Improvement in seed germination by priming treatments in Black nightshade (Solanum nigrum L.)

M Poovizhi
Department of Seed Science and Technology, Agricultural College and Research Institute, Madurai- 625104 (Tamil Nadu), India

K Sujatha*
Department of Seed Science and Technology, Agricultural College and Research Institute, Madurai- 625104 (Tamil Nadu), India

*Corresponding author. Email: sujathakvk@gmail.com

Abstract
The seeds must be viable and non-dormant for the efficient cultivation of the species of medicinal plants. The seeds of Solanum nigrum possess primary dormancy, which restricts germination. Hence, a laboratory experiment was conducted during 2019 in the Department of Seed Science and Technology, Agricultural College and Research Institute, Madurai, Tamil Nadu. The S. nigrum seeds were primed by soaking in different chemicals viz., GA3 100 ppm, Thiourea 1%, KNO3 0.5%, Succinic acid 100 ppm, Ascorbic acid 100 ppm, hydro and dry control with soaking durations of 12h and seeds were dried under shade to bring back to their original moisture content and used for assessing the seed quality studies. The results revealed that among the different priming treatments Thiourea 1% recorded higher seed quality parameters viz., speed of germination (5.6), germination (88 %), seedling length (5.92 cm) and vigour index (520) and the enzyme activity of dehydrogenase (0.072 OD value) and lower values of electrical conductivity (0.027 dS/m) and sugars (0.175 μg/g) and amino acids (0.119 μg/g). Hence it could be recommended as pre-sowing seed priming treatment in S. nigrum.

Keywords: Enzyme activity, Priming, Seed quality, Solanum nigrum.

INTRODUCTION
Solanum nigrum L. (commonly known as ‘Black nightshade” in English and ‘Makoi’ in Hindi) belonging to the family Solanaceae. S. nigrum is an annual herbaceous plant that can grow 50 cm tall. It is an erect, divergately branched, unarmed, suffrutescent yearly plant. The economic parts of the plant are leaves, berries, and even the whole herb. The plant contains alkaloids like solamargine, solanigrine, and solasonine. Fruits and juice of S. nigrum are used to cure stomach ailments, fevers, and blood impurities, and young shoots to cure skin diseases (Jagatheeswari et al., 2013). The fruits are used as a tonic, laxative, appetite stimulant, and treating asthma. Decoction of stalk, leaves and roots are good source for wounds and cancerous (Pallavi et al., 2014). Good quality seeds with rapid germination producing synchronized vigorous seedlings, higher seed yield, and productivity are important factors in agriculture. For the propose, seed priming methods are used to improve the qualitative and quantitative parameters of medicinal plants. Seed priming is one of the pre-sowing treatments, which control the hydration level within seeds to allow seedlings to emerge more quality and to help uniform emergence (Taylor and Harman 1990) and also seed priming methods differ depending on crop species and seed and germination conditions (Bush et al., 2000; Khan, 1992; Mc Donald, 2000. It was seen to improve the seedling establishment and enhance the ability of the plant to tolerate subsequent exposure to stresses, resulting in greater survival of the plants (Patade et al., 2011 and 2012) in chilli and jatropha crops. These plants have altered biochemical and physiological responses, thereby leading to improved performance (Patade et al., 2012; Wahid et al., 2017) and also alleviation of dormancy in some crops. Fresh seeds of S. nigrum L. were temporarily dormant and germinated at higher alternating temperature. Givelberg et al. (1984) reported that some genotypes of black nightshade may have primary dormancy, and the type of seed dormancy present in S. nigrum is not known. Limited studies are available in S. nigrum. Standardization of dormancy breaking treatments with different chemicals, concentrations and durations are made in S.
nigrum (Keerthana and Sundaralingam (2019). With this background, the present investigation was aimed to study the improvement in the germination percentage of *S. nigrum* (Black Night shade) seeds.

MATERIALS AND METHODS

The experiment was carried out in the Department of Seed Science and Technology, Agricultural College and Research Institute, Madurai, during the year 2020. Freshly harvested seeds were procured from Pappampatti, Coimbatore. Graded seeds were subjected to priming using various chemicals along with water, GA₃ 100ppm, thiourea 1%, KNO₃ 0.5%, succinic acid 100 ppm, and ascorbic acid 100 ppm with duration of 12h. Germination test was conducted as per the ISTA (International Seed Testing Association) rules (2016). Observations on seedling length, dry matter (g 10 seedlings - 1) and vigour index were calculated (Abdul Bakri and Anderson (1973). The dehydrogenase activity of the seeds was estimated by Kittock and Law (1968). The electrical conductivity of the treated seeds were estimated by a digital conductivity meter. The amount of sugar present in the seed leachate following the method described by Somogyi (1952). The amount of amino acids present in the seed leachate was estimated by Moore and Stein (1948). The experiment was conducted using factorial completely randomized design with three replications, and the statistical analysis was done as per the design of the experiment as suggested by Gomez and Gomez (1984).

