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INTRODUCTION 

The concept of remote sensing technology in agricultur-

al drought detection and monitoring through stress de-

tection and ecological changes has provided continu-

ous valuable insights (AghaKouchak et al., 2015). 

Since drought is an essential aspect of climate variabil-

ity and climate change, drought indices such as the 

PDSI - Palmer Drought Severity Index (Palmer, 1965) 

or SPI - Standard Precipitation Index (McKee, 1995; 

McKee et al., 1993) were calculated based on rainfall, 

evapo-transpiration, and in-situ ground weather station. 

However, scattered distribution of these stations proves 

to be a barrier in providing continuous data.  

Studies have shown that agricultural drought assess-

ment can be reliably measured using space-driven data 

to fill the void left by the limited sampling gauges and in

-situ methods that lack spatial variations (Rhee et al., 
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2010). Depending on the geospatial data, several re-

mote sensing-based vegetation indices were adopted to 

identify drought severity (Rhee et al., 2010). Among 

these Normalised Difference Vegetation Index (NDVI) 

(Rouse et al., 1974), which uses normalised reflectance 

between Near-Infrared (NIR) and red channels of the 

electromagnetic spectrum, was widely used for monitor-

ing agricultural drought. With NDVI measuring changes 

in chlorophyll content of vegetation canopy, a significant 

limitation exists that is the apparent time lag period be-

tween NDVI response towards rainfall deficit (Di et al., 

1994). Given the importance of water in crop canopy, 

Gao (1996) proposed Normalized Difference Water 

Index (NDWI), which uses SWIR (Short Wave Infrared) 

in combination with NIR band to remove the variations 

induced by the internal leaf structure and dry matter 

content, hence improving accuracy in retrieving vegeta-

tion water content (Ceccato et al., 2001). With the 

SWIR band's inclusion, NDWI has been considered a 

sensitive indicator of drought conditions (Gu et al., 

2007). The past studies showed the sensitivity of NDVI 

and NDWI for vegetation stress detection and drought 

monitoring (Farrar et al., 1994; Gu et al., 2007), and 

hence a new methodology was proposed by combining 

vegetation and water-related index (Gu et al., 2007). 

The combined information based on NDVI and NDWI 

values suggested a more sensitive summer drought 

detection index called the Normalised Difference 

Drought Index (NDDI). Wang and Qu, (2007) proposed 

monitoring vegetation stress along with moisture availa-

bility on highly vegetated areas and termed as Normal-

ised Multi-Band Drought Index (NMDI), which combines 

two channels of SWIR band (1640 µm and 2130 µm) 

along with Near Infrared (NIR) band of MODIS 

(Moderate Resolution Imaging Spectroradiometer). 

NMDI was developed based on the fact that SWIR is 

more responsive to soil and vegetation moisture, further 

improving the index's sensitivity for drought severity 

monitoring.  

Drought frequencies have been distinctive in India's 

many regions (Mishra and Liu, 2014). Studies by Gupta 

et al. (2020) and Ge et al. (2016) highlighted that the 

frequencies of severe drought with an extended return 

period is projected to increase and is expected to be 

highest for the period between 2071-2100. Similarly, 

Aadhar and Misra (2018) reported the role of increased 

eveapotranspiration due to anthropogenic activities to 

be one of the significant factors in the increase of 

drought frequencies in India.  A typical paradox exam-

ple to highlight this is the increasing regional drought 

frequencies and wavering drought severity in Tamil Na-

du, which is a North-East Monsoon rainfall dependent 

state (GOI, 2018). At present, with the availability and 

ability of land surface parameters at high temporal reso-

lution obtained using TERRA satellite based MODIS 

sensor, provides an insight on crop stress response.  

The study here examines Land Surface Temperature 

(LST) performance, Tropical Rainfall Measuring Mis-

sion (TRMM) and vegetation-based indices derived 

from MODIS against rainfall variables with an objective 

to i) Identify a suitable index for agricultural drought 

monitoring in Tamil Nadu based on correlation analysis 

between remote sensing based vegetation indices and 

in-situ meteorological data, ii) Demonstrate the robust-

ness by comparing the vegetation indices map with 

aggregated monthly SPI map of September. 

