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Abstract

Advance estimates of significant cereal and commercial crops are given by the Direc-
torate of Economics and Statistics and the central Ministry of Agriculture, Cooperation &
Farmers’ Welfare. However, the final estimates are released a few months after the actu-
al harvest of the crops. In this study, ARIMA and State-Space models have been devel-
oped for sugarcane yield forecasting in Ambala and Karnal districts of Haryana. The
above-mentioned models have been developed using yield data of sugarcane crop for the
time period 1966-67 to 2009-10 of Ambala and Karnal districts. The validity of fitted mod-
els has been tested over the years 2010-11 to 2016-17. The forecasting performance of
the developed models has been studied using percent deviations of sugarcane
yield forecasts in relation to the actual yield, and root means squared errors. It
has been observed that state-space models outperform the popular ARIMA
models for forecasting of sugarcane yield in Northern Agro-climatic Zone of
Haryana.
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INTRODUCTION

India has a well-established system for collecting
agricultural statistics, and forecasting of crop pro-
duction is one of the most important aspects of
agricultural statistics system. Advance estimates
of major cereal and commercial crops are issued
by the central government of India through the
Ministry of Agriculture, Cooperation, and Farmers’
Welfare. However, the final estimates are provid-
ed a few months after the actual harvest of the
sugarcane crop. Accordingly, one of the impedi-
ments of the ordinary techniques is practicality
and nature of the estimates. Consequently, there
is always a considerable scope of progress in the
regular system of estimation.

Forecasts can be obtained using various statisti-
cal approaches like regression, time-series, and
stochastic models. Every approach has its own
advantages and limitations. Regression analysis
is the most frequently used statistical technique
for investigating and modelling the relationship

between variables. Time series modelling arises
for the analysis of dependence when regressor
and response variables have a natural sequential
order over time. Time series models can be effec-
tively utilized for predication purposes as the his-
torical sequences of observations are promptly
accessible at equally spaced intervals over dis-
crete points of time. These successive observa-
tions are statistically dependent, and TS modelling
is concerned with procedures for the analysis of
such dependence. Autoregressive integrated mov-
ing average (ARIMA) models given by Box and
Jenkins (1976) are of immense importance for
forecasting a variety of variables in the field of
agriculture.

The state-space models are frequently used to
take into account the time dependency of the un-
derlying parameters, which may further enhance
the predictive accuracy of the most popularly used
ARIMA models with parameter constancy. Exposi-
tions of the state space approach to multivariate
forecasting can be found in Akaike (1976), Kitaga-
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wa and Gersh (1984), and Durbin and Koopman
(2002). A good account of state-space modelling
is also given in the books by Aoki (1987) and
Commandeur and Koopman (2007). Ravichan-
dran and Prajneshu(2001) used Box-Jenkins ARI-
MA, and state-space approaches for modelling all-
India marine products export data. Piepho and
Ogutu (2007) studied the simple state-space mod-
els in a mixed model framework.

India, with an annual production of 350 million
tonnes, is the second-largest sugarcane producer
in the world after Brazil. Sugarcane ranks third in
the list of most cultivated crops in India after pad-
dy and wheat. Mwanga et al. (2017) proposed
seasonal ARIMA models to forecast quarterly
yields of sugarcane in Kenya based on yields data
from 1973-2015. Assuming the level and trend
components to be locally linear as well as when
level and trend components remain constant with-
out any persistent upward or downward drift,
Hooda and Verma (2019) developed unobserved
component models to study trend in sugarcane
yield of five districts (Ambala, Karnal, Panipat,
Yamunanagar and Kurukshetra) in Haryana. In
this study, ARIMA and state-space models have
been developed for sugarcane yield prediction in
Karnal and Ambala districts of the state of Harya-
na. The models have been developed using yield
data of sugarcane crop for the period 1966-67 to
2009-10 of Karnal and Ambala districts. The valid-
ity of fitted models have been tested for subse-
quent years, i.e., 2010-11 to 2016-17, not includ-
ed in the development of the models.

MATERIALS AND METHODS

Haryana is one of the northernmost states in India
and is adjacent to the national capital New Delhi.
It is surrounded by Himachal Pradesh (HP) in the
north, Rajasthan (RJ) in the south, Uttar Pradesh
(UP) in the east, and Punjab (PB) in the west. As
per haryanahighway.com, in spite of recent indus-
trial development, Haryana remains an agricultur-
al state primarily, with near about 70% of its resi-
dents directly or indirectly involved in the agricul-
ture sector. Haryana is self-sufficient when it
comes to food production and is the second larg-
est contributor to India’s central pool of food
grains. It comprises of 22 districts with a total geo-
graphical area of 44,212 kms?.

