

Effect of harmones on callus induction in Maize (Zea mays L.)

N. Malini*, C. R. Anandakumar, R. Gnanam and S. Hari Ramakrishnan

Plant Breeding and Genetics, Agricultural Research Station, Tamil Nadu Agricultural University, Kovilpatti - 624 501 (Tamil Nadu), INDIA

*Corresponding author. E-mail: malinipbg200201@gmail.com

Received: August 1, 2017; Revised received: September 22, 2017; Accepted: January 25, 2018

Abstract: Callus induction from explants is a critical process in regeneration, micropropagation and transformation of maize (*Zea mays L.*) plants. Formation of callus from plant tissues on culture is affected by several factors. This study revealed to establish the effect of genotype, source of explants and auxin concentration on callus induction from five genotypes UMI 757 (G1), UMI 615 (G₂), UMI 112 (G₃), UMI 285 (G₄) and CO 1 (G₅) and one hybrid CO H (M) 5 (G₆). Callus induction of the six maize varieties was investigated using immature embryos (E₁), leaf bits (E₂), root tips (E₃), hypocotyls (E₄) and seeds (E₅) as explants with different concentrations of hormones. In this study, immature embryo was taken from 10 to 12 days after pollination (DAP) to get maximum response. The highest percentage of callus induction was observed (99.10) in immature embryo. Among the genotypes tested, CO H (M) 5 recorded the highest callus induction percentage on (2D2K2) medium composition.

Keywords: Callus induction, Hormones, Immature embryo, Maize, Seed.

INTRODUCTION

Maize (Zea mays L.) with 2n = 20, is the third most widely distributed crop of the world after Rice and Wheat (Devi, et al., 2016) being grown in diverse seasons and ecologies with highest production and productivity among food cereals. It is an important source of carbohydrate, protein, iron, vitamin B and minerals (P and K). In Sudan, maize is produced using traditional or mechanical methods and is mainly used for food, forage and is a potential source of foreign exchange through export (Omer et al., 2008). Maize production is affected by biotic and a biotic factors. There constraints can be overcome through development of varieties that can tolerate (or) resist the stress. This can be done through complementing conventional breeding and genetic transformation. Success in plant transformation is dependent on the ability to regenerate a whole plant from transformed tissue (Ahmadabadi et al., 2007) plant regeneration through tissue culture of maize was first reported by Green and Philips (1975). Agrobacterium mediated transformation of maize needs efficient regeneration systems. In this study, six maize genotypes were evaluated for their response to tissue culture at different hormone concentrations using five different explants sources.

MATERIALS AND METHODS

Plant Materials: Seeds of maize (Zea mays L.) genotypes, UMI 757, UMI 615, UMI 112, UMI 285 and CO 1 and one hybrid CO H (M) 5 were used in this study. These seeds were surface sterilized with 70% ethanol for 2 minutes followed by 0.1% HgCl₂ for 5 minutes and then washed with three to four times with sterilized distilled H₂O under aseptic conditions. The sterile seeds were used as source of explants for callus induction. To establish plants to obtain leaf bits, root tip, Hypocotyl explants, sterile seeds were planted in sterile Jam jars containing MS basal salts (Murashige and Skoog, 1962). The Jar were kept in a growth room and maintained at a temperature of 28°C and sterile seeds. Immature embryo also used as explants. Immature embryos of 1.0- 2.0 mm size were aseptically excised from surface sterilised kernels. The Immature embryos were placed on the semisolid Ms medium with the rounded scutellar side exposed and the plant Plumule radical axis side in contact with the medium. Preparation of callus induction: Callus induction

Preparation of callus induction: Callus induction were performed on MS medium comprising of MS salts and vitamins supplemented with Macronutrients, Micronutrients, Micronutrient and Vitamins, 3% (w/v) sucrose. The pH of the medium was adjusted to 5.6 to 5.8 with IM NaoH or 0.1 M HCl and 0.8% (w/v) agar added before autoclaving to sterilize. The sterilized medium was allowed to cool before adding 2.4-D. The medium was dispensed in sterile Petridishes in volumes of 30 ml and allowed to solidity. Explants were cultured on the medium and plates sealed with parafilm. Sixteen levels of treatment combinations of 2,4-D and kinetin were tested to establish their efficacy in

ISSN : 0974-9411 (Print), 2231-5209 (Online) | journals.ansfoundation.org

This work is licensed under Attribution-Non Commercial 4.0 International (CC BY-NC 4.0). © 2018: Author (s). Publishing rights @ ANSF.

