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Abstract: The paper aims at demonstrating the application of the Akaike information criterion to determine the order 
of two state Markov chain for studying the pattern of occurrence of wet and dry days during the rainy season (April 
to September) in North-East India. For each station, each day is classified as dry day if the amount of rainfall is less 
than 3 mm and wet day if the amount of rainfall is greater than or equal to 3 mm.  We apply Markov chain of order 
up to three to the sequences of wet and dry days observed at seven distantly located stations in North East region of 
India. The Markov chain model of appropriate order for analyzing wet and dry days is determined. This is done using 
the Akaike Information Criterion (AIC) by checking the minimum of AIC estimate. Markov chain of order one is found 
to be superior to the majority of the stations in comparison to the other order Markov chains. More precisely, first 
order Markov chain model is an adequate model for the stations North Bank, Tocklai, Silcoorie, Mohanbari and Gu-
wahati. Further, it is observed that second order and third order Markov chains are competing with first order in the 
stations Cherrapunji and Imphal, respectively. A fore-knowledge of rainfall pattern is of immense help not only to 
farmers, but also to the authorities concerned with planning of irrigation schemes. The outcomes are useful for tak-
ing decisions well in advance for transplanting of rice as well as for other input management and farm activities dur-
ing different stages of the crop growing season. 
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INTRODUCTION 

Amount of daily rainfall is an important factor that 

impacts agriculture system. It governs the crop yields 

and determines the choice of the crops that can be 

grown. In India majority of the people depends on ag-

riculture for their livelihood. Around 60–70% of Indi-

an population (directly or indirectly) depends upon 

agriculture sector and currently it contributes to 16–

17% of the GDP. Rice, being the highest produced 

cereal in India, is the most important staple food for 

the major proportion of the population in the country. 

Only 45% of gross cropped area of the country, by the 

year 2010–2011, was irrigated, out of which the contri-

bution from rice was only 13.5% (Ghosh et al., 2015), 

which restricted cultivation of rice as a rain-fed crop 

mostly to the kharif.  

North East India, located at east of 80°E and North of 

21°N, is one of the major disaster prone region of India 

because of their unique geographical locations and 

physical features, witnessing the fury of monsoon. 

Geographically, two-thirds of the area of NE-Indian 

region is a hilly terrain interspersed with valleys and 

plains. Apparently from the geographical features, the 

rain producing mechanism of NE rainfall is a complex 

phenomenon and is largely dominated by an elevated 

orography of the Eastern Himalayas and large forests. 

In the North East India, the rainfall distribution is not 

even. While the excess rainfall in the monsoon months 

of June-September causes natural disaster, in the long-

er dry spell during November to March crop goes 

down in spite of having sufficient rainfall in the mon-

soons. In general, rainfall distribution pattern over dif-

ferent regions of India is inhomogeneous due to influ-

ence of several local and remote factors. For instance, 

over the central Indian plain region, monsoon trough 

and the Himalayas along with local and external fac-

tors play a dominant role in its interannual rainfall var-

iability. Recently, summer monsoon rainfall variability 

over NE- region has been studied by Prabhu et. al. 

(2016). The average annual rainfall in North East India 

ranges from 2000-4000 mm with a maximum of 11000 

mm in Cherrapunjee (Deka et al., 2011, Prabhu et al., 

2016). The summer monsoon influence this region 

from June to September contributing more than 80% of 

the annual rainfall (see, Deka (2013). During this sea-

son major floods occur that often lead to disaster 

(ASDMA, 2015)  

According to Fisher (1925) crop yield during a season 

mainly influenced by the distribution of rainfall rather 

than season total amount rainfall. Thus, rainfall fore-

casts at different temporal scales, at the beginning of 
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the season and within the season, with possible impact 

on the crops in terms of productivity, may help the 

farming community to take appropriate decisions on 

input management and farm activities well in advance 

(Ghosh et. al., 2015). Extreme precipitation events 

(heavy rain storm, cloud burst) may have their own 

impacts on the fragile geomorphology of the Himala-

yan part of the Brahmaputra basin causing more wide-

spread landslides and soil erosion. The response of 

hydrologic systems, erosion processes and sedimenta-

tion in the Himalayan river basins could alter signifi-

cantly due to climate change. Two extremely intense 

cloud bursts of unprecedented intensity- one in the 

western Meghalaya hills and western Arunachal Pra-

desh in 2004 produced two devastating flash floods in 

the Goalpara and Sonitpur districts of Assam bordering 

Meghalaya and Arunachal respectively causing hun-

dreds of deaths. The most recent examples of such 

flash floods originating from extreme rainfall are two 

events that occurred in the north bank of the Brahma-

putra river and caused significant damage to human 

life and property. The first of the two events occurred 

during the monsoon season on June 14th, 2008 due to 

heavy rainfall on the hills of Arunachal Pradesh north 

of Lakhimpur District causing flash floods in the rivers 

of Ranganadi, Singara, Dikrong and Kakoi that killed 

at least 20 people and inundated more than 50 villages 

leading to displacement of more than 10,000 people. 

The other that occurred in the post monsoon season on 

October 26 affected a long strip of area of northern 

Assam valley adjoining foothills of Bhutan and Aruna-

chal Pradesh causing flash flooding in four major riv-

ers (all are tributaries of the river Brahmaputra) and a 

number of smaller rivers. This episode of flash floods 

caused by heavy downpour originated from the Tropi-

cal Depression ‘Rashmi’ (a depression over the West 

Central Bay of Bengal adjoining Andhra coast). For 

details, we refer to Deka et al. (2011). Hence, stochas-

tic modeling of rainfall pattern is of immense help not 

only to farmers, but also to the authorities concerned 

with planning of irrigation schemes and disaster man-

agement.  

