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Abstract 
The interaction between cadmium- a toxic metal and zinc- an essential micronutrient was 
investigated in influencing the activity of various antioxidant enzymes and related metabo-
lites in soybean [Glycine max (L.) Merr.]. Higher levels of cadmium (Cd) stimulate the 
activity of potential enzymes like ascorbate peroxidase (APX), superoxide dismutase 
(SOD) accompanied by the buildup of non-enzymatic metabolites, hydrogen peroxide 
(H2O2), malondialdehyde (MDA) and proline due to rise in oxidative stress of plants.  Also, 
the reduced activity of catalase (CAT), glutathione reductase (GR) and ascorbic acid 
(AsA) content was based upon Cd treatment levels. Application of zinc (Zn) combination 
enhances the activity of enzymes like APX, GR, CAT and SOD in Cd treatments, also 
confirmed with the depleted levels of H2O2. Zn alone treatment had no significant effect 
on the activity of such enzymes indicating the toxicity owing to Cd treatments only. The 
accumulation behavior of other non-enzymatic metabolites like MDA, proline and ascorbic 
acid also get reversed with metal combination treatment. Moreover, the efficacy of Zn 
was more when applied in higher concentrations with low Cd. Thus, Zn plays a key role in 
plants to counter heavy metal stress by elevating antioxidative defense with higher activi-
ty of enzymes and reduced levels of non-enzymatic metabolites, and efficacy of Zn in 
combination is dose dependent.  
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INTRODUCTION 

Cadmium (Cd) is a toxic heavy metal that occurs 
naturally in soil with no known biological function 
in the plants and animals. Various anthropogenic 
activities are mainly responsible for a range of 
issues such as over exploitation of resources, sa-
linity, acidification and contamination by metal 
pollutants. Such activities have dangerously add-
ed to the chances of entry of heavy metals into our 
ecological food chains and risking human health 
(Lantzy and Mackenzie, 1979; Galloway et al., 
1982; Angelone and Bini, 1992). Many such metal 
elements with no metabolic function greatly re-
duce the crop productivity in their supra-optimal 
range (Rascio and Navari-Izzo, 2011; Pierart et 
al., 2015). And more seriously, such heavy metals 
exhibit very high stability rate in soil due to lack of 
biodegradability (Smolders et al., 1999; Singh and 
Prasad, 2015). Various negative effects of such 
metals have been reported affecting the develop-
ment of roots and shoots (Lux et al., 2011; 
Gallego et al., 2012). Cadmium accumulation in-
terferes with the enzymes of Calvin cycle, carbo-

hydrate metabolism, photosynthesis (Shi et al., 
2010) and alters the antioxidant metabolism (Khan 
et al., 2009). Cd triggers the oxidation of NADPH 
resulting in extracellular production of toxic super-
oxide (O2