establishing callus from five different explants. The mature and healthy seeds of maize were taken for callus Induction. The seeds were sterilized with 70% ethanol for 2 min followed by 0.1 percent Hg Cl 2 for 5 min. Sterilized seeds were inoculated under aseptic conditions in the callus induction medium. The culture tubes were incubated in darkness at $25 \pm 2^{\circ}$ C for callus induction. The Immature embryo has proven to be the best source for the establishment of embryogenic callus and plant regeneration in maize. The Immature Embryo from maize cob were collected 10-16 days after pollination. The kernels were surface sterilized under Laminar Air Flow Chamber, the Immature embryos were aseptically excised from the kernels of the ear by cutting off kernels using scalpel blade and removing the endosperm. The immature embryo was placed on semisolid medium and was incubated for callus induction. About one cm explants were cut from seven day old seedlings collected from aseptically germinated seedlings. Inoculation of leaf bits, hypocotyls and roots were incubated on to the different callus Induction media, such as T_1 MS + 0.5 mg l⁻¹ 2,4 - D + $0.3 \text{ mg } l^{-1} \text{ kin } +1 \text{ g } l^{-1} \text{ CH}, \text{ T}_2 \text{ MS} + 0.5 \text{ mg } l^{-1} \text{ 2,4 - D}$ + 0.2 mg l^{-1} kin +1g l^{-1} CH, T₃ MS + 0.5 mg l^{-1} 2,4 - $D + 0.1 \text{ mg } l^{-1} \text{ kin} + 1 \text{ g } l^{-1} \text{ CH}, T_4 \text{ MS} + 1.0 \text{ mg } l^{-1} 2.4$ $-D + 0.3 \text{ mg } l^{-1} \text{ kin + 1 g } l^{-1} \text{ CH}, \text{ T}_5 \text{ MS} + 1.0 \text{ mg } l^{-1}$ $2,4 - D + 0.2 \text{ mg } l^{-1} \text{ kin} + 1 \text{ g } l^{-1} \text{ CH}, T_6 \text{ MS} + 1.0$ mg l^{-1} 2,4 - D + 0.1 mg l^{-1} kin + 1 g l^{-1} CH, T₇ MS + 1.5 mg l^{-1} 2,4 - D + 0.3 mg l^{-1} kin + 1 g l^{-1} CH, T₈ MS + 1.5 mg l^{-1} 2,4 - D + 0.2 mg l^{-1} kin + 1 g l^{-1} CH, T_9 MS + 1.5 mg l⁻¹2,4 - D + 0.1 mg l⁻¹ kin + 1 g l⁻¹ CH, T_{10} MS + 2.0 mg l⁻¹ 2,4- D + 0.3 mg l⁻¹ kin + 1 g l^{-1} CH, T₁₁ MS + 2.0 mg l^{-1} 2,4 - D + 0.2 mg l^{-1} kin + $1g l^{-1}$ CH, T₁₂ MS + 2.0 mg l⁻¹ 2,4 - D + 0.1 mg l⁻¹ kin + 1 g l^{-1} CH, T₁₃ MS + 0.5 mg l^{-1} IAA + 0.3 mg l^{-1} kin $+ 1 \text{ g } l^{-1} \text{ CH}, \text{ T}_{14} \text{ MS} + 1.0 \text{ mg } l^{-1} \text{ IAA} + 0.3 \text{ mg } l^{-1}$ kin + 1 g l^{-1} CH, T₁₅ MS + 1.5 mg l^{-1} IAA + 0.3 mg l^{-1} kin + 1 g l⁻¹ CH, T_{16} MS + 2.0 mg l⁻¹ IAA + 0.3 mg l⁻¹ $1 \text{ kin} + 1 \text{ g } 1^{-1} \text{ CH}.$

Statistical analysis: The observations recorded were statistically analyzed by subjecting the data to Factorial Completely Randomized Design, designed by (Gomez and Gomez, 1984). Level of significance was determined by using standard analysis of variance. Differences among mean values were assessed by LSD. The data obtained with per cent values were subjected to arc sine transformation.

RESULTS AND DISCUSSION

Effect of hormones on callus induction: Auxins were used to induce cell division and root differentiation in tissue culture medium. Among them, 2,4-D is widely used for callus induction. In the present study, MS medium containing 1.0 g l^{-1} casein hydrolysate was supplemented with various levels of 2,4-D *viz.*, 0.5, 1.0, 1.5 and 2.0 mg l^{-1} and also IAA at 0.5, 1.0, 1.5 and 2.0 mg l^{-1} combination with cytokinin (kinetin). A

differential influence of various concentrations of 2,4-D, IAA in callus behaviour was observed. Addition of adequate levels of synthetic auxins such as 2,4-D in to a basal medium resulted in prolific callus formation in maize tissue culture. Callus could not be induced in N₆ medium in the absence of 2,4-D (Binott et al., 2008). The influence of different concentration of 2,4-D, IAA alone or in combination with 0.3 mg l⁻¹ kinetin were recorded maximum, callus induction percentage, number of days for callus induction and fresh weight of callus on 28 th day. This is in accordance with the findings of Ansari (1997) and Shohael et al. (2003) in maize. The complex action of kinetin was observed by Inoue and Maeda (1982) in rice. They explained the effect of kinetin on callus induction could be promotive or inhibitory depending upon the kind and concentration of auxin in the medium.

In the present study, MS medium containing 1.0 g l⁻¹ Casein Hydrolysate has been added with different levels of kinetin viz., 0.1, 0.2 and 0.3 mg l⁻¹ in combination with auxin 2,4-D and IAA. The result showed that among different concentrations tried, 0.3 mg l⁻¹kinetin recorded higher values (60.44%) of callus induction per cent when compared to other levels. Since kinetin is susceptible to interactions with 2,4-D, there was variation in response. But when 0.3 mg l⁻¹ of kinetin was combined with 2,4-D 1.5 mg l^{-1} (T₇), IAA 1.5 mg 1^{-1} (T₁₅) recorded the higher values when compared to either 2,4-D or IAA alone. Similar results reported by Shohael et al. (2003), embryogenic calli formation was high when N₆ medium supplemented with L-Proline 2.3 g l⁻¹, casein hydrolysate 200 mg l⁻¹, 2,4-D 1.0 mg l⁻¹ and Kinetin 0.1 mg l^{-1} . Abebe *et al.* (2008) also reported, when 3 mg l⁻¹ of 2,4-D was combined with 0.5 mg l⁻¹ kinetin recorded highest callus induction per cent. Among the genotypes the maximum percentage of callus induction was recorded by CO H (M) 5 (59.61%) followed by UMI 285 (56.96%) and UMI 757 (55.25%). The maximum percentage of callus induction response was recorded by seed followed by immature embryo the explants leaf bits recorded the poorest response for callus induction. Among the 16 treatments studied, T7 showed the maximum of 60.44% followed by T15 (56.79%) and T16 (56.33%) (Table 1).