MATERIALS AND METHODS 

Study area 

The region of Tamil Nadu (Fig.1) stretches between 

8.5° N and 13.35° N latitude and 78.35° E and 80.20° E 

Longitude. Overall, the region's agricultural area ac-

counts for 13630.053 sq. km of Rabi cropland and 

5232.520 sq. km. of Kharif cropland. Bi- monsoonal 

patterns dominated rainfall exists in the sub-agro-

climatic zones of Tamil Nadu (DES, 2011). The state 

misses most of the rainfall during the southwest mon-

soon, hence making the region dependent on northeast 

monsoon rainfall. 

Datasets 

The following remote sensing datasets from various 

sensors and in-situ ground datasets were downloaded 

for 2000 to 2013 (Julian days from 145 to 273) each 

year with a total of 476 (238 * 2 tiles) satellite data from 

each sensor.  

MODIS land data product  

TERRA derived MODIS based surface reflectance and 

LST (Land Surface Temperature) data of h25v7 and 

h25v8, a title corresponding to the Tamil Nadu area, 

was obtained from the Land Processes Distribute Ac-

tive Archive Centre (LP DAAC) of NASA (http://

search.earthdata.nasa.gov).  An 8-day composite Land 

Surface Temperature (LST) product (MOD11A2) with a 

spatial resolution of 1 km was downloaded to extract 

daytime land surface temperature and emissivity for 

assessing vegetation condition.  

GLDAS- NOAH land surface data  

In considering the cloud contamination in MODIS, the 

Global Land Data Assimilation System (GLDAS)-NOAH 

Land Surface Model (L4) three hours data downloaded 

at 0.25 x 0.25-degree spatial resolution from the NASA 

Goddard Earth Science (GES) data and Information 

Service Centre (DISC) https://disc.gsfc.nasa.gov/. 

Rainfall data 

Gridded rainfall data of daily precipitation was extracted 

from Tropical Rainfall Measuring Mission product 

(TRMM 3B42) at a level of 0.25° spatial resolution for a 

https://disc.gsfc.nasa.gov/
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global extent http://mirador.gsfc.nasa.gov for calcula-

tion of monthly rainfall.  

In-situ precipitation data 

The in-situ rainfall data was collected from the Tamil 

Nadu Public Works Department (PWD) from 1970 to 

2013 and later processed monthly to calculate the 

Standard Precipitation Index. SPI was derived since it 

was a spatially invariant indicator of drought, and its 

quantitative nature used to detect anomalies over dif-

ferent time scales.   

Pre-processing of satellite data 

The pre-processing of land data product viz., LST and 

MODIS data is performed using the MODIS Reprojec-

tion Tool (MRT). Tiles of h25v7 and h25v8 were mosa-

icked, followed by projection from Sinusoidal to Univer-

sal Transverse Mercator, and finally subsetting the sat-

ellite data for the rectangular extent of Tamil Nadu. 

TRMM available in .netCDF format was processed us-

ing Model Builder and Python Scripting in ArcGIS. The 

TRMM reprojection model developed using the Model 

Builder in ArcGIS to automatically correct the projection 

parameters and subset each satellite data for the rec-

tangular extent of Tamil Nadu. 

Because of the difference in temporal resolution and 

time-lag between MODIS and TRMM, TRMM data 

combined for eight days to match the Julian days (8-

day composite) of MODIS data.  A python script was 

used for automating the process using Arcpy module.  

Since optical imagery was subjected to image distortion 

due to clouds, particularly during the cropping season 

of June to September, LST's cloud pixels replaced with 

GLDAS NOAH LST. Fig. 2 depicts the pre-processing 

of satellite datasets. 

Calculation of vegetation indices  

Based on Rhee et al. (2010) approach for drought de-

tection in arid and semiarid regions, this study also 

utilised vegetation indices viz., NDVI, NDWI, NMDI and 

NDDI, temperature index viz., LST and weather com-

ponent viz., TRMM. These were extracted and catego-

rised as raw variables, scaled variables, and combined 

variables (Table 1). Apart from removing the mentioned 

indices and components, SWIR channels (band 5, 

band 6, and band 7) were tested separately for NDDI 

and NDWI due to different SWIR band sensitivity in 

sensing vegetation moisture content. 

To minimise the effect of inter-annual variations of veg-

etation index values resulting from weather fluctuation 

and ecosystem components, scaling of indices was 

done (Kogan, 1995). Vegetation indices, LST, and the 

TRMM values were scaled from 0 to 1 range for each 

pixel, wherein 0 meant the driest condition and 1 repre-

sents the wettest condition. Additive combinations of 

variables, including vegetation components, tempera-

ture components, and precipitation components, were 

also tested based on three weights combinations and 

compared with 1-month SPI and rainfall to understand 

the performance. The purpose of following this ap-

proach was to try the nature of indices in detecting ag-

ricultural drought over the climatic and land covers of 

Tamil Nadu. Fig. 3 explains the detailed methodology. 

