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Arbuscular mycorrhizal symbiosis and alleviation of salinity stress
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Abstract: Several environmental factors adversely affect plant growth and development and final yield performance
of a crop. Drought, salinity, nutrient imbalances (including mineral toxicities and deficiencies) and extremes of
temperature are among the major environmental constraints to crop productivity worldwide. Development of crop
plants with stress tolerance, however, requires, among others, knowledge of the physiological mechanisms and
genetic controls of the contributing traits at different plant developmental stages. In the past two decades,
biotechnology research has provided considerable insights into the mechanism of biotic stress tolerance in plants
at the molecular level. Furthermore, different abiotic stress factors may provoke osmotic stress, oxidative stress
and protein denaturation in plants, which lead to similar cellular adaptive responses such as accumulation of
compatible solutes, induction of stress proteins, and acceleration of reactive oxygen species scavenging systems.
Recently, various methods are adapted to improve plant tolerance to salinity injury through either chemical treatments
(plant hormones, minerals, amino acids, quaternary ammonium compounds, polyamines and vitamins) or
biofertilizers treatments (Asymbiotic nitrogen-fixing bacteria, symbiotic nitrogen-fixing bacteria) or enhanced a process
used naturally by plants (mycorrhiza)  to minimise the movement of Na+ to the shoot. Proper management of
Arbuscular Mycorrhizal Fungi (AMF) has the potential to improve the profitability and sustainability of salt tolerance.
In this review article, the discussion is restricted to the mycorrhizal symbiosis and alleviation of salinity stress.
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INTRODUCTION

Environmental factors can act as stressors that impact
the evolution of living organisms on Earth (Schluter,
2001). Indeed, survival necessitates the ability to rapidly
adapt to changes in the environment, especially those
which represent long term or chronic changes. Whenever
possible, one of the easiest ways to counteract such
stresses is to relocate to a more suitable niche (Huey et
al. 2002). However, such a strategy is obviously restricted
in a short term period and is not achievable with stationary
organisms such as plants. Consequently, plants have
developed a variety of strategies to cope against biotic
stresses such as herbivory or parasitism, and abiotic
stresses such as salinity, drought, heat or toxic metal
contamination (Hodges et al., 1995; Subramanian and
Charest, 1998, 1999; Audet and Charest, 2006, 2008, 2009).
Among abiotic stresses, soil salinization is probably one
of the most important in the world (Hasegawa et al., 2000;
Zhu, 2003). High soil salinity is a growing setback in
agricultural development in many parts of the world,
especially in arid and semiarid areas. Currently, high soil
salinity occupies 7% of Earth’s land surface and it is
predicted that 50% of arable land will be affected by
salinity by the half of the 21th century (Evelin et al.,

2009). This could mostly occur due to soluble minerals
found in irrigation water and the high fertilizer input from
agricultural practices (Schilfgaarde, 1994; Al-Karaki,
2006). In addition, high temperature and low precipitation
leading to salt accumulation at the soil surface affect the
establishment, growth and development of plants and
even more as salinity increases. The delay in root growth
can be caused by too low soil water potential and salt
cell toxicity (Psarras et al., 2008). The latter causes cell
death and root necrosis in the very sensitive genotypes.
In addition to these deleterious effects on roots, growth
of shoots is also affected and as a result the root/shoot
ratio is disturbed (Maggio et al., 2007). Overall, salinity
leads to many deleterious effects on plants and that at
different life stages. To counteract this problem, many
strategies were proposed to overcome salt detrimental
effects such as searching for new salt-tolerant crops,
genetically engineering plants, removing excessive salt
accumulation in groundwater and desalinizing water for
irrigation (Ashraf and Harris, 2004; Flowers, 2004; Zhang
and Blumwald, 2001). Although these strategies appear
efficient, yet they are costly and out of reach for
developing countries that are the most affected.
Even nowadays, with the advent of modern agricultural
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practices and new management measures, the loss of
crops due to field salinization remains a major concern.
The main reason why agricultural fields are affected by
salt is generally due to continued irrigation and a lack of
sufficient drainage resulting in waterlogged soils which
leads to increased surface salt concentrations as a
consequence of evaporation (Ritchie et al., 1972).
Consequently, a reduction in crop yields, mainly because
of osmotic stress, as well as nutritional and toxic effects
occurred. It is estimated that at least one third of all
irrigated agricultural lands are affected to some degree
by salinity (Williams, 1999). Furthermore, the increasing
demands in food production constantly push agricultural
fields to areas where water and soils have naturally or
not high salt levels (Araus et al., 2007).
The sustainability of irrigated agriculture in many arid
and semiarid areas of the world is at risk because of a
combination of several interrelated factors, including lack
of fresh water, lack of drainage, the presence of high
water tables, and salinization of soil and groundwater
resources. Soil salinity often leads to the development
of other problems in soils such as soil sodicity and
alkalinity. Soil sodicity is the result of the binding of Na+