.-) and accumulation of H2O2 (Kawano et 
al., 2001; Brahim et al., 2010). Destabilization of 
cell membrane enhances due to generation of 
ROS causing lipid peroxidation (Smeets et al., 
2005). Such oxidation effects can be controlled 
with the stimulation of antioxidant enzymes and 
non-enzymatic metabolites via ascorbate-
glutathione cycle (Foyer and Noctor, 2003). De-
pending upon the severity of metal toxicity, re-
sponse of antioxidant machinery varies among 
species and different tissues (Hassan et al., 
2005a). The defense response is essentially relat-
ed to metal ion acquisition and ion homeostasis 
for the survival of plants, pathogens and herbi-
vores (Morkunas et al., 2018). 
Zn, an essential micronutrient actively participates 
in various biological functions such as cell mem-
brane integrity, chlorophyll biosynthesis, photo-
synthesis, enzyme activation, carbohydrate me-
tabolism, fertility, protein synthesis, gene expres-
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sion and regulation (Nishizawa, 2005; Broadley et 
al., 2007; Chasapis et al., 2012; Marschner and 
Marschner, 2012).  Structurally, it is an integral 
component of more than 300 enzymes including 
RNA polymerase, alcohol dehydrogenase, alka-
line phosphatase and carbonic anhydrase 
(Guerinot and Eide, 1999; Auld, 2001). Zn pro-
tects the vital components of cell such as chloro-
phyll, membrane lipids and -SH group of proteins 
against ROS (Cakmak, 2000). Zn fertilization is 
thus, necessary to protect the plant cell from oxi-
dative damage being a cofactor of antioxidative 
enzyme SOD (Alscher et al., 2002; Alloway, 
2004). Processing and the subsequent release of 
zinc to environment is normally accompanied by 
cadmium as pollutant (Ullrich et al., 1999) be-
cause, generally zinc ores (ZnS) contain upto 5% 
or even more of cadmium (Adriano, 1986). Due to 
their chemical similarity both Cd and Zn are taken 
up by plants as divalent cation and compete at the 
plasma membrane (Hart et al., 2002). In yeast 
cells, the intake of Cd occurs through Zn carrier 
proteins at the plasma membrane (Gomes et al., 
2002). Looking at the present information, it was 
thought worthwhile to study the role of Zn in ame-
liorating heavy metal Cd induced stress by as-
sessing activity of both enzymatic and non-
enzymatic antioxidants in soybean crop. 

MATERIALS AND METHODS 

Soybean (Glycine max (L.) Merr. Palam soya) 
seeds were procured from Himachal Pradesh Ag-
riculture University, Palampur, Himachal Pradesh, 
India. Healthy seeds were surface sterilized with 
0.01% HgCl2 followed by thorough washing with 
distilled water and overnight soaking in thick slurry 
of rhizobium culture mixed with activated charcoal 
and acacia gum. The plants were raised in earth-
enware pots filled with approximately 5kg of 
washed river sand and were lined with perforated 
polythene bags. Only three healthy plants were 
selected after thinning in each pot. The plants 
were grown and maintained in natural daylight 
conditions in dome shaped out-house. Cd (Cd0.3 
and Cd0.6 mM as CdSO4.7H2O) and Zn (Zn0.3 and 
Zn0.8 mM as ZnSO4.7H2O) treatments were given 
8 DAS (days after sowing) alone and in combina-
tion along with the nutrient medium (Minchin and 
Pate, 1975). Plants irrigated with distilled water 
served as control. The observations were record-
ed at the reproductive stage using fresh leaves.  
Standardized procedure was followed for the 
measurements of MDA content (Heath and Pack-
er, 1968) using extinction coefficient 155 mM-1cm-

1, H2O2 (Velikova et al., 2000), Ascorbic acid 
(Mukherji and Chaudhari, 1983) and Proline 
(Bates et al., 1973). The activity of enzymes was 
assayed by method of Nakano and Asada, 1981 
(APX activity) using molar extinction coefficient 
2.8 mM-1cm-1, Teranishi et al., 1974 (CAT) using 

molar extinction coefficient 36 mM-1cm-1, Mavis 
and Stellwagen, 1968 (GR), Dhindsa et al., 1981 
(SOD) and one unit of SOD activity was defined 
as the amount of enzyme causing 50% inhibition 
of photochemical reduction of NBT.  
Statistical analysis: All the values were in tripli-
cates and represented as mean ± SE (standard 
error). Data was statistically analysed using one-
way ANOVA in SPSS-16 by taking the probability 
level of 5%. Least significant difference (LSD) post 
hoc test was used to compare the multiple com-
parisons of mean. 