The time-series data on sugarcane yield from 1966
-67 to 2016-17 of Ambala and Karnal districts com-
piled from Statistical Abstracts of Haryana were
used for the present study. The data for the last
seven years, i.e., 2010-11 to 2016-17, have been
used to check the validity of the developed ARIMA
and state-space models for district-level sugarcane
yield prediction in comparison to the actual yield
obtained from state Department of Agriculture and
Farmers’ Welfare.

ARIMA Model: A stationary time series has

mean, variance, and Auto-Correlation Function
essentially constant over time. Though prerequi-
site, the stationarity prerequisite for the applicabil-
ity of the Box-Jenkins approach has all the ear-
marks of being quite restrictive. Notwithstanding,
most non-stationary time series arising in practice
can be transformed into stationary series through
some basic operations. The Box-Jenkins method-
ology for developing an ARIMA model consists of
the three stages, viz., identification, estimation,
and the diagnostic checking stage.

The estimated ACF and Partial Auto-Correlation
Function (PACF) are used at the model identifica-
tion stage. These functions act as a guide for
choosing one or more ARIMA models that seem
to be appropriate for the given time series. At the
second stage, we estimate the parameters of the
model chosen at the identification stage. This
stage additionally gives some warning signals in
case the estimated coefficients don’t fulfill certain
mathematical inequality conditions. At the third
stage, the residuals are used to test the independ-
ence of random shocks and to check the adequa-
cy of the estimated model.

The general ARIMA(p,d,g)model for the time
series Y4, Y2 Ya.onnono. may be expressed as
®,(B)(1-B)*Y=64(B)ay
where, Y, is the yield in the t-th year and error
component a; ~WN(0, 6%); B is the backward shift
operator defined by BY; = Y; —Y4 and d is the
order of differencing; ®,(B) and 64(B) are polyno-
mials of order p, and g respectively defined as

D,(B)=1- DB -DB......... ®,B° and §,(B)= 1
-8,B-0,B% ......... 8,B°
Here, ®; ®,  ®yare autoregressive coefficients,

and 046, . 6, are the moving average coeffi-
cients. The first step in developing an ARIMA
model is to examine whether the time series is
stationary or non-stationary. The time series
plots, ACF, and DickeyFuller test can be used to
test the series for stationarity. A mean non-
stationary series can be transformed into a sta-
tionary series by proper order of differencing,
while natural logarithm may be used for transform-
ing a variance non-stationary series. The appropri-
ate values of p and q are determined by examin-
ing the ACF and PACF plots of the resulting sta-
tionary series.

The ARIMA(p,d,q) model contains p autoregres-
sive and q moving average parameters, which can
be estimated using least-squares or maximum
likelihood methods. The diagnostic tests are per-
formed to check if the residuals are independent
or not. The residual ACFs for an appropriately
built ARIMA model ought to have autocorrelation
coefficients that are all statistically zero. As per
Pankratz (1983), all residual ACFs ought to be
zero; however, every one of them need not be
essentially zero because of sampling error. For
this purpose, the serial autocorrelations of residu-
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als up to a specified lag k are generally tested
using Ljung-Box Statistic. Ljung and Box (1978)
suggested the following test statistic based on all
the residual autocorrelations

Q=n(n+2)Y.(n—j)'r}
” . (2)
where, n is the total number of observations used
to estimate the model, r; autocorrelation at lag j,
and k is the number of lags being used. The sta-
tistic Q approximately follows a Chi-squared distri-
bution with (k-m) degrees of freedom, where k is
the number of residual autocorrelation and m is
the number of parameters estimated in the ARIMA
model.
The accuracy of post-sample forecasts has been
assessed using percent Relative Deviation (RD
%) and Root Mean Square Error (RMSE).
State-Space model : The SS model comprises of
an observation or measurement equation and a
state or transition equation where the state equa-
tion details the dynamics of the state variables
while the measurement equation relates the ob-
served variables to the unobserved state vector.
The SS model, formulated and described by Akaike
(1976) have been used in the present study.
Let y¢: r x1be a vector of observed variables (after
differencing if needed and subtracting the sample
mean) and z; .s x1(s 2 r) be the state vector,
where the first r components of z,consist of yand
the last s-r components are conditional predic-
tions of future y;.. The state-space model formulat-
ed in terms of the state transition equation is
z..1 = Fz#+ Gepq ..., Eq.(3)
where, the matrix F: sxs is the transition matrix
and the matrix G: sxr is known as the input ma-
trix.
For the purpose of model identification, the first r
rows and r columns of G are set to an identity ma-
trix of order rxr. The vector e; is a sequence of
independently and normally distributed random
vectors of dimension r with mean 0 and covari-
ance matrix ... Notwithstanding the state transi-
tion equation, SS models also consist of an obser-
vation equation that gives the observed values y;
as a function of the state vector z,. The measure-
ment equation used by the SAS STATE SPACE
procedure in this study is