Among the G x E interactions, the maximum callus induction percentage was observed in G_4E_1 (99.50%) followed by G_5E_1 (99.20%) and G_1E_1 (98.46%) with the treatment of T_{15} (MS + 1.5 mg / 1 IAA + 0.3 mg /l K + 1 g/l (H). The treatment T_{12} showed poor performance in all the explants and in all the genotypes. Among the treatment combination $G_4 E_1 T_{15}$ recorded the maximum value of (99.50%) (9.20%) and (98.46%) for the genotypes COH (M) 5, UMI 285 and UMI 757 respectively. The genotypes UMI 615 and CO 1 had a slightly lower value compared to the other genotypes.

_																	••				SC			,						ĺ									
Mean	87.31	87.43	58.12	30.87	10.15	55.25	82.84	82.24	51.77	22.85	14.24	50.79	86.68	85.32	55.82	31.68	13.43	54.48	92.73	90.26	63.87	34.88	16.33	59.61	90.48	88.36	61.46	30.34	14.22	56.96	77.16	76.37	48.75	21.25	11.26	46.58			
T_{16}	95.38	93.59	64.18	32.34	13.97	59.89	81.47	75.14	57.34	28.21	16.17	51.67	91.27	81.48	54.30	32.52	12.29	54.37	96.30	97.32	67.58	35.52	16.85	62.71	96.28	95.39	65.74	32.36	14.87	60.93	79.48	73.39	54.15	25.10	10.18	48.46	56.33		
T_{15}	98.46	95.38	65.59	35.31	14.38	61.82	81.37	78.70	48.15	18.60	17.32	48.83	92.58	83.35	48.27	35.42	13.56	54.64	99.50	98.13	70.36	37.78	18.45	64.84	99.20	94.36	68.52	33.50	14.87	62.29	80.36	76.58	50.32	22.12	12.15	48.31	56.79		
T_{14}	92.57	95.38	60.17	32.18	10.82	58.22	78.32	75.14	54.48	21.74	18.20	49.58	90.74	86.42	53.35	38.32	11.56	56.08	94.20	90.72	66.96	30.18	15.83	59.58	95.36	94.18	65.26	31.63	12.87	59.86	78.13	72.56	53.14	20.16	14.38	47.67	55.17		
T_{13}	86.46	87.52	64.70	30.35	10.18	55.84	83.34	82.76	50.94	20.57	14.90	50.50	85.14	86.65	59.90	36.54	17.38	57.12	93.52	91.75	67.60	26.15	16.84	59.17	81.97	88.85	65.74	26.38	13.17	55.22	80.13	79.56	49.18	19.56	12.18	48.12	54.33		
T_{12}	78.15	74.08	49.11	36.27	10.17	49.56	77.12	76.14	45.86	13.23	10.02	44.47	80.37	79.63	50.84	20.39	10.91	48.43	87.04	82.41	57.42	28.13	11.57	53.31	83.32	82.39	53.71	22.35	11.10	50.57	66.57	58.48	35.17	16.18	10.52	37.38	47.29		
T_{11}	57.09	76.92	49.08	35.48	11.25	45.96	85.37	78.69	48.12	19.59	14.28	49.21	82.21	83.50	53.6	22.28	11.15	50.57	88.34	87.03	59.57	27.61	13.32	55.17	85.42	81.47	59.56	27.51	11.23	53.04	80.14	78.43	40.47	17.58	10.52	44.83	49.80		
T_{10}	90.64	84.27	59.25	25.18	10.82	54.03	89.54	87.05	54.63	24.47	11.56	53.45	92.60	87.52	50.93	21.84	16.28	53.83	90.58	80.18	50.92	38.14	12.45	54.45	87.62	86.82	59.27	25.56	15.48	54.95	82.12	76.54	42.48	18.54	11.48	46.23	52.82		
T_9	91.56	85.45	51.86	39.55	13.57	56.40	80.54	85.15	47.76	30.47	12.56	51.30	90.08	89.73	55.47	28.38	11.08	54.95	92.57	90.58	60.27	28.76	17.06	57.85	92.51	90.18	57.40	25.26	17.57	56.58	74.18	78.76	49.14	20.86	11.86	46.46	54.01		
T_8	92.18	89.81	54.61	28.36	13.18	55.63	85.34	90.73	57.42	27.58	18.05	55.82	87.97	87.96	54.62	40.56	14.38	57.10	95.52	93.84	60.19	32.78	18.87	60.24	92.14	89.85	59.24	29.18	14.15	56.91	78.14	80.53	50.196	25.16	10.13	48.83	55.76		
\mathbf{T}_{7}	96.12	90.51	61.03	27.52	18.34	58.70	90.13	92.60	58.25	31.15	13.42	57.11	90.58	87.95	53.71	42.20	16.24	58.14	96.27	93.55	88.13	65.61	20.21	72.75	93.38	92.60	70.15	30.28	12.62	59.81	88.87	91.13	56.44	30.17	14.13	56.15	60.44	(10.	
T_5	85.47	89.80	63.81	28.15	12.76	55.99	80.56	86.14	48.86	23.79	10.86	50.04	85.18	90.12	52.15	26.54	14.25	53.65	98.35	92.70	64.82	45.24	18.25	63.87	92.57	87.80	60.14	32.78	17.56	58.17	75.14	79.44	50.38	22.87	10.12	47.59	54.89 CD //		7
T_5	84.58	89.80	54.62	26.25	13.32	53.71	83.18	87.05	52.14	28.59	11.57	52.51	82.14	88.15	53.28	27.60	10.58	52.35	90.74	9.78	59.25	32.44	19.50	58.34	94.32	87.98	60.17	42.20	17.94	60.52	76.18	80.05	55.40	24.15	10.08	49.17	54.43 05)	(00	
T_4	86.52	83.50	55.48	31.15	12.01	53.73	84.08	81.46	57.32	22.56	15.60	52.20	85.14	80.48	60.18	45.78	17.32	57.78	92.25	93.27	62.20	30.57	20.38	59.73	90.02	84.27	55.87	28.68	12.05	54.18	78.17	80.15	56.42	25.14	10.18	43.95	53.60 52 CD (0.05)		
T_3	82.76	85.19	59.58	28.73	11.32	53.52	85.46	84.08	49.24	17.25	12.50	49.71	87.02	85.13	58.25	24.47	12.56	53.49	87.04	85.17	57.32	40.39	12.95	56.57	87.32	85.12	60.27	29.35	10.76	54.56	71.58	70.47	44.28	16.57	10.24	42.63	51.75		
Γ_2	88.34	87.96	65.27	22.63	13.65	5.57	80.37	78.71	46.32	18.42	16.51	48.06	81.84	85.35	65.28	32.56	12.42	55.49	89.82	87.97	64.62	28.54	15.80	57.35	85.37	84.21	55.70	38.44	15.20	55.78	12.26	73.54	45.28	17.48	10.02	43.72	52.66 SFd		727
						55.50 5						48.22 4	82.76 8	81.80 8		31.49 3				_	64.81 6		13.06 1				65.74 5								2.14	15.34 4	53.09 £		Interac-
T/GE 1				G_1E_4 3		Mean 5						Mean 4					G ₃ E ₅ 1										G_5E_3 6			Mean 5	-		G_{6E_3} 4		$G_{6E_{5}}$ 1	Mean 4	T(M) 5		(r x Ex interac-