RESULTS  

Malondialdehyde (MDA) content: MDA content 
increased to 26.81% and 41.16% in Cd0.3 and 
Cd0.6 mM treatments to that of control. Zn alone 
and in all combination treatments with Cd reduced 
the enhanced MDA content.  In Zn0.3 and Zn0.8 
mM alone treatment, MDA content was lowered 
by 7.25% and 23.50% in comparison to control, 
respectively. In combined treatments Zn supple-
mentation decreased MDA content to 0.78% and 
17.82% in Cd0.3+Zn0.3 mM and Cd0.3+Zn0.8 mM; to 
9.30% in Cd0.6+Zn0.8 mM in comparison to control. 
Similarly in Cd0.6+Zn0.3 mM treatment, Zn was able 
to reduce the MDA content to some extent in 
which MDA content was 15.14% more than that of 
control. Thus, Zn supplementation was effective in 
lowering MDA content in Cd treated plants (Fig. 
1a).  
Proline content: The content of proline, known 
osmoprotectant was enhanced upto 20.33% and 
35.16% in Cd0.3 and Cd0.6 mM treatments in com-
parison to control. Zn combination was able to 
check proline accumulations with a rise of only 
13.55% and 1.69% in Cd0.3+Zn0.3 mM and 
Cd0.3+Zn0.8 mM; 27.54% and 6.77% in Cd0.6+Zn0.3 

mM and Cd0.6+Zn0.8 mM treatments, respectively. 
In Zn0.3 and Zn0.8 mM alone treatments, a drop in 
proline content upto 2.96% and 10.59% was ob-
served. It was noticed that higher concentration of 
Zn (0.8 mM) in combination was more effective in 
restoring proline levels (Fig. 1b). 
Hydrogen peroxide (H2O2): The content of hy-
drogen peroxide, another parameter related to 
oxidative stress increased by 25.02% and 38.56% 
in Cd0.3 and Cd0.6 mM in comparison to control. Zn 
supplementation in combination treatments 
checked such accumulation with a rise of only 
13.81%, 4.57% in Cd0.3+Zn0.3 mM and Cd0.3+Zn0.8 

mM; and 31.66%, 19.19% in Cd0.6+Zn0.3 mM and 
Cd0.6+Zn0.8 mM treatments, respectively. In Zn0.3 
and Zn0.8 mM alone treatments, reduction in H2O2 
level was noticed upto 3.41% and 18.74%, re-
spectively. Efficacy of Zn was more when used in 
higher concentrations (Fig. 1c). 
Ascorbic acid (AsA): There was a drop of 
43.57% and 52.79% in level of Ascorbic acid with 
Cd0.3 and Cd0.6 mM treatments in comparison to 
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control. Even, Zn0.3 and Zn0.8 mM alone treat-
ments had decreased AsA contents upto 5.41 and 
9.71%. Zn combination checked such losses to 
31.07%, 22.96% in Cd0.3+Zn0.3 mM, Cd0.3+Zn0.8 

mM; and to 48.12%, 40.29% in Cd0.6+Zn0.3 mM 
and Cd0.6+Zn0.8 mM treatments, respectively. Effi-
cacy of Zn treatment was more with lower concen-
trations of heavy metal Cd (Fig. 1d). 

Kapur, D. and Singh, K.J. / J. Appl. & Nat. Sci. 11(2): 338- 345 (2019) 

Fig. 1. Effect of Cd and Zn alone and in combination on (a) MDA content (LSD0.05=2.18), (b) Proline con-
tent (LSD0.05=10.71), (c) Hydrogen peroxide content (LSD0.05=1.25), (d) Ascorbic acid content 
(LSD0.05=1.68) in soybean plants. Each value represents mean ± SE of three replicates. 

Fig. 2. Effect of Cd and Zn alone and in combination on (a) Sodium dismutase activity (LSD0.05=0.58), (b) 
Ascorbate peroxidase activity (LSD0.05=5.57), (c) Glutathione reductase activity (LSD0.05=1.27), (d) Cata-
lase activity (LSD0.05=3.74) in soybean plants. Each value represents mean ± SE of three replicates. 
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Superoxide dismutase (SOD) activity: The ac-
tivity of enzyme SOD was enhanced by 10.10% 
and 10.61% in Zn0.3 and Zn0.8 mM, alone treat-
ments, respectively in comparison to control. Cd 
treatment had also raised its activity upto 43.66% 
(Cd0.3 mM) and 19.88% (Cd0.6 mM) of the control 
values. In combination treatment, the activity was 
further raised upto 64.05% and 69.05% in 
Cd0.3+Zn0.3 mM and Cd0.3+Zn0.8 mM; and upto 
28.03% and 42.8% in Cd0.6+Zn0.3 and Cd0.6+Zn0.8 