RESULTS AND DISCUSSION

Among the treatments, thiourea 1% recorded higher speed of germination (5.6), germination (88%), seedling length (5.92 cm) and vigour index (76) (Table 1). The most widely used chemical for photosensitive seed is thiourea. It alters the metabolic concentration and nucleic acid metabolism in the seed as a result it increases the germination and seedling vigour. Similar results were reported by Hartmann *et al.* (1997) in Scentless Mayweed; Anularasu and Sambandamurthi (1999) in *Ocimum sanctum* L; Revathi (2001) in *Phyllanthus amarus*; Pandey and Nandi *et al.*, (2000) in *Aconitum heterophyllum* Wall; Shobharani (2018) in medicinal plants and Keerthana and Sundaralingam (2019) in *S. nigrum*. Increased germination rate and uniformity have been attained due to metabolic repair during imbibition (Bray *et al.*, 1989 and Basra *et al.*, 2003), a build-up of germination enhancing metabolites (Basra *et al.*, 2005). The germination improvement of thiourea was 88% over control. The germination improvement of thiourea was 88% over the control. The seeds primed with thiourea 1% recorded the higher dehydrogenase activity (0.072 OD value) followed by ascorbic acid (0.065OD value). The control seeds recorded lower dehydrogenase activity (0.011 OD value). Among the priming treatments, thiourea primed seeds showed lower values of electrical conductivity (0.027 dSm⁻¹) compared to control (0.050 dSm⁻¹) (Fig. 1). It is possible that the respiratory rate (higher dehydrogenase activity) and preventive role of deteriorative senescence (lower electrical conductivity) might be due to the antioxidant and other biochemically active intermediates present in the thiourea treatments. Butler (2009) and Ventura *et al.* (2012) noted increased repair activity during priming, which can enhance the seed life span. Hence the priming can have a rejuvenating effect and can overcome damage due to deterioration. Lower values of leachate amino acids recorded in thiourea primed seeds acids (0.119 μg ¹) and leach-

Table 1. Influence of different priming treatments on speed of germination, Germination (%), Seedling length, and vigour index in *S. nigrum*.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Speed of germination (cm)</th>
<th>Germination Percentage (%)</th>
<th>Seedling length (cm)</th>
<th>Vigour Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>2.5</td>
<td>35</td>
<td>3.8</td>
<td>76</td>
</tr>
<tr>
<td>Hydro</td>
<td>2.8</td>
<td>39</td>
<td>4.17</td>
<td>141</td>
</tr>
<tr>
<td>Ascorbic acid 100 ppm</td>
<td>3.5</td>
<td>85</td>
<td>5.27</td>
<td>447</td>
</tr>
<tr>
<td>Succinic acid 100 ppm</td>
<td>3</td>
<td>48</td>
<td>4.31</td>
<td>206</td>
</tr>
<tr>
<td>KNO₃ 0.1%</td>
<td>3</td>
<td>58</td>
<td>5.07</td>
<td>294</td>
</tr>
<tr>
<td>Thiourea 1%</td>
<td>5.6</td>
<td>88</td>
<td>5.92</td>
<td>520</td>
</tr>
<tr>
<td>GA₃ 25 ppm</td>
<td>3.3</td>
<td>62</td>
<td>5.15</td>
<td>319</td>
</tr>
<tr>
<td>Mean</td>
<td>3.38</td>
<td>59.28</td>
<td>4.81</td>
<td>286</td>
</tr>
<tr>
<td>SEd</td>
<td>0.073</td>
<td>1.013</td>
<td>0.098</td>
<td>6.744</td>
</tr>
<tr>
<td>CD(P=0.05)</td>
<td>0.157</td>
<td>2.173</td>
<td>0.210</td>
<td>14.467</td>
</tr>
</tbody>
</table>
ate sugars (0.175 μg g⁻¹) followed by ascorbic acid 100ppm (0.159 μg g⁻¹) for leachate amino acids and 0.184 μg g⁻¹ for leachate sugars) (Fig. 2). Kelner et al. (1990) and Gao et al., (2008) observed that thiourea is a potent redox scavenger and it has the ability to scavenge multiple Reactive oxygen species (ROS) including superoxide radicle and hydrogen peroxide thereby lowering values of electrical conductivity, leachate amino acids, and sugars.

Conclusion

It could be concluded that among the various treatments viz., ascorbic acid, succinic acid, KNO₃ and GA₃ to the seeds of S. nigrum, the seeds soaked in thiourea 1% for about 12h improved the germination and it can be recommended as pre-sowing treatment.

ACKNOWLEDGEMENTS

The authors are very grateful to TNSCST (Tamil Nadu State Council for Science and Technology) - Student Project Scheme (AS-014) for allocation of budget to carry out the present investigation.

REFERENCES

12.ISTA. International rules for seed testing. (2016) Seed Science and Technology, Zurich, Switzerland.