Progress and prospects of glucosinolate pathogen resistance in some brassica plants

Ejiroghene Ruona Evivie
College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Benin, PMB 1154, Ughowo, Benin City, Edo State, Nigeria

Matthew Chidozie Ogwu
Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Benin, PMB 1154, Ughowo, Benin City, Edo State, Nigeria
School of Bioscience and Veterinary Medicine, University of Camerino, 62032 Camerino, Marche – Floristic Research Center of the Apennines, Gran Sasso and Monti della Laga National Park, San Colombo, 67021 Barisciano, L’Aquila, Italy

Wei Cang
College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China

Rui Xu
College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China

Jing Li*
College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China

*Corresponding author. E-mail: Jing Li – lijing@neau.edu.cn

Abstract
Plants are constantly defending themselves against an array of assaults by pathogenic organisms. This has led to the evolution of precise and elaborate chemical defense systems involving glucosinolates (GSLs) in cruciferous plants. These GSLs and their hydrolysis products are biologically active and are implicated as enabling formidable plant defense processes in certain economically important members of Brassicaceae like broccoli, cabbage and mustard seed. This review provides a comprehensive report of how indole and aliphatic GSLs mitigate incidents of plant pathogenesis. By evaluating the roles of GSLs in plant-pathogen interaction of some brassica plants, this review highlights the associated mechanism that culminates in disease suppression. Moreover, seven economically important brassica pathogens were reviewed in terms of their ability to disrupt proper plant functioning as well as the mechanisms by which GSLs and their hydrolysis products in Brassica lower the susceptibility to them. Future perspectives of the application of GSLs in plant pathogen resistance using advanced molecular techniques are also discussed.

Keywords: Arabidopsis, Brassicaceae, Glucosinolates, Pathogens, Plant immunity, Secondary metabolites

INTRODUCTION
Plant biochemical defense mechanisms evolved overtime through phytochemical-mediated strategies to adapt and overcome antagonistic stress that may impair growth, development and reproduction (Dangl and Jones, 2001; Ausubel, 2005; Jones and Dangl, 2006, Chisholm et al., 2006). Some of the end products of this defense action include the production of reactive oxygen species (ROS), signal transduction, cell fortification, enzyme synthesis and production of diverse secondary metabolites. However, according to Dangl and Jones (2006), the lack of mobile defender cells and somatic adaptive immune systems ensures that plant often relies on the innate immunity of their individual cells as well as on systemic signals emanating from infection sites to initiate and coordinate defense response. Thus, the propagation of defense response culminates in effects beyond their site of initiation. Upon recognition of invading pathogens, opined that plant host cells respond by producing and accumulating ROS, which has been adversely studied not only for their role in plant development but also for eliciting immunity as a form of stress response (Lehmann et al., 2005; Torres et al., 2006; Vwioko et al., 2018). Although this sort of first response depends on the nature and severity of the pathogen and threat as well as the plant group, the multi-layered response system of plant, which in turn depends on the perceived signal and nature of the defense response, lead to microbe- or pathogen-associated molecular patterns or damage-associated molecular pat-
terns (Underwood, 2012). Nonetheless, the turnover of associated secondary metabolite such as glucosinolates (GSLs) is a suggestion of their roles in key interactions (Bednarek et al., 2009). For instance, the effector-triggered hypersensitive response (ET-HR) mechanism, which depends on indole and aliphatic glucosinolates, or their by-products have been implicated in delayed programmed cell death upon Pseudomonas syringae and Hyaloperonospora arabidopsidis inoculation in aliphatic glucosinolate-deficient myb28 and myb29 plants (Johansson et al., 2014; Andersson et al., 2015). These findings confirm that glucosinolates are associated with the ET-HR and ROS pathways.

Pathogens have significant effects on plant fitness and may regulate plant population and in turn lead to considerable economic damage (Rausher, 2001). After successful penetration, pathogens may directly benefit from the active metabolism of their host to complete their life cycle by either keeping the host cells alive during colonization (biotrophic strategy) or induce host cell disintegration after infection (necrotrophic strategy). Some pathogenic fungus utilizes hemibiotrophic strategy whereby they undergo a biotrophic phase and later switch to a necrotrophic phase (Horbach et al., 2011; Hucklehoven and Panstruga, 2011; Bolton et al., 2006). Williamson et al. (2007) posited that necrotrophic pathogens pose the significant economic challenge on Brassica crops because of their ability to cause lesions on nearly all harvestable parts of the plant. No completely resistant Brassica germplasm have been recorded for most of this necrotrophic fungus (Cao et al. 2016).