to the negatively charged clay particles, which leads to
clay swelling and dispersal. Hydrolysis of the Na–clay
complex results in soil alkalinity. Thus, soil salinity is a
major factor limiting sustainable agriculture. Natural soil
salinity predates human civilization. When early man,
looking for better sources of livelihood, moved to arid
lands along the riverbanks, he restored to irrigated
agriculture. With the practice of irrigation began salinity,
the first man-made environmental problem. Salt-affected
lands occur in practically all climatic regions, from the
humid tropics to the polar regions. Saline soils can be
found at different altitudes, from below sea level (e.g.
around the Dead Sea) to mountains rising above 5,000 m,
such as the Tibetan Plateau or the Rocky Mountains. Of
nearly, 160 million ha. of cultivated land under irrigation
worldwide, about one-third is already affected by salt,
which makes salinity a major constraint to food
production. It is the single largest soil toxicity problem in
tropical Asia (Greenland, 1984).

TYPES AND CAUSES OF SALINITY

Salinity is the concentration of dissolved mineral salts
present in the soils (soil solution) and waters. The
dissolved mineral salts consist of the electrolytes of
cations and anions. The major cations in saline soil
solutions consist of Na+, Ca2+, Mg2+ and K+ and the major
anions are Cl-, SO

4
2-, HCO

3
-, CO

3
2- and NO

3
-. Other

constituents contributing to salinity in hypersaline soils
and waters include B, Sr2+, SiO2+, Mo, Ba2+ and Al3+ (Hu
and Schmidhalter, 2002). Water soluble salts accumulate
in the soil solum (the upper part of the soil profile,

including the A and B horizons) or regolith (the layer or
mantle of fragmental and unconsolidated rock material,
whether residual or transported) to a level that impacts
on agricultural production, environmental health, and
economic welfare (Rengasamy, 2006).The dominant
sources of salt are rainfall and rock weathering. Rainfall
contains low amounts of salt, but over time, salt
deposited by rain can accumulate in the landscape. Wind-
transported (aeolian) material from soil or lake surfaces
is another source of salt. Poor quality irrigation water
also contributes to salt accumulation in irrigated soils.
Seawater intrusion onto land, as occurred in recent
tsunami-affected regions, can deposit huge amounts of
salts in soils of coastal lands. The particular processes
contributing salt, combined with the influence of other
climatic and landscape features and the effects of human
activities, determine where salt is likely to accumulate in
the landscape (Rengasamy, 2006). Naturally salt-affected
areas occur widely in arid and semi-arid areas (Rengasamy
et al., 2003). The most common causes are (1) land
clearing and the replacement of perennial vegetation with
annual crops, and (2) irrigation schemes using salt-rich
irrigation water or having insufficient drainage.

IMPACTS OF SALINITY

Salinity not only decreases the agricultural production
of most crops, but also, as a result of its effect on soil
physicochemical properties, adversely affects the
associated ecological balance of the area. The harmful
impacts of salinity include-low agricultural production,
low economic returns due to high cost of cultivation,
reclamation management, soil erosion due to high
dispersibility of soil, ecological imbalance due to
halophytes and marine life forms from fresh water to
brackish water, poor human health due to toxic effects of
elements such as B, F, and Se (Hu and Schmidhalter, 2002).
Crop species show a spectrum of responses to salt,
although all have their growth, and eventually, their yield
reduced by salt. Salt effects are the combined result of
the complex interaction among different morphological,
physiological, and biochemical processes (Singh and
Chatrath, 2001). Salinity may directly or indirectly inhibit
cell division and enlargement and finally the growth of
the whole plant. In addition to these factors, some other
factors like water deficit (drought stress), ion toxicity,
ion imbalance and soil compaction may cause growth
reduction, injury of foliage, nutrient deficiencies,
destruction of soil structure which ultimately hampers
the growth of the plant. Some above ground visible
morphological symptoms of plants are marginal
yellowing/browing of foliage, premature fall of leaves,
twig and branch die back, loss of vigor and stunted
growth.
There are some examples available classifying tree/shrub
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species according to their sensitivity to salt  which are
given below:
Salt sensitive tree/shrub species:
Platanus  hispanica Acer spp.
Fagus sylvatica Carpinus betulus
Aesculus hippocastanum Tilia spp.
Rosa spp. Larix decidua
Picea abies Pseudotsuga menziesii
Salt tolerant tree/shrub species:
Robinia pseudoacacia Quercus spp.
Populus spp. Rosa rugosa
Acacia spp. Eucalyptus spp.
Pinus halepensis Pinus nigra
Eleagnus angustifolia