Processing of in-situ rainfall  

For rainfall data processing, station point values were 

created in the ArcGIS using the respective longitude 

and latitude and rainfall values. The monthly rainfall 

data are spatially interpolated based on the Inverse 

Distance Weighted Average Algorithm to produce a 

rainfall surface at 500 m spatial resolution.  

Fig. 1. Study area map with land use and land cover map.  

http://mirador.gsfc.nasa.gov
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Vegetation Indices Formula Reference 

Raw Indices 

NDVI 

Normalized Difference Vegetation 

Index 

(ρband 2 – ρ band 3) / (ρ band 2 + ρ band 3) 
(Rouse et al., 

1974) 

NDWI 

NDWI5 

SWIR  Band 5 (1230-

1250 nm 

(ρ band 2 – ρ band 5) / (ρ band 2 + ρ band 5) 

  

  

  

(Gao, 1996) 

NDWI6 

SWIR Band 6 (1628-

1652 nm) 

(ρ band 2 – ρ band 6) / (ρ band 2+ ρ band 6) 

NDWI7 

SWIR Band 7 (2105-

2155 nm) 

(ρ band 2 – ρ band 7) / (ρ band 2+ ρ band 7) 

NDDI 

NDDI5 (SWIR  Band 5) (NDVI−NDWI5)/(NDVI+NDWI5) 
  

(Gu et al., 
NDDI6 (SWIR  Band 5) (NDVI−NDWI6)/(NDVI+NDWI6) 

NDDI7 (SWIR  Band 5) (NDVI−NDWI7)/(NDVI+NDWI7) 

NMDI 

Normalized Multiband Drought In-

dex 

(ρ band 2 - (ρ band 6 - ρ band 7)) / (ρ band 2 + (ρ band 6 - ρ 

band 7)) 

(Wang and 

Qu, 2007) 

Scaled Indices 

Scaled LST (LSTmax−LST)/(LSTmax−LSTmin) 

(Kogan, 1995; 

Rhee et al., 

2010) 

Scaled TRMM (TRMM−TRMMmin) /(TRMMmax−TRMMmin) 

Scaled NDVI (= Vegetation Condi-

tion Index) 
(NDVI−NDVImin) /(NDVImax−NDVImin) 

Scaled NMDI (NMDImax−NMDI)/(NMDImax−NMDImin) 

Scaled NDWI5 (NDWI5−NDWI5min) /(NDWI5max−NDWI5min) 

Scaled NDWI6 (NDWI6−NDWI6min) /(NDWI6max−NDWI6min) 

Scaled NDWI7 (NDWI7−NDWI7min) /(NDWI7max−NDWI7min) 

Scaled NDDI5 (NDDI5max−NDDI5)/(NDDI5max−NDDI5min) 

Scaled NDDI6 (NDDI6max−NDDI6)/(NDDI6max−NDDI6min) 

Scaled NDDI7 (NDDI7max−NDDI7)/(NDDI7max−NDDI7min) 

Combined Indices 

Vegetation Health Index (VHI) (1/2)×scaled LST+(1/2)×scaled NDVI (Kogan, 1995) 

Combined index1 (CI1) 

(1/3)×scaled LST+(1/3)×scaled TRMM+(1/3)×Scaled NDVI 

(Rhee et al., 

2010) 

(1/3)×scaled LST+(1/3)×scaled TRMM+(1/3)×Scaled NMDI 

(1/3)×scaled LST+(1/3)×scaled TRMM+(1/3)×Scaled NDWI5 

(1/3)×scaled LST+(1/3)×scaled TRMM+(1/3)×Scaled NDWI6 

(1/3)×scaled LST+(1/3)×scaled TRMM+(1/3)×Scaled NDWI7 

(1/3)×scaled LST+(1/3)×scaled TRMM+(1/3)×Scaled NDDI5 

(1/3)×scaled LST+(1/3)×scaled TRMM+(1/3)×Scaled NDDI6 
(1/3)×scaled LST+(1/3)×scaled TRMM+(1/3)×Scaled NDDI7 

Combined index2 (CI2) 

(1/4)×scaled LST+(2/4)×scaled TRMM+(1/4)×Scaled NDVI 

(Rhee et al., 

2010) 