As a group of thioglucosides, including tryptophan-derived indole glucosinolates (IGSLS) and methionine, derived aliphatic glucosinolates (AGSLS), glucosinolates (GSLs) are important secondary metabolites in Brassica species. This plant health promoting, sulfur and nitrogen-containing group of phytochemicals can be found in several Brassica species including cauliflower, rapeseed, cabbage, broccoli, radish, rutabaga, baemuchae, kohlrabi, turnip, black mustard, Chinese cabbage, leaf mustard, and kale. In addition, Holst and Fenwick (2003) assert that these cruciferous plants containing GSLs have made invaluable contributions to human and animal diets as additives (mustard and wasabi), leafy vegetables (cabbage, swede), and livestock feedstuffs (rapeseed, kale, turnip). They are present in different concentrations in the different parts of the plant that may provide added insights into their site-dependent expression and functions (Moussaieff et al., 2013; Bhandari et al., 2015). GSLs also perform regulatory functions in inflammation, stress response, phase I metabolism, and antioxidant activities, as well as direct antimicrobial properties (Bischoff, 2016). In the same vein, some Brassica species containing GSLs have also been implicated in phytoremediation and biofumigation (Szczyglowska et al., 2011). Myrosinases coexist with GSLs but are stored separately in adjacent cells but mix upon sensing a pathogen attack (Redovnikov et al., 2008). The result is an hydrolysis of thioglucosidic GSLs bond to produce unstable aglucones, which decompose to various bioactive compounds, including isothiocyanates and thiocyanate with toxic effects on microorganisms, nematodes, insects and other pathogens (see Fig. 1; Lambrix et al., 2001; Burow and Wittstock, 2009; Bednarek et al., 2009; Clay et al., 2009; Wittstock and Burow, 2010; Stotz et al., 2011; Bednarek, 2012).

Some key defense mechanisms include a direct response to specific antimicrobial activities, metabolite biosynthesis, callose deposition, transcription of response genes, stomatal closure and programmed plant cell death signaling (Fig. 2). Previous workers have elucidated the roles of phytochemicals (chiefly secondary plant metabolites) in protecting plants against pathogens and pests (Cowan, 1999; Bennett and Wallsorge, 1994). In the case of Brassica crops, they either produce phytochemicals as a component of their growth and development (i.e. inbuilt chemical barriers; structural barriers such as lignin, and pre-formed phytoanticipins such as GSLs) or de novo synthesis in response to pathogen attack or stress (phytoalexins) (Bennett and Wallsorge, 1994).

Over the years, many studies have elucidated the GSL-triggered mechanisms by which plant immune systems respond upon attack by various pathogens (Table 1). These works suggest different operational mechanism, genes and vectors are involved in diverse GSL interactions. In addition, the indole glucosinolate biosynthesis pathway has been successfully bioengineered in Nicotiana benthamiana, a non-Brassica plant (Pfalz et al., 2011) and molecular techniques have also shown in detail how specific glucosinolates like glucoraphanin (4-methyl sulfanyl butyl GLS; 4-MSB) inhibit tumor cell growth in tobacco (Mikkelsen et al., 2010). However, limited information on the effects of specific pathogens on specific Brassica plants is available. This review presents a comprehensive investigation of some of the most important pathogens, which cause considerable damage to Brassica plants. This report will also highlight studies that successfully demonstrated the mechanisms by which GSLs mitigate pathogen effects on specific Brassica species. Some insights into future considerations for potential application in experiment and field studies will also be provided in this work.

Xanthomonas campestris pv. campestris (Pammel) Dowson: Xanthomonas campestris pv. campestris, is the Gram-negative bacterium responsible for Black rot, one of the most devastating diseases of cruciferous crops.
Table 1. Some studies showing the effects of specific GSLs on different pathogens and/or herbivores.