MYCORRHIZA AND ALLEVIATION OF
PLANT SALT STRESS

In nature, plants interact with several microorganisms
such as bacteria and fungi that improve their performance
when facing various environmental pressures. Indeed,
most of terrestrial plants are involved in mutualistic
associations with other organisms beneficial to both
parties (Brundrett, 2002). One of these associations is
referred to as mycorrhiza. Mycorrhizae form close
symbiosis between fungi and plant roots. There are two
major categories of mycorrhizae namely, ectomycorrhizae
and endomycorrhizae which are formed by mostly
Basidiomycetous and Glomeromycetous fungi. The
endomycorrhizae usually produce vesicles, arbuscules,
inter and intra-cellular mycelium in the cortex of the host
plants, and also produce extrametrical hyphae with spores
and sporocarps. The endomycorrhizae are represented
by Acaulospora, Gigaspora, Glomus, Entrophospora,
Scutellospora and Sclerocystis. AM fungi are an
ubiquitous group of soil fungi which are known to
colonize roots of plants belonging to more than ninety
per cent of plant families (Trappe, 1987). Several tree taxa
(e.g. Salix, Populus, Alnus, Eucalyptus) can form both
endo- and ectomycorrhiza (Aggarwal et al., 2011). Due
to an extended network of fine hyphae, the AM fungi
can considerably improve the uptake of mineral nutrients
to their host plant, whereas the plant supports the fungus
with assimilation products (Harley and Smith, 1983; Smith
and Read, 1997; Aggarwal et al., 2011).
There are numerous studies reporting that mycorrhizal
associations lead to crop improvement like growth rate,
biomass, and mineral uptake under saline or drought
conditions (Augé, 2004; Evelin et al., 2009; Subramanian
and Charest, 1998, 1999). Mycorrhizae were shown to
have beneficial effects in delaying or coping with toxic
effects caused by soil salinity by maintaining an overall
physiological balance (Sharifi et al., 2007; Shokri and
Maadi ,2009). AM fungi occur naturally in saline
environments despite the fact that they have a low affinity

with halophyte plants (Khan, 1974). However, halophytes
can benefit to some extent from AM symbiosis as in the
case of Phragmites australis, for which the water content
increased in salt AM plants (Al-Garni, 2006). Interestingly,
the most commonly observed AM fungus was among
Glomus spp. (Landwehr et al., 2002). However, when
comparing several Glomus spp., Porras-Soriano et al.
(2009) observed that each AM fungal species has a
different efficiency in alleviating plant salt stress.
Recently, Khare and Rai (2012) have investigated
taxonomic diversity of AM fungi in alkaline soils of upper
Gangetic plains of district Allahabad and adjoining areas
and it was found that such soils have a detrimental effect
on AM spore population, distribution and diversity.  Here
in this review article, we shall be discussing the effects
of salinity on various morphological, physiological
parameters of plant.

EFFECT OF SALINITY ON AM
COLONIZATION AND SPORE NUMBER
Soil salinity can affect AM fungi by slowing down root
colonization, spore germination, and hyphal growth
(Juniper and Abbott, 1993). Before colonization occurs,
spores need to be hydrated in order to germinate which
is difficult in saline soil. To some extent, salinity hampers
AM fungi at early stages of the symbiosis which is delayed
rather than inhibited (Juniper and Abbott, 2006). However,
other studies showed that there is in fact no reduction in
AM colonization in the presence of NaCl (Aliasgharzadeh
et al., 2001; Yamato et al., 2008) and even increases in
sporulation and colonization occur (Peng et al., 2010).
The discrepancies amongst studies suggest that various
AM fungal spp. have varying tolerance to salinity, then
questioning the host plant and AM fungus compatibility
and tolerance (Porras-Soriano et al., 2009). These studies
also suggest that AM fungal species have different
capacities in protecting plants and that host compatibility
might be an issue worth looking into when developing
AM strategies in plant growth and tolerance under salt
stress conditions.