(1/4)×scaled LST+(2/4)×scaled TRMM+(1/4)×Scaled NMDI 

(1/4)×scaled LST+(2/4)×scaled TRMM+(1/4)×Scaled NDWI5 

(1/4)×scaled LST+(2/4)×scaled TRMM+(1/4)×Scaled NDWI6 

(1/4)×scaled LST+(2/4)×scaled TRMM+(1/4)×Scaled NDWI7 

(1/4)×scaled LST+(2/4)×scaled TRMM+(1/4)×Scaled NDDI5 

(1/4)×scaled LST+(2/4)×scaled TRMM+(1/4)×Scaled NDDI6 
(1/4)×scaled LST+(2/4)×scaled TRMM+(1/4)×Scaled NDDI7 

Combined index3 (CI3) 

(2/5)×scaled LST+(2/5)×scaled TRMM+(1/5)×Scaled NDVI 

(Rhee et al., 

2010) 

(2/5)×scaled LST+(2/5)×scaled TRMM+(1/5)×Scaled NMDI 

(2/5)×scaled LST+(2/5)×scaled TRMM+(1/5)×Scaled NDWI5 

(2/5)×scaled LST+(2/5)×scaled TRMM+(1/5)×Scaled NDWI6 

(2/5)×scaled LST+(2/5)×scaled TRMM+(1/5)×Scaled NDWI7 

(2/5)×scaled LST+(2/5)×scaled TRMM+(1/5)×Scaled NDDI5 

(2/5)×scaled LST+(2/5)×scaled TRMM+(1/5)×Scaled NDDI6 

(2/5)×scaled LST+(2/5)×scaled TRMM+(1/5)×Scaled NDDI7 

Table 1. Formula for remote sensing derived indices extraction using various wavelength bands (ρ represented the  

spectral reflectance). 
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Fig. 2. Pre-processing of satellite data. 

Fig. 3. Methodology adopted for deriving drought indices using remote sensing. 
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SPI has been used to assess the impact of rainfall defi-

ciency and quantify the precipitation deficit in the mon-

soon periods from 1970 to 2013. The standardised pre-

cipitation index calculated using equation (1). 

SPI = (Xij − Xim) /σ                                          ….. eq. (1) 

Where, 

Xij denotes seasonal precipitation at ith rain gauge sta-

tion, and jth, Xim observation denotes long term season-

al mean. σ is its standard deviation. The SPI maps 

were generated using the SPIRITS software for all the 

years. 

Correlation analysis of remote sensing derived  

indices and meteorological variables 

The climatic factors' behaviour is one of the critical as-

pects of drought monitoring that provides a better un-

derstanding of vegetation development and degrada-

tion. Remote sensing index values were subjected to 

Pearson correlation analysis against 1-month SPI and 

rainfall over 2000 to 2013 growing season. The remote-

ly sensed index and SPI / Rainfall data are correlated 

spatially on a pixel by pixel basis. The coefficient range 

depicted information on the strength/weakness of vege-

tation growth and rainfall influence. 

RESULTS AND DISCUSSION 

Raw vegetation indices against painfall and  

precipitation 

Values of the correlation coefficient between remote 

sensing variable with 1-month SPI and rainfall are pro-

vided in Table 2, while maps in Fig. 4 shows raw indi-

ces comparison with SPI that ranges from -1 to 1. Val-

ue from 0 to 1 shows the increasing trend in vegetation 

greenness and water content, while sparse to no vege-

tation goes from -1 to 0. Irrespective of the index used, 

rainfall shows a slightly higher positive correlation than 

SPI for the entire index except for LST and NDDI. Land 

Surface Temperature (LST) has a negative correlation 

of -0.24 (rainfall) and -0.20 (SPI), which indicated that 

LST alone could not be used to analyse the agricultural 

drought situation. The rainfall estimate derived from 

TRMM recorded higher correlation values of 0.58 and 

0.43 with in-situ rainfall and SPI variables. In the ab-

sence of in-situ rainfall data, TRMM data can be used 

alone or in combination with the available in-situ rainfall 

data for analysing the drought scenario (Rousta et al., 

2020). 

Studies by Di et al. (1994); Farrar et al. (1994); Wang 

et al. (2001) showed a significant relationship between 

NDVI, precipitation, and moisture; however, this study 

on NDWI against rainfall and SPI showed higher corre-

lation values compared to crop greenness based indi-

ces, which qualifies on the inclusion of shortwave infra-

red channel reflectance (SWIR) in NDWI that are less 

affected by atmospheric scattering (Aghakouchak et al., 

2015). Among the SWIR channels of the MODIS sen-

sor, SWIR 6 and SWIR 7 showed a better correlation 

than the SWIR channel five, which is also in line with 

similar results drawn by Rhee et al., 2010 for arid and 

semiarid region drought detection. 