Ambala Yield
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Fig. 1(a). ACF plot for sugarcane yield of Ambala
district.

Yt = HZt . (4)
where, H= [I;,0] and I, is an rxridentity matrix and O
is an rx(s-r) null matrix.

The methodology used by the SAS STATE
SPACE procedure also assumes the input series
to be stationary. Therefore, the first step is to ex-
amine the data and test the requirement of differ-
encing. The SAS STATE SPACE procedure em-
ploys a canonical correlation analysis for the iden-
tification of the state space model. The identifica-
tion of the canonical SS model is practiced in two
steps. The initial step involves the determination of
the measure of past data to be utilized in the ca-
nonical correlation analysis. This is accomplished
by fitting successively higher-order vector auto-
regressive (VAR) models and figuring Akaike infor-
mation criterion (AIC) for each fitted model. The
optimum lag (p) into the past is chosen as the or-
der of VAR model for which AIC is least.

The subsequent step includes the selection of
state vector via means of canonical correlation
analysis between the set of present and past val-
ues and the set of present and future values. The
canonical correlation coefficients are computed for
the sample covariance matrices of the set of suc-
cessively increasing number of present and future
values and the fixed set of present and past val-
ues. In the event that the smallest canonical corre-
lation coefficient of the sample covariance matrix,
that corresponds to the component being evaluat-
ed for inclusion in the state vector is non-zero. At
that point, that specific component is included in
the state vector. Once the state vector is resolved,
the state space model is fitted to the data. The
parameters in F, G and X, are estimated utilizing
maximum likelihood (ML) procedure.

The state-space forecasts are obtained through
the Kalman filter (Harvey, 1989), which updates
the knowledge of the system each time a new ob-
servation is brought and minimizes the error terms.
The m-step ahead forecast of zun, i.e. Zumy de-
notes the conditional expectation of z..m: given the
information available at time t i.e. Yumt = HZumn,
where the matrix H= [L,0].

RESULTS AND DISCUSSION
The Box Jenkins’ ARIMA methodology and the
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Fig. 1(b). ACF plot for sugarcane yield of Karnal
district.
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Table 1. Tentative ARIMA Models for sugarcane yield in Ambala and Karnal districts.

District (s) Model Parameter Parameter Estimates Standard error t-value p-value
Ambala fq 0.168 0.195 0.857 0.396
ARIMA(1.1.1) g, 0.824 0.122 6.760 < 0.001
ARIMA(0,1,1) ©4 0.739 0.104 7.075 < 0.001
ARIMA(1,1,0) f -0.411 0.132 -3.103 0.003
Karnal fq -0.022 0.179 -0.123 0.903
ARIMA(1.1.1) g, 0.843 0.115 7307  <0.001
ARIMA(0,1,1) ©4 0.852 0.095 8.952 < 0.001
ARIMA(1,1,0) f -0.481 0.127 -3.779 < 0.001
Table 2. Selection criteria values for Fitted ARIMA models for Ambala and Karnal districts.
District (s) Model RMSE MAPE BIC
ARIMA (1,1,1) 5.137 8.856 3.511
Ambala ARIMA(0,1,1) 5.118 9.008 3.424
ARIMA(1,1,0) 5.557 10.080 3.589
ARIMA (1,1,1) 5.723 9.537 3.727
Karnal ARIMA(0,1,1) 5.663 9.552 3.627
ARIMA(1,1,0) 6.471 10.360 3.893
Table 3. Residual autocorrelations checking based B
on ARIMA Models for Ambala and Karnal districts.
District (s) Model Ljung-box Q statistic ~ - - _D —D = W m

Statistic DF p-value

17 0.117
17 0.650

Ambala
Karnal

ARIMA (0,1,1) 24.108
ARIMA (0,1,1) 14.234

Table 4. Akaike information criterion for Autoregres-
sive models.