Mycorrhizal fungi have been reported on the roots of
cultivated and non-cultivated plants growing in disturbed
or undisturbed saline soil. These have been linked with
increased plant biomass and development in saline soil
(Ruiz-lozano and Azcon, 2000). Sporulation by AM fungi
does not appear to be affected by salinity. Thus, in plants
adapted to saline soil, salinity appears to have little effect
on the formation of AM spores. However salinity may
dramatically affect mycorrhizal formation in plant
unadapted to salt stress. One general concept about pH
and AM fungi is that some AM fungi do not radily adapt
to soil with a Ph different from their soil of origin and that
pH change restricts AM establishment (Sylvia and
Williams, 1992). Neutral to alkaline pH favours
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germination of Glomus mosseae  while spores of
Gigaspora germinated best between pH 5-6. Hepper
(1984) determined the germination of Acaulospora laevis
in soils having different pH and concluded that optimum
range for germination was 4-5. In addition, a number of
studies have shown that changing the soil pH affects
the activity of indigenous and certain introduced AM
fungi (Wang et al., 1985)
Soil microorganisms face similar problems as plants in
saline soils. However, the effects of salinity on soil
microbionts and their symbiotic relationships with plants
are much less investigated. Dixon et al. (1993) reported
that in vitro growth and in situ symbiosis of
ectomycorrhizal fungi generally declined with increasing
substrate salinity. However, salt tolerance of the tested
fungi varied significantly between species and between
isolates within a species. The genera Pisolithus, Laccaria
and Suillus appeared more tolerant of sodium salts than
Thelephora or Cenococcum. Reddell et al. (1986) and
Dixon (1988) observed that dual inoculation of Frankia-
a actinomyceteous fungus and Suillus species
compartmentalized salt and toxic metals in vacuoles and
cell walls, thus partially excluding these agents from
metabolic pathways.  Most of the eighteen isolates of
three Australian Pisolithus species were found to be
resistant to NaCl concentrations of very saline soils (Chen
et al., 2001). Also the development of arbuscular
mycorrhizal fungi from spore germination till root
colonization is generally reduced by increasing salt
concentrations (Juniper and Abbott, 1993). However, AM
fungal colonized halophytes like Aster tripolium occur
in salt marshes world-wide and the content of AM fungal
spores in saline soils can be high (Mason, 1928, Rozema
et al., 1986, Carvalho et al., 2001, Hildebrand et al., 2001).
Carvalho et al. (2001) reported low AM fungal diversity
with Glomus geosporum dominant in salt marches of the
Portuguese Tagus estuary. They concluded that the
distribution of mycorrhizas in salt marsh is more
dependent on host plant species than on environmental
stresses. Most halophyte species are non-mycorrhizal.
Molecular biological techniques revealed that 80%, on
average, of the AM spores isolated from a range of
European saline soils belonged to one single species,
Glomus geosporum, which occurred much less in the
surrounding non-saline habitats(Hildebrand et al., 2001;
Landwehr et al., 2002). The authors speculate that
specific AM ecotypes may be particularly adapted to
saline conditions and that they could have a great
potential in conferring salt tolerance to plants. On the
other hand, Cantrell and Linderman (2001) reported that
AM fungi from saline soil were not more effective than
those from non saline soil in reducing growth inhibition
of lettuce and onion plants by salt. In another study
(Copeman et al., 1996) AM fungi originating from saline

soil, in contrary to fungi from non saline soil, did not
promote growth of tomato under saline conditions.
However, reduction in leaf chloride concentrations
mediated by these fungi may have beneficial implications
for plant survival in saline soil. Increasing salinity
decreased the hyphal development of Glomus sp. from
saline soil to a higher extent than that of Glomus
deserticola from non saline soil (Ruiz-Lozano and Azcon,
2000). Though both AMF protected host plants against
salinity, they differed in their symbiotic efficiencies and
mechanisms to mediate plant salt tolerance. Rosendahl
and Rosendahl (1991) demonstrated large variations in
salt tolerance of AM fungal species and isolates.