<table>
<thead>
<tr>
<th>Vector/herbivore</th>
<th>Pathogen/parasite</th>
<th>Specific GSL type/metabolite</th>
<th>Results of study</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botrytis cinerea Pers.</td>
<td>Colletotrichum gloeosporioides (Penz.) Penz. and Sacc.</td>
<td>IGSLs</td>
<td>Microbe-associated molecular pattern (MAMP)-triggered immunity activates a genetically programmed cell death in the absence of the functional membrane-attack complex/perforin (MACPF) domain protein encoded by the Nectrotic Spotted Lesion 1 NSL1 gene via Tryptophan (Trp)-derived secondary metabolite-mediated activation of the satellic acid (SA) pathway.</td>
<td>Fukunaga et al. (2017)</td>
</tr>
<tr>
<td>Cabbage looper (Trichoplusia ni Hubner)</td>
<td>Not mentioned</td>
<td>Neoglucobrassicin and Glucobrassicin</td>
<td>Enhanced accumulation of glucosinolates in response to exogenous applied methylthioadipate adenine dinucleotide (NAD^+). In addition, an up-regulation of the glucosinolate-responsive genes PEN2 (prevention-resistance gene 2) and 519 CYP9F2 after direct NAD^+ treatment was observed, thus indicating NAD-specific regulation in C.</td>
<td>Patrao et al. (2016)</td>
</tr>
<tr>
<td>Leaf-feeding insect (Mamestra brassicae L.)</td>
<td>Not mentioned</td>
<td>Aliphatic GSLs</td>
<td>Herbivore-induced CRASF-branch of the jasmonic acid (JA) signaling pathway and rhizobacterial colonization enhances the synthesis of aliphatic glucosinolates while synthesis of indole glucosinolates is suppressed.</td>
<td>Pangesti et al. (2016)</td>
</tr>
<tr>
<td>Pea aphids (Acyrthosiphon pisi (Harris))</td>
<td>Parasitic dodder vines (Cuscuta groenovili Willd.)</td>
<td>Aliphatic GSLs, IGSLs</td>
<td>Elevated concentration of aliphatic and indole glucosinolates lowered parasitism by suppressing cyp79B2 cyp79B3 factors</td>
<td>Smith et al. (2016)</td>
</tr>
<tr>
<td>Escherichia coli (Migula), Pseudomonas aeruginosa (Schroeter), Staphylococcus aureus (Rosenbach) and Listeria monocytogenes (Murray)</td>
<td>Xanthomonas campestris pv. Campestris (Dewson)</td>
<td>(Pseudomonas syringae pv. Maculicola (McCulloch) Dye and others), Alternaria brassicae and Sclerotinia sclerotiorum</td>
<td>2-Propanol (SIN) 3-Methlysulphinylpropyl (GiB) 4-Methylsulphinylbutyl (GRA) 2-Hydroxy-3-butenyl (PRO) 3-Butenyl (GNA) 4-Pentenyl (磺) 4-Methylthiobutyl (GER) 4-Hydroxybenzyl (SNB) 2-Methylsulphinylpropyl (GIB) 3-Methylsulphinylbutyl (GER) Allyl-thiocyanate (AITC) and 2-phenethylisothiocyanate (PETC)</td>
<td>Aliphatic GSLs</td>
</tr>
<tr>
<td>Alternaria brassicae, Hyaloperonospora brassicae (Gaur), Goker and others, and Albuge candida (Pers.) Roussel, Broad spectrum</td>
<td>Aliphatic GSLs</td>
<td>A dose-dependent inhibition of all studied pathogens was demonstrated.</td>
<td>The AITC treatment reduced the decay caused by the pathogen by over 47.4% up to 91.5%, significantly different from the untreated fruit. Total phenolic content and antioxidant capacity estimated in treated and untreated strawberries showed no significant differences between control and AITC treated fruit.</td>
<td>Sortolo et al. (2014)</td>
</tr>
<tr>
<td>Colletotrichum gloeosporioides and Colletotrichum orbiculare (Berk. and Mont.) Arx</td>
<td>Aliphatic GSLs</td>