N. Malini et al. / J. Appl. & Nat. Sci. 10 (1): 202 - 209 (2018)

16.81 17.34 17.44 19.48 19.48 16.45 18.23	2		e -	15	17	18	19	T_{10}	T_{11}	I 12	1 13	1 14	CI 4	1 16	Mean
17.34 17.44 19.48 19.48 16.45 18.23		12 16.40) 16.42	16.43	15.43	15.68	16.72	16.41	16.57	16.74	16.29	16.30	15.08	16.32	16.25
17,44 18,42 19,48 10,48 16,45 18,23	16.89 16.89		-	17.56	16.41	17.12	17.32	16.80	17.18	17.75	17.10	17.42	16.14	17.45	17.20
18.42 19.48 1 7.89 16.45 18.23			_	17.62	17.20	17.40	17.41	18.45	18.45	18.35	17.68	17.97	16.89	18.13	17.91
n 19.48 16.45 18.23	18.56 19.10		1 18.36	18.42	18.21	18.98	18.35	19.14	19.54	19.34	18.10	17.98	17.91	18.10	18.56
17.89 16.45 18.23	l9.51 20.12		_	19.48	19.23	19.38	19.33	20.15	20.24	20.52	19.65	18.99	18.94	19.13	19.57
16.45 18.23			0 17.80	17.90	17.29	17.71	17.83	18.19	18.39	18.54	17.76	16.53	16.99	17.83	17.90
18.23	17.42 17.54			16.88	16.12	16.32	17.22	16.45	17.53	18.02	16.34	16.44	15.56	16.53	16.85
	18.43 18.10			18.10	17.20	17.71	18.12	18.23	17.90	18.55	17.35	17.10	16.45	16.78	17.75
18.53	18.03 18.33			18.31	17.56	18.20	18.11	18.53	18.57	18.42	18.41	18.24	17.17	17.70	18.16
19.55	19.02 19.34	34 19.12	• •	19.30	18.56	19.21	19.13	19.54	19.65	19.47	19.23	19.33	18.16	18.16	19.13
16.78	20.58 16.02		_	20.62	19.57	20.35	20.70	15.80	20.60	20.55	20.25	20.31	19.15	19.70	19.19
17.91		87 18.56		18.64	17.80	18.36	18.66	17.71	18.85	19.00	18.36	18.28	17.29	17.77	18.22
16.12	15.45 15.76			15.58	15.35	16.01	15.58	15.79	16.13	16.78	16.02	16.54	16.10	15.90	15.98
16.56				17.20	16.42	16.23	17.25	17.45	16.42	17.43	17.13	16.42	16.57	16.18	16.82
18.14				17.58	17.41	17.50	17.62	18.15	18.52	18.23	17.14	17.13	17.02	17.21	17.72
1922	19.35 19.23			18.62	18.42	18.38	18.54	19.15	17.50	19.23	18.12	18.15	18.01	18.23	18.56
20.25				19.51	19.24	19.16	19.65	20.43	18.48	20.24	19.15	19.11	19.00	19.24	19.55
18.06				17.69	17.37	17.46	17.73	18.19	17.41	18.38	17.51	17.47	17.34	17.35	17.73
14.98	16.40 16.49			15.28	16.31	15.25	16.45	15.20	16.31	16.42	17.03	16.51	15.10	15.21	15.96
15.11	17.46 17.3			17.24	16.52	17.23	17.02	18.03	17.58	16.41	16.90	16.34	16.00	16.03	16.86
16.03		57 17.82	2 17.68	18.35	17.15	18.15	18.45	18.20	18.76	17.43	17.23	17.52	16.54	16.83	17.67
17.11				19.23	18.10	19.10	19.32	19.01	19.05	20.48	18.25	18.36	17.03	17.32	18.60
17.12		~)		20.25	19.12	19.12	19.45	20.05	19.36	19.72	19.13	19.51	18.52	18.45	19.30
16.07		21 17.82		18.07	17.44	17.78	18.14	18.09	18.21	18.09	17.71	17.65	16.64	16.77	17.68
16.54				16.56	16.32	16.61	16.95	16.61	17.57	17.87	16.51	16.86	16.20	16.84	16.80
17.45	~			17.02	16.52	16.82	17.57	18.20	18.42	18.53	18.14	16.54	16.43	16.56	17.45
18.14	18.21 18.57			18.21	17.52	18.10	18.45	18.13	18.53	18.55	17.46	17.35	17.12	17.38	17.96
_	_			19.22	18.50	18.24	18.87	19.41	19.57	19.56	18.45	18.31	19.10	18.40	18.88
20.15				20.24	19.56	19.18	19.48	20.42	20.66	20.55	19.42	19.56	19.05	19.38	19.77
Mean 18.28 18.				18.25	17.68	17.79	18.26	18.55	18.95	19.01	17.99	17.72	17.58	17.71	18.17
16.46 1	7.43 17.53		• •	16.90	16.13	16.33	17.24	16.47	17.54	18.03	16.35	16.50	15.58	16.54	16.80
18.25				18.11	17.21	17.74	18.14	18.25	17.91	18.54	17.36	17.12	16.47	16.80	17.76
18.55	_	35 18.13		18.30	17.57	18.20	18.10	18.54	18.58	18.45	18.43	18.25	17.41	17.74	18.19
G_6E_4 19.57 19.	1		—	19.32	18.56	19.25	19.14	19.58	19.67	19.48	19.25	19.34	18.18	18.18	17.94
16.80	20.60 16.03			20.63	19.58	20.37	20.80	15.84	20.62	20.56	20.47	20.34	19.17	19.72	19.22
Mean 17.93 18.	-			18.65	17.81	18.38	18.68	17.74	18.86	19.01	18.37	18.31	17.36	17.79	17.98
17.69 18	18.38 18.17 SFJ	18		18.20	17.56	17.91	18.22	18.08	18.45	18.67	17.95	17.66	17.20	17.54	
	SEG	3	(cn·n) (T)		(10.0)										
G x Ex T interac- (0.71		1.39	1.83											