PLANT GROWTH AND BIOMASS

Plant growth and biomass suffered a lot under salt stress.
There is considerable evidence that arbuscular
mycorrhizal (AM) fungi can enhance plant growth and
vigor under salt stress conditions (Pond et al., 1984;
Pfeiffer and Bloss, 1988; Juniper and Abbott, 1993; Ruiz-
Lozano et al., 1996; Tsang and Maun, 1999; Al-Karaki et
al., 2001). This has been attributed due to a more efficient
nutrient uptake, particularly phosphorus by AM fungi
(Hirrel and Gerdemann, 1980; Ojala et al., 1983; Marschner,
1986; Pfeiffer and Bloss, 1988; Al-Karaki, 2000).
Phosphorus (P) is the macronutrient with the lowest
mobility in soil and thus often limiting plant growth,
particularly when soil water potential and P diffusion rate
is lowered in dry or saline soils. However, mycorrhization
was found to increase the fitness of the host plant by
enhancing its growth and biomass. Several researchers
have reported that AMF-inoculated plants grow better
than non-inoculated plants under salt stress (Al-Karaki,
2000; Cantrell and Linderman, 2001; Giri et al., 2003;
Sannazzaro et al., 2007; Zuccarini and Okurowska, 2008).
It has been reported that mycorrhizal treated Poncirus
trifoliata  seedlings exhibited significantly higher dry
biomass in saline soil as compared to non- AMF seedlings.
Shhekoofeh and Sepideh (2011) observed that
mycorrhizal inoculated plants grown under saline
conditions experienced increase in root length, dry and
fresh weights of shoot and content of photosynthetic.
Studies have also indicated that some plants such as
tomato (Al-Karaki, 2006) and soybean (Sharifi et al., 2007)
showed increased growth under saline conditions when
their roots are colonized by AM fungi.Qiang-Sheng and
Ying-Ning  (2011) reported markedly increase both plant
performance (leaf number, leaf area, shoot and root dry
weights) and leaf relative water content of citrus seedlings
in AM association when exposed to salt stress.  Jain et
al. (1989) reported AM application improved productivity
of multipurpose trees on substandard soils in India. In
another study with trees, double inoculation of Acacia
cyanophylla with rhizobia and AM fungi significantly
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increased salt tolerance (Hatimi, 1999). In contrast with
AM fungi, we know much less about the impact of
ectomycorrhizal fungi on trees in saline environments.
Recently Muhsin and Zwiazek (2002) demonstrated that
Hebeloma crustiliniforme alleviated salt stress from white
spruce (Picea glauca) seedlings and further reported
the reduction of shoot Na uptake while increasing N and
P absorption and maintaining high transpiration rates
and root water conductance as important salt tolerance
mechanisms related to ectomycorrhizal symbiosis. This
enhancement in growth and salt tolerance may be due to
the better nutritional status of the plants. To some extent,
these AM fungi have been considered as bio-ameliorates
of saline soils (Tain et al., 2004).

MINERAL NUTRITION

AMF have been shown to have a positive influence on
the composition of mineral nutrients (especially poor
mobility nutrient such as phosphorus) of plants grown
in salt-stress conditions (Al-Karaki and Clark, 1998) by
enhancing and/or selective uptake of nutrients.  This is
primarily regulated by the supply of nutrients to the root
system (Giri and Mukerji, 2004) and increased transport
of water by AMF (Al-Karaki, 2000; Sharifi et al., 2007).
Mycorrhizal dependency increases with increasing salt
concentrations (Giri and Mukerji, 2004). The impact of
mycorrhizal fungi on different mineral nutrients is
discussed below:
Phosphorus: The phosphorus concentration in plant
tissues rapidly lowered under salt stress because
phosphate ion precipitates with Ca, Mg and Zn, then
being unavailable to plants ( Evelin et al., 2009; Park et
al., 2009; Wang et al., 2008). Consequently, P
solubilization or added in fertilizer is required for plant
growth. It was further observed that AM symbiosis
seems to be positively influenced by the composition of
mineral nutrients (especially poor mobility nutrients such
as P) of plants under salt stress conditions (AL-Karaki
and Clark 1998). Higher P uptake under saline conditions
increases the plants ability of reducing of negative effects
Na and Cl (Feng et al., 2002). Nutrient balanced plants
were shown to sequester these elements in vacuoles to
maintain metabolic pathways and better growth (Cantrell
and Linderman, 2001). AM symbiosis plays a vital role in
improving the P nutrition of the host plants under salt
stress conditions. It has been seen that external hyphae
of AM fungi deliver upto 80% of a plants P requirements
(Marschner and Dell, 1994). This is probably due to the
extended network of AM fungal hyphae that allow them
to explore more soil volume than non-mycorrhizal plants
(Ruiz-lozano and Azcon, 2000). Indeed, mycorrhizal
hyphae extend beyond the depletion zones around roots
and acquire nutrients that are several centimeters away
from the root surface and thus suppress the adverse effect