Lag/District(s) Ambala Karnal
0 158.33 165.97
1 151.95 157.79
2 152.75 153.60
3 153.98 153.04
4 148.41 154.84
5 140.37 155.29
6 142.23 157.24
7 142.49 158.92
8 144.43 160.54
9 146.37 162.51
10 148.21 164.37

Table 5. Yule-Walker estimates of selected Auto-

regressive models.

District 1 2 3 4 5
(s)/Lag

Ambala -0.75 -0.48 -0.49 -0.66 -0.46
Karnal -0.71 -0.52 -0.24 - -

state space methodology assume that the time
series being modelled is stationary. The sugar-
cane yield data of both the districts were checked
for stationarity using ACFs. The ACFs of sugar-
cane yield series decayed slowly, indicating the
presence of non-stationarity for both the districts
(Fig.1(a) and 1(b)). As indicated by the ACFs of
the differenced series, the first order differencing
was found sufficient for getting stationary series in
both the districts (Fig. 2(a) and 2(b)).

The orders of autoregressive (AR) and moving
average (MA) components were determined
through ACFs and PACFs of the stationary time

- D=‘=’D o a- == [

Fig. 2(a). ACF plots after differencing of order 1 for
Ambala district.

Karnal Yield
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Fig. 2(b). ACF plots after differencing of order 1
Karnal district.
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State Space ARIMA

Fig. 3. Post sample (RD%) of forecasts based on
ARIMA & SS models.

series. The sum of squared residuals was mini-
mized utilizing the Marquardt algorithm (1963).
The residual ACFs, along with the Chi-square test
given by Ljung and Box (1978) were used to work
out the random shocks as white noise. Consider-
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Table 6. Parameter estimates of Stat- Space model.

District (s) Parameter Estimate Std. Error t-value
F(5,1) -0.52 0.16 -3.24
F(5,2) -0.81 0.17 -4.84
F(5,3) -0.13 0.23 -0.56
F(5,4) -0.34 0.23 -1.50

Ambala F(5,5) -0.82 0.24 -3.49
G(2,1) -0.74 0.15 -4.98
G(3,1) -0.01 0.18 -0.03
G(4,1) -0.18 0.17 -1.07
G(5,1) -0.07 0.15 -0.46
F(2,1) -0.16 0.21 -0.76

Karnal F(2,2) -0.16 0.26 -0.60
G(2,1) -0.75 0.15 -4.93

Table 7. Post-sample sugarcane yield forecasts based on ARIMA(0,1, 1) and State-Space models.

District (s) Years Actual ARIMA State Space
Yield Forecasted Relative Devi- Forecasted Relative Devia-
(g/ha) Yield (q/ha) ation (%) Yield (q/ha) tion (%)
Ambala 2010-11 67.22 65.78 2.14 71.92 -7.00
2011-12 71.58 66.47 7.14 69.37 3.08
2012-13 79.68 67.17 15.70 71.91 9.75
2013-14 71.23 67.86 4.73 71.86 -0.88
2014-15 70.55 68.56 2.82 72.67 -3.01
2015-16 69.60 69.25 0.50 76.65 -10.13
2016-17 78.13 69.95 10.47 75.53 3.33
Karnal 2010-11 79.77 71.52 10.34 72.34 9.32
2011-12 78.38 72.20 7.88 73.49 6.23
2012-13 81.60 72.87 10.70 74.78 8.36
2013-14 78.81 73.55 6.67 75.26 4.51
2014-15 85.04 74.22 12.72 75.85 10.81
2015-16 84.54 74.90 11.92 76.54 9.46
2016-17 95.00 75.57 20.45 77.21 18.73

Table 8. District-specific Av. Abs. percent RDs and
RMSEs of post-sample sugarcane yield forecasts.

Av. Abs. Percent RD RMSE

District () 2RIMA ss ARIMA _SS
Ambala _ 6.21 531 618 461
Karnal 1152 963 10.74  9.08

ing various blends of moving average and auto-
regressive orders (Tables 1 and 2), ARIMA (0,1,1)
model was found satisfactory for both the districts.
The parameter estimates of fitted ARIMA models
are presented in Table 1. Based on the estimates
in Table-1, the model equations for Ambala and
Karnal can be written as:

Ambala : (1-B)Y; = (1-0.739B) a; or Y;= Yyq —
0.739 a1 +ar i Eq. (5)
Karnal : (1-B)Y; = (1-0.825B) a; or Y= Yu4 —
0.825au +a Eq.(6)

Where, B is the Backshift operator. The signifi-
cance level of the moving average parameter
©has been found to be satisfactory (p-value is <
0.001) for both Ambala and Karnal districts. The
ARIMA (0,1,1) model has only one moving aver-
age component and that is also less than one.
Therefore, the developed models also satisfy the
invertibility condition required for an ARIMA mod-
el. The Ljung and Box statistic based on 17 de-
grees of freedom is equal to 24.108 for Ambala
and 14.034 for Karnal (Table-3). Both these val-

ues are non-significant, indicating the residuals to
be white noise.