<td>AITC-induced stomatal closure requires methyl jasmonate (MeJA) priming but not abscisic acid (ABA) priming, resulting in suppression of water loss and invasion of fungi through stomata.</td>
<td>The Arabidopsis indole glucosinolate pathway restricts entry of the non-adapted aphid fungus only when these pathogens employ hyphal tip-based entry (HTE). Arabidopsis mutants defective in indole glucosinolate biosynthesis or metabolism support the initiation of post-invasion growth of non-adapted Colletotrichum gloeosporioides and Colletotrichum orbiculare</td>
<td>Hiruma et al. (2010)</td>
</tr>
<tr>
<td>Escherichia coli, Pseudomonas aeruginosa, Listeria monocytogenes and Staphylococcus aureus</td>
<td>Agrobacterium tumefaciens (Smith and Townsend), Erwinia chrysanthemi (Burkholder and others), Pseudomonas cichorii (Swingle), Stapp., Xanthomonas campestris pv. jactanesis</td>
<td>Allylthiocyanate, Benzylationthiocyanate and 2-phenethylisothiocyanate</td>
<td>All isothiocyanates were more effective in inhibiting pathogen growth than phenolics. They inhibited the in vitro growth of the Gram-negative and Gram-positive pathogenic bacteria.</td>
<td>Saavedra et al. (2010)</td>
</tr>
<tr>
<td>Leaf-feeding insect (Mamestra brassicae L.)</td>
<td>Not mentioned</td>
<td>Aliphatic GSLs</td>
<td>Aliphatic GSLs biosynthesis solely regulated by myb28/myb29 transcription factors, Myb28/Myb29 double mutant was devoid of any aliphatic GSLs.</td>
<td>Beekwilder et al. (2008)</td>
</tr>
<tr>
<td>Polyphagous aphid (Myzus persicae Sulzer)</td>
<td>Not mentioned</td>
<td>IGSLs</td>
<td>IGSLs biosynthesis pathway was mediated by CYP79B2 and CYP79B3 genes.</td>
<td>Kusnierzczak et al. (2007)</td>
</tr>
</tbody>
</table>
worldwide especially Brassica oleracea var. capitata and B. rapa ssp. rapa L. in warm and humid climate (Dias et al., 2010; Velasco et al., 2013; Vicente and Holub, 2013). The bacterium is a seed-borne pathogen, as well as transmitted through infection or natural openings (Goss et al., 2017). The systemic vascular disease debilitates the plant, thus favoring the attack of other pathogens but even in mild attack, can cause several V-shaped necrotic lesions on leaves, which decrease the quality of the product for fresh market (Velasco et al., 2013). Symptoms include yellow lesions, wilted tissue, necrosis, defoliation and plant death (Fig. 3). The roles of GSLs and their respective hydrolysis products (benzyl isothiocyanate, 2-phenyl ethyl...
isothiocyanate and sulforaphane), against X. campestris infection on Brassica plants have been highlighted by the report of Aires et al. (2011). They concluded that GSLs play complex roles disease resistance, particularly in the early growth stages when the young plants are in metabolic flux. Nonetheless, they successfully showed the susceptibility of Brassica to X. campestris is generally higher in Brassica species with lower contents of aromatic GSLs and 4-methyl sulfanyl butyl (glucoraphanin). These compounds are effective inhibitors of X. campestris in vitro. More so, experiment results of Velasco et al. (2013) showed that butyl-3-enylglucosinolate and isothiocyanate have direct antimicrobial activities on X. campestris. Their results demonstrated that glucoraphanin and its ITC possess antibacterial effect on the development of X. campestris and this effect strongly correlate with the concentration of the above compounds.