of salinity stress.
K/Na: In saline soils, plants tend to absorb more Na than
K hence competes for the same cell binding site (Rus et
al., 2001). Even though this site cannot discriminate
between ions, only K has a cellular function, as it is
involved in the activity of a wide range of enzymes,
operates stomatal movement and protein synthesis (Blaha
et al., 2000). Salinity disrupts K/Na balance thus
hampering plant growth. Grattan and Grieve (1998)
showed that AM inoculated plants have higher K/Na
ratio due to an increase of K uptake in shoot. Since AM
colonization may increase plant growth, it then also
reduces salt stress by growth dilution effect (Juniper and
Abbott, 1993). So, AM colonization was shown to
increase the Na uptake in Distichlis spicata (Allen and
Cunningham, 1983). With time, AM treated plants may
accumulate Na through water uptake, then decrease it at
high salt level. This implies that AM fungi may act as
buffers from toxic conditions (Audet and Charest, 2006).
Calcium: Calcium is essential as a second messenger
among other functions. Under salt stress conditions, its
concentration increases presumably to transduce signals
(Cantrell and Linderman, 2001). High Ca levels help plants
to cope with salt stress as raising selectivity in K uptake
and leading to better salt adaptation. Hence, Ca
accumulation has been found to increase colonization
and sporulation (Jarstfer et al., 1998).
Magnesium: Chlorophyll synthesis impaired by salt
stress may reduce photosynthetic rate that however can
be improved with Mg by AMF uptake (Giri and Mukerji,
2004). A higher chlorophyll concentration has been
shown in AM plants of lettuce under salt stress
(Zuccarini, 2007).

WATER OSMOTIC HOMEOSTASIS

The water status in AM treated plants of Jatropha curcas
was maintained at relatively normal levels under saline
conditions (Kumar et al., 2010). Mycorrhizal colonization
was shown to improve water conductance in roots and
increase stomatal conductance thereby enhancing
transpiration (Colla et al., 2008; Jahromi et al., 2008). AM
colonization was also shown to lower osmotic potential
by increasing plant compatible solutes. Several studies
showed that AM symbiosis results in increasing nutrient
uptake, photosynthetic rate and water status (Porras-
Soriano et al., 2009; Sheng et al., 2008; Zuccarini, 2007).

PHYSIOLOGICAL CHANGES

Salt stress can affect the plant by disrupting its
physiological mechanisms such as decreasing
photosynthetic efficiency, gas exchange, membrane
disruption, water status, etc. There is evidence
demonstrating that AM symbiosis can alleviate such
effects by employing various mechanisms.

Ashok Aggarwal et al. / J. Appl. & Nat. Sci. 4 (1): 144-155 (2012)
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Chlorophyll content: The high level of salinization
induced a significant decrease in the contents of pigment
fractions (chlorophyll a and b) and consequently of the
total cholophyll content due to suppression of specific
enzymes that are responsible for the synthesis of
photosynthetic pigments (Murkute et al., 2006).  Salt
stress opens porphyrin rings and harmful matters
resulting from this dissolution are transferred to vacuole.
Existance of these compositions demolishes green color
of leaf (Parida and Das, 2005) and ultimately reduces the
chlorophyll concentration in the leaf (El-Desouky and
Atawia, 1998). A higher cholorophyll content in leaves
of mycorrhizal plants under saline conditions has been
observed by various authors (Giri and Mukerji, 2004;
Sheng et al., 2008; Shekoofeh  and Sepideh , 2011).
Photosynthetic pigments were found to be increased
under the influence of mycorrhizal inoculation. One
reason of cholorophyll decrease in salt stress is
antagonistic effects of sodium ion on Mg absorption.
Since mycorrhiza helps in absorption of Mg in plants in

some cases, it can increase chlorophyll synthesis in
mycorrhizal treated plant. Also chlorophyll increase can
be resulted from sodium decrease in shoot of mycorrhizal
plants relative to non-mycorrhizal plants. Mycorrhizing
decrease role of salt in chlorophyll synthesis (Giri and
Mukerji, 2004). In Glomus etunicatum inoculated maize
plant, increase in photosynthesis speed, transpiration
and chlorophyll a, b density was reported under cold
stress (Zhu et al., 2010). Also in Jatropha curcas
mycorrhizal plants higher chlorophyll were reported than
non-mycorrhizal plants under salt stress conditions
(Ashwani et al., 2010).
Relative permeability: Inoculation of arbuscular
mycorrhizal fungal with host plant enables plant to
maintain a higher electrolyte concentration than the non-
mycorrhizal plant by maintaining improved integrity and
stability of the membrane (Garg and Manchanda, 2008;
Kaya et al., 2009). Consequently, electrical conductivity
of mycorrhizal roots was found to be higher than the
non-mycorrhizal roots (Garg and Manchanda, 2008). The