State-Space modelling: The 49 years sugarcane
yield time series data for Ambala and Karnal dis-
tricts were used for building the state-space mod-
els. The vector of observed variables y;for Amba-
la and Karnal districts, after differencing and sub-
tracting the mean from can be expressed as:
Ambala : y: =(1-B)Y-0.874

Karnal : y: =(1-B)Y-0.659

where B represents the backshift operator.

Before the identification of SS model, it is im-
portant to decide the measure of past information
to be utilized in the canonical correlation analysis.
This is accomplished by fitting higher-order vector
autoregressive models successively and pro-
cessing AIC for each fitted model. Based on AIC
values (Table-4), the autoregressive orders of five
and three appeared to be appropriate for Ambala
and Karnal districts, respectively. The least AIC
values for respective autoregressive models pro-
vided the number of autocovariance matrices to
be analyzed under the canonical correlation
phase. Also, the Yule-Walker estimates obtained
for the selected AR models are given in Table 5.
Canonical correlation analysis selected the state
vector after the autoregressive order selection
process had determined the number of lags to be
used under analysis. The preliminary estimate of
the parameters of state-space models was formed
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using the information from the canonical correla-
tion and preliminary autoregression analyses
(Table 6).

The state space models in fitted form for the two
districts under study may be presented as follows:
Ambala

Pin 01

y1+2\1+1 0 0
0 0

yux\zuz 0

0 Y, 1

0 | Yoy | [-0.74

0 | Yy |+]-0.0119.31]
1 -0.18
-0.07

0 0
1 0
0 1
0 0 0
-0.52 -081 -0.13 -034 -082] ).y

=

yt+4\ 7+3

Karnal

% %
y::;u]: ’—0916 —01.16] [Yntux]Jr —01.75

] 30.55]

The forecast yield(s) along with the percent rela-
tive deviations for both the districts are presented
in Table-7. Average absolute percent deviations
and RMSEs of sugarcane yield forecasts in rela-
tion to the observed yield(s) from Dept of Agricul-
ture and Farmers’ Welfare were observed for
checking the forecasting performance(s) of the
contending models.The sugarcane yield prediction
of the post sample period, i.e. 2010-11 to 2016-17
were obtained on the basis of fitted ARIMA and
SS models to check the validity of the developed
models. However, the average absolute percent
deviations and the root mean square errors
(RMSEs) of sugarcane yield forecasts based on
both the models are depicted in Table 8. The av-
erage percent relative deviations and RMSEs are
smaller for the SS models as compared to the
selected ARIMA models for the districts indicating
superiority of SS model over the ARIMA model.
Fig. 3 shows the comparative view of post-sample
sugarcane yield percent relative deviations based
on ARIMA and state space models.

Sugarcane yield forecasting using time series
techniques i.e. ARIMA and state space models
provide far better results than time-trend based/
linear mixed models applied on sugarcane crop of
Haryana pertaining to percent relative deviations
of the forecasts (Suman and Verma, 2018). ARI-
MA and state space models have also been ob-
served superior over traditional regression analy-
sis for obtaining advance estimates of the crop.

Conclusion

ARIMA and state-space models both provided suita-
ble relationships to predict sugarcane yield in the
districts under consideration. The forecasting perfor-
mance(s) of the contending models were observed in
terms of Av. Abs. Percent Deviations and RMSEs.
The level of accuracy achieved by state-space model
(s) was considered adequate, i.e., state-space mod-
els could better explain the sugarcane yield. Seven-

steps ahead estimated values (2010-11 to 2016-17)
of sugarcane yield favour the use of SS models for
sugarcane yield forecasting in the study region. The
SS models performed well with lower error metrics as
compared to the ARIMA models in all-time regimes.
The developed models are fit for giving reliable esti-
mates of sugarcane crop yield well ahead of time of
the harvest collection. On the other hand, the
DOAFA yield estimates are obtained quite late after
the actual harvest of the crop.
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