N. Malini et al. / J. Appl. & Nat. Sci. 10 (1): 202 - 209 (2018)

											387.50													_						~						~	_	
T_{16}	3510	3392	1041	607	415	1793	3501	3324	1032	600	411	1773.0	3507	3326	1035	603	414	1777	3514	3398	1045	610	425	1798.4	3513	3395	1042	608	421	1795.8	3498	3118	1001	587	420	1724.8	1777.1	
T_{15}	3534	3460	1038	641	427	1820	3528	3454	1027	625	421	1811	3531	3456	1032	638	425	18165.4	3538	3465	1054	645	432	1826.8	3536	3464	1050	643	431	1824.8	3524	3328	1017	624	428	1784.2	1813.9	
T_{14}	3612	3258	1043	603	422	1747.60	3388	3241	1037	589	417	1734.4	3410	3247	1041	602	420	1744	3423	3276	1048	618	427	1758.4	3420	3271	1045	611	423	1754	3187	3105	1018	575	414	1659.2	1732.9	
T_{13}	3436	3237	1034	614	419	1748	3425	3230	1021	588	403	1733.4	3432	3235	1031	611	417	1745.2	3440	3245	1041	615	420	1752.2	3438	3240	1039	613	420	1750	3318	3005	1004	575	401	1660.6	1731.6	
T_{12}	3415	3255	988	571	365	1718.8	3410	3225	981	564	355	1707	3413	3254	985	567	364	1716.6	3418	3260	993	580	371	1724.4	3416	3257	066	574	368	1721	3310	3107	890	554	348	1641.8	1704.9	
T_{11}	3405	3248	1008	572	388	1724.20	3400	3233	995	566	381	1715	3401	3243	1004	570	386	1720.8	3408	3258	1015	576	392	1729.8	3407	3252	1013	575	390	1727.4	3200	3118	887	556	375	1627.2	1707.4	
T_{10}	3420	3276	166	575	371	1726.60	3411	3268	980	558	352	1713.8	3416	3270	987	573	368	1722.8	3423	3280	866	581	378	1732	3421	3278	995	580	373	1729.4	3308	3148	888	547	358	1649.6	1712.4	
Т,	3415	3273	1008	590	401	1737.4	3410	3256	995	583	390	1726.8	3413	3270	1004	588	397	1734.4	3418	3288	1013	595	408	1744.4	3416	3280	1012	593	404	1741	3308	3248	166	575	280	1680.4	1727.4	
T_8	3422	3245	1043	627	428	1753	3403	3224	1038	621	417	1740.6	3421	3242	1041	625	423	1750.4	3425	3252	1048	625	427	1755.4	3421	3250	1046	620	425	1752.4	3301	3103	1005	528	430	1673.4	1737.5	
T_7	3450	3328	1015	601	394	1757.60	3440	3321	866	593	390	1748.4	3447	3323	1011	598	393	1754.4	3473	3329	1015	605	398	1764	3471	3325	1013	602	395	1761.2	3322	3117	066	590			1744.2	
T ₅	3426	3298	1001	585	328	1727.40	3420	3294	993	577	320	1720.8	3423	3295	766	581	323	1723.8	3431	3302	1009	592	393	1745.4	3428	3300	1004	587	391	1742	3128	3007	896	570	318	1583.8	1699.7	CD (0.0
T_5	3428	3260	1035	591	394	1741.60	3421	3254	1027	583	384	1733.8	3425	3257	1031	587	390	1738	3432	3267	1044	593	395	1746.2	3430	3263	14042	595	396	1745.2	3120	3215	1021	581			1727.9	
T_4	3420	3248	1023	610							411																											CD (0.0
																																					1690.9	
T_2	3406	3205	1021	613	417	1732.40	3400	3195	1013	611	413	1726.4	3400	3201	1018	612	415	1729.2	3411	3216	1030	612	430	1739.8	3408	3207	1026	615	420	1735.20	2890	2752	810	585	411	1489.6	1692.1	SEd
T_1	3428	3220	1043	597	425	1742.6	3423	3215	1038	593	420	1737.8	3425	3218	1041	595	422	1740.2	3435	3525	1051	601	432	1748.8	3430	3224	1048	600	428	1746	2902	2721	787	520	359	1457.8	1695.5	
T/GE	G_1E_1	G_1E_2	G_1E_3	G_1E_4	G_1E_5	Mean	G_2E_1	G_2E_2	G_2E_3	G_2E_4	G_2E_5	Mean	G_3E_1	G_3E_2	G_3E_3	G_3E_4	G_3E_5	Mean	G_4E_1	G_4E_2	G_4E_3	G_4E_4	G_4E_5	Mean	G_5E_1	G_5E_2	G_5E_3	G_5E_4	G_5E_5	Mean	G_6E_1	G_6E_2	G_6E_3	G_6E_4	G_6E_5	Mean	T(M)	

N. Malini et al. / J. Appl. & Nat. Sci. 10 (1): 202 - 209 (2018)

Effect of explant: In the present study, investigations were made using five explants seed (E1), immature embryo (E2), leaf bits (E3), root (E4) and hypocotyls (E5). These explants were cultured with various levels of hormones and organic supplements and variation in their capacity in callus response was studied.

