Q. E., Yan, X. L., Liao, X. Y., & Li, X. (2009). The 

arsenic hyperaccumulator fern Pteris vittata L. Environ-

mental Science and Technology, 43(22), 8488–8495. 

https://doi.org/10.1021/es9014647 

147.Xie, Z. M., & Huang, C. Y. (1998). Control of arsenic tox-

icity in rice plants grown on an arsenic-polluted paddy soil. 

Communications in Soil Science and Plant Analysis, 29

(15–16), 2471–2477. https://doi.org/10.1080/0010 362980 

9370125 

148.Xue, P. ying, & Yan, C. zhou. (2011). Arsenic accumula-

tion and translocation in the submerged macrophyte Hy-

drilla verticillata (L.f.) Royle. Chemosphere, 85(7), 1176–



 

879 

Meghana, K M and Sayantan, S / J. Appl. & Nat. Sci. 13(3), 861 - 879 (2021) 

1181. https://doi.org/10.1016/j.chemosphere.2011.09.051 

149.Yamaguchi, N., Nakamura, T., Dong, D., Takahashi, Y., 

Amachi, S., & Makino, T. (2011). Arsenic release from 

flooded paddy soils is influenced by speciation, Eh, pH, 

and iron dissolution. Chemosphere, 83(7), 925–932. 

https://doi.org/10.1016/j.chemosphere.2011.02.044 

150.Zhang, X., Hu, Y., Liu, Y., & Chen, B. (2011). Arsenic 

uptake, accumulation and phytofiltration by duckweed 

(Spirodela polyrhiza L.). Journal of Environmental Scienc-

es, 23(4), 601–606. https://doi.org/10.1016/S1001-0742

(10)60454-8 

151.Zhao, F. J., Wang, J. R., Barker, J. H. A., Schat, H., 

Bleeker, P. M., & McGrath, S. P. (2003). The role of phy-

tochelatins in arsenic tolerance in the hyperaccumulator 

Pteris vittata. New Phytologist, 159(2), 403–410. https://

doi.org/10.1046/j.1469-8137.2003.00784.x 