The newly developed NMDI and NDDI indices nega-

tively correlate with in-situ variables. The correlation 

results of NDDI 5 (-0.16 and -0.1), NDDI 6 (-0.27 and -

0.16), and NDDI 7 (-0.24 and -0.16) with rainfall and 

SPI, respectively, clearly indicates that combining the 

information using the difference between two liquid wa-

ter absorption cannot be utilised as a reliable indicator 

for summer drought analysis (Wang and Qu, 2007)

when there is the presence of variability in regional soil 

moisture and vegetation moisture (Rhee et al., 2010). 

Scaled vegetation indices against rainfall and  

precipitation 

Higher correlation values were noticed for scaled indi-

ces compared to raw indices when tested against in-

Type Remote Sensing Index Rainfall SPI 

Raw LST -0.24 -0.2 

Raw TRMM  0.58  0.43 

Raw NDVI  0.26  0.12 

Raw NMDI -0.08 -0.11 

Raw NDWI5  0.27  0.15 

Raw NDWI6  0.35  0.19 

Raw NDWI7  0.34  0.2 

Raw NDDI5 -0.16 -0.1 

Raw NDDI6 -0.27 -0.16 

Raw NDDI7 -0.24 -0.16 

Table 2. Correlation coefficient of raw remote sensing 
variable with in-situ variables. 

Type Remote Sensing Index Rainfall SPI 

Scaled Scaled LST  0.19  0.23 

Scaled Scaled TRMM  0.47  0.45 

Scaled ScaledNDVI  0.15  0.16 

Scaled ScaledNMDI  0.10  0.11 

Scaled ScaledNDWI5  0.20  0.19 

Scaled ScaledNDWI6  0.26  0.24 

Scaled ScaledNDWI7  0.26  0.25 

Scaled ScaledNDDI5 -0.19 -0.22 

Scaled ScaledNDDI6 -0.19 -0.23 

Scaled ScaledNDDI7 -0.19 -0.22 

Table 3. Correlation coefficient values of scaled  

remote sensing indices with in-situ variables. 
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situ variables. Table 3 depicts the correlation coefficient 

values for scaled indices with rainfall and SPI. Map in 

Fig. 5 shows a comparison of scaled variables with SPI 

for September 2013, which indicates the presence of 

no drought (> 0.5-1) to exceptional drought (0.0-0.1) 

situation. 

The scaled TRMM index correlates with rainfall (0.47) 

and SPI (0.45) compared to other indices based on the 

results. The raw LST and NMDI and scaled LST and 

NMDI also positively correlated with rainfall and SPI, 

suggesting that inter-annual soil and vegetation varia-

bility are essential in effective drought monitoring.  