The studies indicated that maximum percentage of callus induction response was observed in seed followed by immature embryo and leaf bit recorded the poorest response of callus induction. Similar results were already reported by Shohael et al. (2003) in maize. The high callus responding nature and culturability of mature seed was in accordance with the reports of Delporte et al. (2001) in wheat and Bijy (2002) in rice. Al-Abed et al. (2006) and Sikandar et al. (2007) reported that the mature seed scutellum is the best explant for high totipotent embryogenic callus initiation and they also reported that the plant regeneration from coleoptile and root segments was unsuccessful. The high culturability of immature embryo was in agreement with the reports of Oduor et al. (2006). Benson, (2000) and Huang and Wei (2004) reported the juvenile tissues are usually more responsive to tissue culture than mature ones.

In the present study, studies regarding explants performance immature embryo as well as seed was more (or) less similar and best. Hypocotyl, root and leaf bits were lagging behind and the poor response of leafbits was also reported by Vinothini (2004) in rice. Chand and Sahrawat (2000) reported high callus induction and plant regeneration using root explants of barley. In contrast, Khaleda and Al-Forkan (2006) reported that root explant showed poor response be due to the fact that the calli derived from those explants were not totipotent for plant regeneration in rice.

Number of days for callus induction (days): In callusing duration studies, for early callus induction inferred that the use of 1.5 mg l^{-1} IAA in combination with 0.3 mg l^{-1} kinetin (T₁₅) followed by 2.0 mg l^{-1} IAA + 0.3 mg l^{-1} kinetin (T₁₆) and 1.5 mg l^{-1} 2,4-D + 0.3 mg l^{-1} kinetin (T₇) was the best. Among the explants, seed recorded the earlier induction of callus followed by immature embryo. The leaf bit recorded maximum days for callus induction.

Among the genotypes the earlier induction of callus was observed in CO H (M) 5 (G₄) (17.68 days) followed by UMI 285 (G₅) 17.73 days. CO 1 (G₆) recorded the maximum days for callus induction (18.22). The influence of genotypes on callus induction in maize was reported already by Green and Philips, (1975) and Tomes and Smith, (1985). Bronsema *et al.* (1997) indicated that the genetic information needed for embryogenic callus formation of A 632 as female parent, was transferred through A 188 pollen. The results revealed that among the explants, seed (E₁) recorded the earlier induction of callus (16.22 day) followed by immature embryo (E₋₂). The leaf bit explant took maximum days

for callus induction (19.27 days). Among the G x E interactions, G_1E_1 , G_4E_1 , G_2E_1 recorded the earlier days with T₁₅ (MS + 1.5 mg / 1 IAA + 0.3 mg /l K + 30 g / 1 maltose) 15.08 days, 15.10 days and 15.56 days respectively. The interactions G_6E_5 with T₉ recorded longer days for callus induction (20.80 days). The results on number of days for callus induction for the hormonal combination revealed significant 1.39 differences among the treatments. MS + 1.5 mg / 1 IAA + 0.3 mg/ 1 K + 30 g/l maltose (T₁₅) treatment recorded the minimum number of days for callus induction 17.20 days followed by T-12 (18.67 days) (Table 2).