Fig. 1. Intricate functioning of arbuscular mycorrhizal (AM) fungi in ameliorating salt stress in plants. In AM symbiosis, the fungus
forms an appressorium (ap) on the root surface and enters the root cortex by extending its hyphae (h). The hyphae form arbuscules
(a) and vesicles (v) in the cortex. Salinity deprives plants of the basic requirements of water and nutrients, causing physiological
drought and a decrease in osmotic potential accompanied by nutrient deficiency, rendering plants weak and unproductive. Arbuscular
mycorrhiza help plants in salt stress by improving water and nutrient uptake (Evelin et al., 2009).

Ashok Aggarwal et al. / J. Appl. & Nat. Sci. 4 (1): 144-155 (2012)
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mycorrhizal pigeon pea roots showed a higher relative
permeability than the non-mycorrhizal plants at different
salinity levels of soil salinity. This suggests that
mycorrhizal plants had much higher root plasma membrane
electrolyte permeability than the non-mycorrhizal plants.
The increased membrane stability has been attributed to
mycorrhiza-mediated enhanced P uptake and increased
antioxidant production (Feng et al., 2002).
Nitrogen fixation and Nodulation: Nodules, formed
through symbiosis with nitrogen-fixing bacteria are
considered a soft target for salt stress and their
occurrences decreases due to salt stress (Harisnaut et
al., 2003; Rabie and Almadini, 2005; Garg and Manchanda,
2008). Nodulation suffered more than plant growth, as
normalized nodule weight showed marked decline with
salinity. The process of nitrogen fixation was affected
negatively by salt stress, as revealed by declined
leghemoglobin content and reduced nitrogenase activity.
Similar decline in nodulation and nodule activity has also
been reported earlier by Serraj et al. (2001); Tejera et al.
(2005); Bolanos et al. (2006); Garg and Manchanda, (2008).
Despite a decline in the functional efficiency of nodules,
AM plants had considerably higher leghemoglobin
content and nitrogenase activity than corresponding non-
AM plants under salt stress. AM markedly increased
nodulation at low saline concentration. Evidences from
the previous studies (Johansson et al., 2004; Rabie and
Almadini, 2005; Garg and Manchanda, 2008) indicate that
the presence of AM fungi enhances nodulation and
nitrogen fixation by legumes.

BIOCHEMICAL CHANGES

Soil water potential becomes more negative as soil dries
out and plants must decrease their water potential to
maintain a favorable gradient for water flow from soil
into roots. To cope up from such an adverse effect, plants
develops an osmotic adjustment, which may require a
reduction in the plant osmotic potential which is mitigated
by active accumulation of organic ions or solutes
(Hoekstra et al., 2001). The compatible osmolytes
generally found under saline stress plants are of low
molecular weight sugars, organic acids, polyols, and
nitrogen containing compounds such as amino acids,
amides, imino acids, ectoine (1, 4, 5, 6-tetrahydro-2-
methyl-4-carboxylpyrimidine), proteins and quaternary
ammonium compounds. The following some biochemical
changes are briefly discussed.
Proline: Accumulation of amino acid proline is one of
the most frequently reported modifications induced by
water and salt stress in plants. Under saline conditions,
many plants accumulate proline as a non-toxic and
protective osmolyte to maintain osmotic balance under
low water potentials (Stewart and Lee, 1974; Jain et al.,
2001; Parida et al., 2002; Ashraf and Foolad, 2007). It also