Plasmodiophora brassicae

Woronin: Plasmodiophora brassicae is the causative agent of club rot disease that affect the root and lower stem of Brassica crops such as the Canadian canola (Brassica napus L.) and cabbage Brassica oleracea var. capitata L. (Fig. 4). It is a soil-borne, obligate, and biotrophic pathogen that is capable of causing significant yield losses (Dixon, 2009). The pathogen causes the root and stem base to swell and form characteristic clubs, which inhibit xylem and phloem roles, stunt the growth of the plant and wilting. After weeks of infection, the clubbed root, weakening the support of the plant. (Voorrips, 1995).

P. brassicae influence glucosinolate levels in both root and aerial tissues during primary, secondary and mature gall formation stage disease development (Islam and Guest, 2010). In the opinion of Voorrips (1995), the evidence of a correlation between IGSL content and club root susceptibility is conflicting because no relation between IGSL content and clubroot resistance has been found. He opined that although the auxin production from IGSL is somewhat important in clubroot development, the processes occurring during pathogenesis, the mechanisms responsible for resistance were unclear. However, Islam and Guest (2010) found that GSLs levels remain unchanged in arial tissues but significantly increased (1.5 times) in root tissues during symptom development. The concentration difference might implicate a role for GSL in *P. brassicae* pathogenesis.

More so, Song et al. (2016) reported a myrosinase -mediated breakdown of GSLs to be one of the identified biological processes in resistant samples where they were up-regulated for host-defense responses. Their results implicate several phytoalexins as putatively deriving from the GSL metabolism in B. rapa roots carrying Rcr1 (the club root resistant gene) upon *P. brassicae* infection, which suggest the possibility for antimicrobial agents via the GSL-myrosinase metabolism pathway. Recently, Zhao et al. (2017) found that in the response of *A. thaliana* to *P. brassicae* infection, the expression of GSL genes and terpenoid biosynthesis significantly increased in the metabolism pathway. Further study may be required to elucidate the resultant pathway in Brassica crops.

Leptosphaeria maculans (Sowerby) Karst: This hemibiotrophic fungal pathogen is the causal agent of blackleg disease in *B. napus* L. (canola, oilseed rape), which causes a significant global yield loss (Becker et al., 2017). *B. napus* is the second-highest produced oilseed crop worldwide and is under constant threat of the blackleg disease (Fitt et al., 2006). This underscores the economic effects of *L. maculans*, which affects the stems and leaves of Brassica plants (Fig. 5).

According to Hiruma et al. (2013), IGSLS are required for resistance against hemibiotrophic fungi. However, their role in the *B. napus* - *L. maculans*
pathosystem was unclear at the time. Considering that IGSLs promote the production of callose that likely prevents L. maculans colonization and reproduction in apoplastic spaces within cotyledons thereby conferring resistance on B. napus (Becker et al. 2017). This agrees with Aist and Bushnell (1991), who proposed that callose deposition is a conserved defense response in plants that is controlled by GSL metabolism through acting as a physical barrier in the cell wall. Data from Becker et al. (2017) also showed activation of the complete IGSL biosynthetic pathway in resistant B. napus cotyledons inoculated with L. maculans. This confirms the previous study by Clay et al. (2009) who stated that in resistant hosts, every gene of the IGSL biosynthetic pathway was upregulated following L. maculans infection, whereas in the susceptible genotype, several genes required for IGSL production were downregulated during infection. Future investigation may be directed at exposing specific interactions within the callose of major Brassica that act under stress conditions from L. maculans to promote defense (Fig. 4).

Pseudocercosporella capsellae (Ellis and Everh.) Deighton: *Pseudocercosporella capsellae* causes white leaf spot across a wide range of Brassica plants including oilseed, vegetable condiment and forage Brassicas worldwide (Fig. 5; Crossan, 1954; Deighton, 1973; Koike et al., 2007). *P. capsellae* produces a purple-pink coloured toxin called cercosporin, which has been implicated in white leaf spot disease initiation in brassica crops (Gunasinghe et al., 2016). *P. capsellae* may be carried across seasons within thick-walled mycelium on crop debris and produces conidia when the weather is favourable. Conidia infect plants causing white or pale beige lesions on leaves. Infections are favoured by wet weather conditions (Petrie et al., 1985; Barbetti and Khan, 2000).

Several GSL-derived ITCs induce stomatal closure in A. thaliana in a dose-dependent manner (Hossain et al., 2013; Khokon et al., 2011). More so, rapid stomatal closure occurs in resistant B. carinata following recognition of pathogen presence, a characteristic considered a winning pre-invasive defence barrier developed by plants (Ton et al., 2009). By limitation potential entry ports by resistant B. carinata, this appears to be a major mechanism of resistance against *P. capsellae*. Hence, efforts geared at elucidating the phytochemicals associated with this structural-resistant response may characterize future research (Fig. 6).