mM, respectively (Fig. 2a). 
Ascorbate peroxidase (APX) activity: APX en-
zyme activity enhanced upto 43.9% (Cd0.3 mM) 
and 31.05% in (Cd0.6 mM) in comparison to con-
trol. Even, Zn alone treatment resulted in an in-
crease of 9.89 (Zn0.3 mM) and 19.17% (Zn0.8 mM). 
Zn in combination treatments with Cd further 
raised its activity upto 59.97% and 74.18% in 
Cd0.3+Zn0.3 mM and Cd0.3+Zn0.8 mM; and upto 
56.13 and 70.16% in Cd0.6+Zn0.3 mM and 
Cd0.6+Zn0.8 mM treatments, respectively (Fig. 2b). 
Glutathione reductase (GR) activity: Activity of 
GR was reduced with an increase in Cd treat-
ment. The decrease was upto 15.46% (Cd0.3 mM) 
and 37.45% (Cd0.6 mM) to that of control. Zn sup-
plementation had a positive effect in raising en-
zyme activity levels. Zn supplementation in combi-
nation treatments raised activity levels upto 
25.09% and 43.26% in Cd0.3+Zn0.3 mM and 
Cd0.3+Zn0.8 mM; and 14.94% and 35.55% in 
Cd0.6+Zn0.3 mM and Cd0.6+Zn0.8 mM treatments, 
respectively (Fig. 2c). 
Catalase (CAT) activity: Cadmium treatment 
caused sharp drop in activity of enzyme CAT was 
upto 17.67% (Cd0.3 mM) and 41.24% (Cd0.6 mM) in 
comparison to control. Zn alone application was 
promotory in raising activity up by 4.97% (Zn0.3 

mM) and 9.17% (Zn0.8 mM). Zn in combination 
treatment checked the drop in enzyme activity to 
1.46% in Cd0.3+Zn0.3 mM and 2.89% in Cd0.6+Zn0.3 

mM. In Cd0.3+Zn0.8 mM and Cd0.6+Zn0.8 mM the 
activity was enhanced upto 33.82% and 22.99% 
in comparison to control (Fig. 2d). 

DISCUSSION 

Our findings clearly revealed that soybean plants 
countered heavy metal Cd induced oxidative 
stress through enzymatic and non-enzymatic ac-
tivity of metabolites. Higher levels of Cd stimulates 
the activity of potential enzymes like APX, SOD 
accompanied by accumulated contents of non-
enzymatic metabolites, H2O2, MDA and proline as 
a marker of rise in oxidative stress of plants. Such 
multiple responses were due to production of the 
reactive oxygen species (ROS), and were indica-
tive of plant being under oxidative stress (Ahmed 
et al., 2008, 2010). Cd induced oxidative stress 
negatively affect the defense system of wheat with 
an overproduction of ROS (Qayyum et al., 2017; 
Hussain et al., 2018; Rehman et al., 2018). Pro-

line accumulation is considered as one of the 
most sensitive response to abiotic stress including 
heavy metal Cd (Ashraf and Harris, 2004; Chen et 
al., 2004; Mishra and Dubey, 2006; Kalai et al., 
2014). Lipid peroxidation occurs as malondialde-
hyde content (MDA) enhances with Cd treatment 
(Singh et al., 2006, Tkalec et al., 2014; Kapoor et 
al., 2016).  Also, the reduced activity of CAT, GR 
and ascorbic acid content was based upon level of 
Cd treatment. SOD can convert O2

.- to H2O2 while 
CAT decomposes H2O2 to H2O and oxygen mole-
cules, and similarly other antioxidant enzymes 
also play role in ROS scavenging in plants (Mittler, 
2002). Higher concentration of O2