Under various levels of organic supplements, significantly superior callus induction per cent on immature embryo was noticed in CO H (M) 5, UMI 285 and UMI 757 when compared to other types. Study in seed emphasized the capacity of CO H (M) 5 and UMI 285 with higher per cent values and indicated its superiority over other genotypes. Similarly CO H (M) 5 and UMI 285 genotypes showed significant values in the case of root and hypocotyl, where as other genotypes stood inferior. When study was conducted on duration of callusing, minimum number of days was observed for immature embryo in CO H (M) 5, UMI 285 and UMI 757 when compared to other genotypes. Seed culture confirmed again minimum duration induction for COH (M) 5 followed by UMI 285 and UMI 112 and they stood superior to other genotypes. In the case of root and hypocotyl, significantly higher values were noticed in COH (M) 5 followed by UMI 112 as compared to others

In all the above studies, COH (M) 5 was performing extremely well under all treatments. This can be attributed to its already high responding nature and it is a tissue culture friendly type. UMI 285, UMI 757, UMI 112, UMI 615 and CO 1 also high response, where as CO 1 lagged behind all treatments. Such type of varietal variation to culture response was reported by other researchers Hodges *et al.* (1986) in maize, Bronsema *et al.* (1997) in maize Agarwal *et al.* (2006) in rice and Binott *et al.* (2008) in maize.

Fresh weight of callus on 28th day (mg): Callus fresh weight on 28th day, significantly superior at T_{15} (1.5 mg l⁻¹ IAA) followed by T_{16} (2.0 mg l⁻¹ IAA) and T_7 (1.5 mg l⁻¹ 2,4-D) (Table 20). Among the five explants, seed recorded maximum fresh weight of callus followed by immature embryo. This was in agreement with the report of Ansari, (1997), he cultured on 2,4-D ranged from 1.5 mg l⁻¹ to 2.0 mg l⁻¹ with different media *viz.*, (MS) Murashige and Skoog, (N₆) Chu, (B₅) Gamborg B5 Medium, (YP) Yeast Media and (LS) Linsmaier and Skoog Medium. Callus induction was high in (MS) Murashige and Skoog and (N₆) Chu medium when compared to other media, which was due to the differences on major nutrients present in these basal media.

Among the genotypes, the maximum callus weight was

observed in COH (M) 5 (G_4) 1753.13 mg followed by UMI 285 (G₅) (1750 mg) and UMI 757 (G₁) (1745.2 mg). The genotype CO 1 (G_6) recorded the minimum callus weight of 1444.62 mg. The results revealed that among the explants, the seed explant (E_{-1}) recorded the maximum weight of 3400.73 mg followed by immature embryo (E₂) 3264.51 mg. The leaf bit explant (E-5) had minimum fresh weight 392.83 mg. The results of fresh weight on 28th day of the hormonal combination revealed significant differences among the treatments. The treatments T_{15} (MS + 1.5 mg /l IAA + 0.3 mg / 1 K 30 g/l maltose), T_{16} - (MS + 2.0 mg /l IAA + 0.3 mg / 1 K + 30 gl/ maltose and $T_7 (\text{MS} + 1.5 \text{ mg} / 1 \text{ mg})$ 2.4 D + 0.3 mg / 1 K + 30 g/l maltose recorded the maximum weight of 1813.9 mg, 1777.1 mg and 1744.2 mg respectively. The treatment T₃ recorded the minimum weight of callus (1690.90 mg). Among the G x E interactions $G_4 E_1$ recorded the maximum weight of 3443.13 mg, followed by G_5E_1 (3441.06 mg) and G_5E_2 (3440.75 mg). The treatment combination $G_6 E_5$, $G_2 E_5$, G_3E_5 recorded the minimum weight of 375.25 mg, 387.50 mg and 3930.06 mg respectively (Table 3).

Among the G x E x T interactions $G_4E_1 T_{15}$ recorded the maximum weight of callus (3538 mg) followed by $G_5E_1T_{15}$ (3536 mg). The treatments $G_6E_5T_9$, $G_6E_5T_3$ and $G_2E_5T_3$ recorded the minimum of callus of 280 mg, 310 mg and 315 mg respectively. Among the G x E x T interactions $G_1E_1T_{15}$ recorded the minimum value of 15.02 days followed by $G_4E_1T_{15}$ (15.10 days), while the treatment combination $G_6E_5T_9$ recorded the maximum number of days for callus induction (20.80 days).

Conclusion

Transformation of maize plants was made successfully by standardization of tissue culture experiments. The study concluded that 0.3 mg/l of kinetin combined with 1.5 mg/l 2,4-D and 1.5 mg/l IAA has recorded highest callus induction percentage. The genotypes COH(M) 5 with Immature embryo as a explant exhibited earlier callus induction and maximum callus weight. These optimized tissue culture protocol, will be used for transformation of resistance to biotic and abiotic stress in maize in future.