Alternaria brassicaceae (Schwein) Wiltshire: Black spot disease of some Brassica crops like broccoli, oil seed rape and cabbage is caused by the fungus *Alternaria brassicaceae* (Fig. 7). This facultative parasite colonizes susceptible hosts as well as dead plant material secreting host-specific toxins. This disease results in a considerable reduction of both yield and seed quality (Sotelo et al., 2014). *A. brassicaceae* is the prime causative agent of *Alternaria* blight disease, which affects most Brassica crops globally, causing economic losses with no proven source of transferrable resistance in any of its hosts. In tropical regions, this pathogen is most destructive in the wet season (Meena et al., 2010).

The report of Giri et al. (2013) suggested that the production of antifungal substance(s) in resistant B. juncea leaves was responsible for reduced infection by *Alternaria brassicaceae*. This includes GSLs that affect the differential expression of resistance across different plant species, lines as well as cultivars of the same species or within different tissues of a plant (Osbourn, 1996). The antifungal byproducts are not formidable in resistance of these pathogens (Meena et al., 2010, Zhou et al., 2002), however, they remain a key defense system in many Brassica plants. GSLs and their hydrolysis products have also been shown previously to have antimicrobial properties (Tierens et al., 2001). Recently, more specific pathways of this antifungal mechanism were reported by Klein and Sattely (2017). These researchers identified some key enzymes required for the synthesis of the parent phytoalexin of Brassica plants called Brassinin from well-studied GSLs. Some of the brassinin-type phytoalexins may be more tightly linked to the biosynthetic pathway of IGSLs. The carbon-sulfur lyase SUR1 processes cysteine–isothiocyanate conjugates, as well as the S-methyltransferase DTCMT that methylates the resulting diithiocarbamate, together completing a pathway to brassinin. Also, the β-glucosidase BABG that is present in Brassica rapa but absent in Arabidopsis was shown by these researchers to act as a myrosinase and may be a determinant of plants that synthesize phytoalexins from IGSLs.

Phytophthora brassicaceae De Cock and Man in’t Veld: *Phytophthora brassicaceae* is an economic and notorious oomycete pathogen. It has a narrow host range restricted to Brassica plants such as Chinese cabbage (*B. rapa* subsp. *pekinesis*), Brussels sprouts (*B. oleracea* var. *gemmifera*) and rutabaga (*B. napus* var. *napobrassica*) (Semb, 1971, Fagertun and Semb, 1986). *P. brassicaceae* is responsible for post-harvest damage that lowers the marketability of cabbage to around 90 % losses (Fagertun, 1987, Mauch et al, 2009). *P. brassicaceae* is one of the few *Phytophthora* species that infect *Arabidopsis* plant both naturally and under laboratory conditions (Koch and Slusarenko, 1990).

The susceptibility of the double mutant *pen2-1 pad3-1*, demonstrates that both camalexin and product of IGSL hydrolysis are important for
P. brassicae disease resistance in Brassica (Schlaeppi et al., 2010). Transcript analysis from Schlaeppi et al. (2008) showed that genes encoding enzymes involved in tryptophan, camalexin and IGS biosynthesis coordinate induced response to P. brassicae. On the other hand, the double mutant cyt79B2 cyt79B3 is highly susceptible to P. brassicae as it is unable to convert tryptophan into indole-3-acetaldoxime (IAOx), the precursor of camalexin and IGSs (Zhao et al. 2002; Wang et al. 2013a,b). These authors also opined that the susceptibility of the double mutant cyt79B2cyt79B3 to Phytophthora capsici could be attributed to the deficiency of IGSs and camalexin, thus IGSs confer resistance against P. brassicae. P. brassicae disease resistance may be established by the sequential activity of phytoanticipin IGSL and phytoalexin camalexin (Fig. – No figure yet.).