·- inactivates the 
enzyme CAT (Cakmak, 2000) while GR is highly 
sensitive to inhibition by heavy metals ions (Smith 
et al., 1989). Various genes were differentially 
regulated in response to abiotic stress to induce a 
similar kind of defense response resulting in the 
enhanced levels of several metabolites and pro-
teins (Ozturk et al., 2002). 
Zn plays a vital role in production and activity of 
enzymes to detoxify the reactive oxygen species 
(Tavallali et al., 2010; Weisany et al., 2012). In the 
present studies enhanced activity of such en-
zymes like APX, GR, CAT and SOD was noticed 
in Cd-Zn combination. Higher activity of SOD, 
CAT, APX and GR in Cd and Zn combinations 
was due to Zn against heavy metal induced oxida-
tive stress in Ceratophyllum demersum (Aravind 
and Prasad, 2003, 2005). 
Similar findings have also reported that the re-
duced activity of SOD, CAT, APX and GR during 
oxidative stress was up-regulated by lower con-
centrations of Zn (Cherif et al., 2011). Foliar spray 
of ZnO nanoparticles reduce electrolyte leakage, 
MDA and H2O2 content; raising the content of 
chlorophyll and activities of SOD, CAT, APX and 
POD in maize crop grown in Cd contaminated soil 
(Rizwan et al., 2019). Zn supplementation inhibit-
ed NADPH oxidation and formation of O2

.− radical 
to prevent the formation of ROS in Cd treated 
plants (Aravind et al., 2009, Cherif et al., 2011). 
Zn supplemented Cd plants promotes the APX 
activity to control H2O2 levels thus, preventing cell 
damage more efficiently (Asada, 1992; Shigeoka 
et al., 2002; Dikkaya and Ergün, 2014). As report-
ed earlier, our results have also indicated the de-
pletion in H2O2 levels with Zn combination treat-
ment (Cho and Seo, 2005; Mobin and Khan, 2006; 
Markovaska et al., 2009; Gill et al., 2012). As, Zn 
alone treatment in plants did not show any signifi-
cant change in the activities of SOD, CAT, APX 
and GR indicating toxicity effects due to Cd treat-
ments only (Arvind and Prasad, 2003; Cherif et 
al., 2011). Other non-enzymatic metabolites like 
MDA, proline and ascorbic acid also reversed their 
accumulation behavior in Zn supplemented Zn-Cd 
combination treatment compared to Cd only treat-
ments. Addition of Zn to Cd stressed plants helps 
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in lowering MDA content and proline accumula-
tions (Khalid and Hendawy, 2005; Subba et al., 
2014; Qiao et al. 2015). Zn supplementation low-
ers the abiotic stress including that of heavy metal 
Cd by raising ascorbic acid levels (Ozturk et al., 
2003, Ma et al., 2017; Seminario et al., 2017). Zn 
stabilizes and protects the bio-membrane proteins 
and phospholipids from the oxidative damage 
(Powell, 2000). An antagonistic interaction be-
tween Cd and Zn lowers the heavy metal Cd in-
duced oxidative stress and its accumulation in 
plants (Wu and Zhang, 2002; Hassan et al., 
2005b; Akay and Koleli, 2007; Sarwar et al., 2010; 
Balen et al., 2011; Trakal et al., 2012). Moreover, 
it was also noticed that efficacy of the Zn in com-
bination treatment was more when Cd was in low-
er concentrations.  

Conclusion 

Heavy metal cadmium exposure induces an oxi-
dative stress in soybean plants. Zn treatment ef-
fectively protects the plant from heavy metal 
stress by lowering the accumulation of stress re-
lated metabolites, inhibiting membrane lipid perox-
idation and enhancing activity of enzymes that 
play vital role in ROS scavenging. Efficacy of Zn 
supplementation in combination treatment is dose 
dependent and more with lower Cd concentra-
tions. 
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