REFERENCES

- Abebe, Z. D., Teffera, W., and Machuka, J. S. (2008). Regeneration of tropical maize lines (*Zea mays L.*) from mature zygotic embryo through callus initiation. *African Journal of Biotechnology* Vol. 7 (13): 2181-2186.
- Agarwal, P. K., Gosal, S. S., and Sidhu, G. S. (2006). Sequential reduction of 2, 4-D improves whole plant regeneration from long term maintained calli in some *indica* cultivars of rice. *Oryza*, 43 (1): 10-15.
- Ahmadabadi, M., Ruf, S., and Bock, R.(2007). A leaf-based regeneration and transformation system for maize. *Transgenic Res.*, 16: 437-448.
- Al-Abed, D., S. Rudrabhatla, R. Jalla and S. Goldman. 2006.

Spilt – seed: a new tool for maize researchers. Planta. 223:1355-1360.

- Ansari, N. A., (1997). Tissue culture studies in maize (Zea mays L.) Ph.D. (Ag.) Thesis, TNAU, Coimbatore.
- Benson, E. E., (2000). In vitro plant recalcitrance: An introduction. In vitro Cell Dev. Biol. 26: 141-148.
- Bijy. K. R., (2002). *In vitro* screening for drought tolerance in rice (*Oryza sativa* L.) M.Sc., (Ag.) Thesis, TNAU, Coimbatore.
- Binott, J. J., Songa, J. M., Ininda, J., Njagi, E. M. and Machuka, J. (2008). Plant regeneration from immature embryos of Kenyan maize in bread lines and their respective single cross hybrids through somatic emrbyogenic. *African Journal of Biotechnology*, Vol. 7(8): 981 -987.
- Bronsema, F. B. B., Van Oostveen, W.J.F. and Van Lammeren, A.A.M. (1997). Comparative analysis of callus formation and regeneration on cultured immature maize embryos of the in bred lines A188 and A 632. *Plant Cell, Tissue and Organ Culture.*, 50: 57-65.
- Chand, S. and Sahrawat, A. K. (2000). Efficient plant regeneration from root callus tissues of barley (*Hordeum* vulgare L.). J. Plant Physiol., 156 : 401-407.
- Delporte, F., Mostade, O. and Jacquemin, J.(2001). Plant regeneration through callus initiation from thin mature embryo fragments of wheat. *Plant Cell Tissue Organ Cult.*, 67: 73-80.
- Devi, S., PArimala, K., Sravanthi, K. (2016). Gene action and combining ability analysis for yield and its component traits in maize and its component traits in maize (Zea mays L.) Bioscan. (2): 1043 – 1047.
- Gomez, K. A. and Gomez, A. A. (1984). Statistical procedures for Agricultural Research. John Wiley and Sons. Inc., New York. pp. 680.
- Green, C.E. and Philips, R. C. (1975). Plant regeneration from tissue cultures of maize. *Crop Sci.*, 15: 417-421.
- Hodges, T. K., Kamo, K. K., Imbrie, C. W., and Backwar, M. R.(1986). Genotype specificity of somatic embryogenic and regeneration in maize. *Biotechnol.*, 4:219-223.
- Huang, X. Q and Wei, Z. M. (2004). High frequency plant regeneration through callus initiation from mature embryos of maize. *Plant Cell Rep.*, 22: 793-800.
- Inoue, M and Maeda, E. (1982). Control of organ formation in rice callus using two step culture method. In : Plant Tissue Culture (ed.) Fujiwara, A., Maruxen, Tokyo, pp. 183-184.
- Khaleda, L. and Forkan, M.Al. (2006). Genotypic variability in callus induction and plant regeneration through somatic embryogenesis of five deepwater rice (*Oryza* sativa L.) cultivars of Bangladesh. African J. Biotech., (5): pp-1435-1440.
- Murashige, T. and Skoog, F. (1962). A revised medium for rapid growth and bioassay with tobacco tissue cultures. *Physiol. Plantarum.*, 15: 473-497.
- Oduor, R. O., Njagi, E. N. M., Ndung'u, S. and Machuka, J. S. (2006). Invitro regeneration of Dryland Kenyan Maize Genotypes through somatic embryogenesis. *International Journal of Botany.*, 2(2): 146-151.
- Omer, R. A., Ali, A. M., Matheka, J. M. and Machuka, J. (2008). Regeneration of Sudanese maize in bred lines and open pollinated varieties. *African Journal of Biotechnology*, Vol. 7(11): 1759-1764.

- Shohael, A. M., Akanda, M. A. L., Parvez, S. and Mahfuja, S.(2003). Somatic embryogenesis and plant regeneration from immature embryo derived callus of inbred maize (*Zea mays L.*). *Biotech.*, 2 (2): 154-161.
- Sikandar, W., Ali, Khan, I. and Munir, I. (2007). Optimization of invitro conditions for Callus induction, proliferation and regeneration in wheat (*Triticum aestivum* L.) Cultivars. *Biotech.*, 6(3): 420-425.
- Tomes, D. T., and Smith, O. S. (1985). The effects of parental genotype on isolation of embryogenic callus from elite maize germplasm. *Theor. Appl. Genet.*, 70:505-509.
- Vinothini, S., (2004). Enhancement of variability in drought tolerant varieties of rice (*Oryza sativa* L.) Through *in vitro* mutagenesis. *M.Sc. (Ag.) Thesis*, A. C & R. I., Killikulam, TNAU, Coimbatore.