acts as a reservoir of energy and nitrogen for utilization
during salt stress conditions (Goas et al., 1982). Proline
levels were found to be increased significantly with
salinity stress in mycorrhizal plants when compared to
non-mycorrhizal plants. Marked increase in proline occurs
in mainly plants during moderate or serves salt stress
and this accumulation, mainly as a result of increased
proline biosynthesis, is usually the most outstanding
change among free amino acids (Hurkman et al., 1989).
This higher accumulation of proline contents in the
nodules of mycorrhizal-stressed plants was correlated
with the enhanced nitrogen fixing ability of these pigeon
pea plants. Although proline normally crosses the
peribacteroid membrane more slowly than succinate or
malate (Udvardi and Day, 1997), under osmotic stress,
there is an increase in the rate of proline uptake into
symbiosomes (Pedersen et al., 1996). High proline
concentration was suggested to protect nodule
metabolism by avoiding protein denaturalization and
maintaining cell pH levels (Irigoyen et al., 1992).
Betaine: Betaines are quaternary ammonium compounds
which are N-methylated derivatives of amino acids. Once
formed, they are seldom metabolized (Grattan and Grieve,
1985; Duke et al., 1986). These are not merely non-toxic
cellular osmolytes but they can also stabilize the
structures and activities of protein complexes and
maintain the integrity of membrane against the damaging
effects of excessive salt (Gorham ,1995). It was found
that at higher salinity levels the glycine betaine content
of AM treated pigeon-pea plants was about 2-fold greater
than that of non-AM plants ( Manchanda and Garg, 2011).
Enzymes activity: There is accumulating evidence that
production of reactive oxygen species (ROS) is a major
damaging factor in plants exposed to different
environmental stresses, including salinit. Plants have
evolved specific protective mechanisms, involving
antioxidant molecules and enzymes in order to defend
themselves against oxidants (Jiang and Zhang 2002;
Nunez et al., 2003).
Antioxidant mechanisms may provide a strategy to
enhance salt tolerance in plants. Peroxidase (POX) and
catalase (CAT) are involved in the defense mechanisms
of plants in response to pathogens either by their
participation in cell wall reinforcement, or by their
antioxidant role in the oxidative stress generated during
plant pathogen interaction (Mehdy, 1994). Manchanda
and Garg (2011) reported that low and moderate salinity
further increased the antioxidant enzymes activity in the
nodules of mycorrhizal-stressed Cajanus cajan plants.
Soybean plants inoculated with salt pretreated
mycorrhizal fungi showed salt adaptation through
increased SOD and POX activity in shoots, to those
inoculated with the nonpretreated fungi (Ghorbanali et
al., 2004). Alguacil et al., (2003) have reported that
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increased antioxidative enzyme activities could be
involved in the beneficial effects of mycorrhizal
colonization on the performance of plants grown under
semi-arid conditions. Further, Garg and Manchanda
(2011) have suggested that in addition to improving the
ionic balance and osmolyte accumulation in the nodules,
AM inoculation was an important factor in alleviation of
oxidative stress as well. Dudhane et al. (2010) reported
that there was an increased growth and also antioxidant
activities in Gmelina arborea when inoculated with
Glomus fasciculatum.

ULTRA-STRUCTURAL CHANGES

Salinity leads to structural and ultrastructural effects,
particularly in salt-sensitive species. Some of them are
indicative of the onset of injury, for example the
aggregation of chloroplasts accompanied by a swelling
in the granal and fret compartments or the complete
distortion of chloroplastic grana and thylakoid structures.
Others structural changes are associated with metabolic
acclimation to salinity stress. For instance increased
density of mitochondria enhanced ATPase particle
frequencies in membranes may be related to enhanced
energy demand at moderate salinity. Salinity-induced
ultrastructural changes, such as the build up of transfer
cells and many small vesicles, may be a sign of extensive
exchange of substances across membranes.Up till now;
there have been no published reports on the effect of
AM in plants under this aspect of salt stress. Since, AMF
inoculation can increase antioxidant activities in plants,
it may be suggested that AMF can be applied to
counteract the activities of reactive oxygen species and
alleviate salt stress. Unfortunately, the role of AMF in
this aspect has not yet been deciphered. Therefore, this
aspect seeks more attention from the researchers to unveil
the mechanism of salt-stress alleviation by AMF.
Conclusion
In conclusion, the results confirm that AMF alleviate the
detrimental effect of salinity through improved water and
nutrient uptake especially P through AM hyphae and
colonized roots of plants. This suggests that
phosphatases might be involved in P transfer and uptake
mechanism which leads to higher P from saline soil.
Exposure of mycorrhizal inoculated plants to salinity
resulted in significant induction of antioxidative enzyme
activities such as SOD, POX and CAT that could help
the plants protect themselves from the oxidative effects
of the ROS. This cumulative effect increases the
physiological performance and tolerance of the
mycorrhizal plants under saline condition.
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