Among the scaled remote sensing variables, scaled 

LST, scaled TRMM, scaled NDVI, scaled NDWI 6, and 

scaled NDWI 7 correlates high within-situ variables 

relatively. This finding, which is similar to raw index 

Type Remote Sensing Index Rainfall SPI 

VHI LST, NDVI 0.26 0.30 

CI1 Scaled LST, Scaled TRMM, Scaled NDVI 0.43 0.46 

CI1 Scaled LST, Scaled TRMM, Scaled NMDI 0.39 0.42 

CI1 Scaled LST, Scaled TRMM, Scaled NDWI5 0.37 0.37 

CI1 Scaled LST, Scaled TRMM, Scaled NDWI6 0.44 0.45 

CI1 Scaled LST, Scaled TRMM, Scaled NDWI7 0.45 0.46 

CI1 Scaled LST, Scaled TRMM, Scaled NDDI5 0.24 0.23 

CI1 Scaled LST, Scaled TRMM, Scaled NDDI6 0.25 0.23 

CI1 Scaled LST, Scaled TRMM, Scaled NDDI7 0.26 0.26 

CI2 Scaled LST, Scaled TRMM, Scaled NDVI 0.48 0.49 

CI2 Scaled LST, Scaled TRMM, Scaled NMDI 0.45 0.46 

CI2 Scaled LST, Scaled TRMM, Scaled NDWI5 0.42 0.41 

CI2 Scaled LST, Scaled TRMM, Scaled NDWI6 0.49 0.49 

CI2 Scaled LST, Scaled TRMM, Scaled NDWI7 0.49 0.49 

CI2 Scaled LST, Scaled TRMM, Scaled NDDI5 0.35 0.34 

CI2 Scaled LST, Scaled TRMM, Scaled NDDI6 0.35 0.34 

CI2 Scaled LST, Scaled TRMM, Scaled NDDI7 0.36 0.36 

CI3 Scaled LST, Scaled TRMM, Scaled NDVI 0.44 0.47 

CI3 Scaled LST, Scaled TRMM, Scaled NMDI 0.42 0.44 

CI3 Scaled LST, Scaled TRMM, Scaled NDWI5 0.38 0.38 

CI3 Scaled LST, Scaled TRMM, Scaled NDWI6 0.45 0.46 

CI3 Scaled LST, Scaled TRMM, Scaled NDWI7 0.45 0.47 

Table 4. Correlation coefficient values of combined indices with in-situ variables. 

Fig. 4. Comparison of SPI with remote sensing based raw indices for September 2013.  
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finding, proves that drought detection through precipita-

tion variation can contribute to vegetation variation and 

land surface temperature. Such a conclusion is con-

sistent with Ji and Peters, 2003.    

NDVI still performed significantly well over NMDI, 

NDWI5, and NDDI. Indices involve more information on 

biophysical response to drought, including change of 

leaf area index, biomass, and absorption of photosyn-

thetically active radiation viz., NDVI, NMDI, NDWI, and 

NDDI (Le Houerou et al., 1988), has low to moderate 

correlation coefficient values.  

Combined vegetation indices against rainfall and 

precipitation 

In the variable combination (Table 4) of vegetation 

component (scaled vegetation index), temperature 

component (scaled LST), and precipitation component 

(scaled monthly TRMM), LST and NDI showed signifi-

cant correlation with rainfall (0.26) and SPI (0.30), 

which indicated LST has a crucial role in modifying the 

NDVI such similar findings suggested by Rousta et al. 

(2020). This result suggests the enhanced uses of veg-

etation components in detecting drought for this region. 

The correlation between combined remote sensing indi-

ces with in-situ variables had better results than raw 

and scaled indices. Irrespective of the weightage, the 

combined NDDI (NDDI5, NDDI6, and NDDI7) displayed 

a positive correlation but in the raw NDDI and scaled 

NDDI, it was negatively correlated.  

Similarly, when compared to the other combined re-

mote sensing indices, NDDI was the least correlated 

variable for all the combinations. Except for NDDI of 

Fig. 6. Comparison of SPI drought assessment maps with combined indices 2 for September 2013.    

Fig. 5. Comparison of SPI with remote sensing based scaled indices for September 2013. 



 

422 

Kumaraperumal, R. et al. / J. Appl. & Nat. Sci. 13(2), 414 - 423 (2021) 

combined index 1, correlation coefficient values of oth-

er composite indices with 1-month SPI is higher (Fig.  

6), wherein most of the region was under exceptional 

drought (0.0 – 0.1) to moderate drought (0.3 – 0.4). 

CI2, among the three sets of weights, performed better 

with SPI and rainfall during the combination with NDVI, 

NDWI6, and NDWI7. The results are similar to the re-

sults reported by Rhee et al. (2010) for humid regions. 

Among the selected indices, the correlation coefficient 

values reported are on par for NDVI, NDWI6, and 

NDWI7.   

Conclusion 

The study indicated no single indicator could be used 

as a proxy to identify agricultural drought situations. 

LST, a temperature component, cannot detect drought 

since it didn't show much correlation with rainfall (-0.24) 

and SPI (-0.20). The rainfall based component TRMM 

showed the highest correlation with rainfall (0.58) and 

SPI (0.43), which provides an alternate option in the 

absence of in-situ meteorological variables. Independ-

ent testing of NDWI channel 6 and channel 7 can be a 

better alternative to NDVI for detecting. An improved 

scaled LST correlation with rainfall (0.19) and SPI 

(0.23) suggests that the inter-annual variability of eco-

system components plays a crucial role in determining 

vegetation covers' surface temperature. The combined 

indices showed an overall better correlation with rainfall 

and SPI, especially the combination of scaled LST and 

scaled TRMM, along with scaled NDVI. The scaled 

NDWI from band 6 of MODIS and NDWI from band 7 of 

MODIS also showed the best correlation possible 

against in-situ variables with correlation coefficient val-

ues of 0.48 (rainfall) and 0.49 (SPI).  
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