Pseudomonas syringae pv. Maculicola (McCullock, Young, Dye and Wilke: Pseudomonas syringae pv. maculicola (PSM) causes bacterial leaf spot in cauliflower, broccoli, brussels sprouts and other Brassicas (Fig. 8; Young, 2010; Sotelo et al., 2014). GSLs interactions trigger plant immune response against PSM. Brader et al. (2006) showed that Arabidopsis, which expresses the sorghum gene CYP79A1, endogenous CYP79A2 gene or benzyl GSL respectively, showed increased resistance towards PSM. Using a series of physiological and genetic tools, Groen et al. (2015) showed that PSM enhances the feeding of infected plant parts by the herbivore, Scaptomyza flava partly by suppressing anti-herbivore defense mechanisms triggered by ROS burst. Stahl et al. (2016) showed that indol-3-ylmethylamine (I3A) was one of the three major accumulating compounds and is also produced via IGSL breakdown by pathways dependent and independent of the myrosinase PEN2. Their report also showed that salicylic acid defense hormone produce I3A at the expense of its precursor indol-3-ylmethylglucosinolate (I3M), and the SAR regulator piperolic acid primes plants for enhanced PSM-induced activation of distinct branches of indolic metabolism. The report of Jiang et al. (2016) suggest the biosynthesis of GSL from tryptophan and aliphatic GSL biosynthesis side chain may be triggered following PSM infection. More so, differential co-expression is a common phenomenon during plant attack (Hsu et al., 2015 Gaiteri et al., 2014). These findings put together suggest the existence of an effective pathway by which GSLs and their metabolites may be manipulated for formidable defense response to bacterial pathogens such as PSM (Fig. 8).

Some future perspectives: The practical application of GSLs induced pathogen resistance response in Brassica will culminate in enhanced crop yield and preserve biodiversity. In plant breeding, the above techniques may be applied to propagate resistant varieties by exploiting individual and plant part based GSL concentration. Although, the signaling pathways involved in regulating GSL biosynthesis are unknown in some Brassica crops, which merit further investigations to advance our understanding in this regard. According to Xu et al. (2016), more omics studies will elucidate how antimicrobial activities of GSL biosynthesis can be linked with the apoptotic stimulation of programmed cell death in major fungal pathogens. No doubt, this would provide insights on the development of a new range of potent fungicides and fungal-based drugs (Shlezinger et al., 2011). The GSL biosynthesis product, 4-methylsulfinylbutyl isothiocyanate (sulforaphane) does not only activate defense in naive tissues but provide protection against virulent isolates (Andersson et al., 2015). This suggests that GSL byproducts products are involved in cell-to-cell signaling and are prime bacteriostatic molecules albeit their applications warrant more in-depth studies. Furthermore, the findings of Zhang et al. (2016) suggests that directly searching for resistance loci may not be the best approach at improving resistance in Brassica to necrotrophic pathogen, rather it may be necessary to have a broader perspective of the effects of resistance loci.

Conclusion

In future, the measuring of plant response to pathogen using transcriptional approach is likely to be more available, which will permit the analysis of large scale sizable expression data with a view to achieving more robust results. In the meantime, the flourish of transcriptional data allows us to answer specific biological questions in the context of differential co-expression. For instance, the comparative analysis of differential co-expression during plant immune responses to different pathogens is an important topic. Differential co-expression analysis can boost the study of plant immune response-related transcriptomics and provide new insights into deciphering the molecular mechanisms of plant-pathogen interactions (Jiang et al., 2016). More qualitative studies has the potential to give further insights into the synergistic effects of ROS and GSL metabolites in view of improving plant immunity (Groen et al., 2015; Groen et al., 2013; Gloss et al., 2014).

In conclusion, studies reported in this review suggest diverse complex perspectives of how aliphatic and IGSs interact to confer immunity to plants using the model plant, Arabidopsis thaliana as well as in some Brassica crops. The trend thus far clearly shows that our view of GSLs have tremendously improved over the years. Despite advancements in recent years, much is yet to be known and
understood as to how GSLs and their hydrolysis products interact with other non-toxic plant components and plant parts. It is anticipated that more molecular (especially "-omics") studies will pave way for more effective strategies aimed at developing more resistant, tolerant and high yielding plants. Further applications of these studies in enhancing food security are also needed as the global population is projected to soar in the next twenty years and global issues such as climate change are now receiving a more synergistic and strategic response from several governments. It is anticipated that these considerations will give GSL research a more holistic application in the biotechnology, food, pharmaceutical and biomedical industries.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China (NSFC) 31370334, and Science Foundation of Heilongjiang Province JJ2017ZR0164.

REFERENCES

agents. Clinical Microbiology Reviews, 12: 564–582.

utive oxygen species production in Arabidopsis thaliana. Bioscience, Biotechnology and Biochemistry, 77(5):977-983. DOI: https://doi.org/10.1271/bbb.120928