Stochastic modeling of rainfall data has become a fron-

tier research area over the years. As far our knowledge 

is concerned, the statistical modeling of rainfall data 

started with the work of Gabriel and Neumann (1962, 

1972). They applied a first order chain to Tel Aviv 

precipitation data (November-June, 1973-1975) on the 

basis of multiple hypotheses testing procedures and it 

is observed from their study that two state Markov 

chain give a good description of the occurrences of wet 

and dry days during the rainy period at Tel Aviv. Bhar-

gava et al. (1972) studied the occurrence of rainfall 

with the help of Markov chain model of order one in 

Raipur District India. The number of years for which 

the data were available varied from station to station, 

the variation being from 39 to 60 years. A sequence of 

wet and dry days for each center and for each year 

during the period 1st June to 30th September was ob-

tained. Markov chain model was fitted for each center 

and the expected number of dry days varies from 70 to 

78 whereas the number of wet days varies from 44 to 

52 days. Latter, Gates and Tong (1976) reanalyzed the 

same Tel Aviv data applying the AIC procedure and 

suggested that a Markov chain of order not lower than 

2 should be fitted, instead of the previously fitted first 

order. For the application of higher order Markov 

chain, we refer to Katz (1981) and Zhao et al. (2001). 

Although there is a disagreement on the appropriate 

order for the Tel Aviv model but one must agree that 

Markov chains are obvious candidate to model the 

occurrence of rainfall. For instance, we refer to Ra-

heem et. al. (2015) and references therein. A three-

state Markov chain was employed to examine the pat-

tern and distribution of daily rainfall in Uyo metropolis 

of Nigeria using 15 years (1995-2009) rainfall data. 

However, multi state higher order Markov chain mod-

eling of rainfall data is an important task in its own 

right and will be considered elsewhere. For other sci-

entific works on Markov chain modeling to daily rain-

fall data in eastern part of India, we refer to Dash 

(2012) and Basak (2014). Recently, Singh et al. (2014) 

has carried out a study to analyze the rainfall data for 

storage and irrigation planning under humid south-

eastern region of Rajasthan using a time series record 

for 32-year (1980-2011) periods. Monthly estimation 

of rainfall data for assessment of normal years, abnor-

mal years, drought years, normal months, abnormal 

months, and drought months has been made which is 

expected to be useful from the view point of cropping 

pattern, irrigation planning and management. More 

recently, Ghosh et al. (2015) has developed an experi-

mental extended range forecast system (ERFS) in crop 

models is investigated for improving the rice grain 

yield prediction skill for the ensuing monsoon season 

in the experimental station at Bhubaneswar, India. 

Such methods will provide valuable information well 

in advance, to overcome uncertainties of monsoon 

rainfall in respect of onset of monsoon, long dry spells 

causing soil moisture stress or drought and extremely 

heavy rainfall leading to floods.  

A good number of literatures are available describing 

the Markov chain model for daily precipitation round 

the globe, but, no rigorous work barring the works by 

Medhi (1976) pursued in North East region of India. 

The present study is an effort to demonstrate the appli-

cation of higher order two state Markov chain. More 

precisely, an analysis regarding the fitting of Markov 

chain of appropriate order has been made in this arti-

cle. We apply Markov chain of order up to three to the 

sequences of wet and dry days observed at seven dis-

tantly located stations in North East region of India. 

For the majority of the stations Markov chain of order 

one is identified as the most appropriate model, fol-
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lowed by order two, for describing the daily precipita-

tions occurrences over North East India during Indian 

summer monsoon season. If the best fitting stochastic 

model is known for a particular station, it can be used 

in the future for an estimation of the rainfall pattern in 

the area under study. Rainfall information forms the 

basis for designing water related structure in agricul-

ture planning, in water management and also in moni-

toring climate changes.  

MATERIALS AND METHODS 

In this exposition, series of daily rainfall data of seven 

stations in North East India viz. Imphal (2001-2005), 

Mohanbari (1993-2006), Guwahati (2001-2005), Cher-

rapunji (2001-2005), Silcoorie (1986-2005), North 

Bank (1986-2005), Tocklai (1986-2005) have been 

selected. The locations of these seven stations of North 

East India are shown in Fig. 1 (Source: Deka et al. 

(2011)). The series of daily rainfall data are taken from 

Regional Meteorological Centre, Guwahati and Tock-

lai Experimental Station, Jorhat involving the aforesaid 

seven stations for the summer season (April to Septem-

ber) in each year. 

The Akaike information criterion was introduced by 

Akaike (1972) as an extension to final prediction error. 

It is a way to compare different models on a given out-

come. AIC has been used successfully in various fields 

of statistics (Akaike, 1972, 1976), Otsu et al. (1976), 

engineering (Otomo et al., 1972), hydrology (Salas et 

al., 1980) and numerical analysis (Sakamoto et al. 

(1978)). For recent application of Akaike information 

criterion, we refer to Snipes and Taylor (2014). The 

procedure for the determination of the order of a Mar-

kov chain by Akaike Information Criterion (AIC) was 

developed by Tong (1975). In the present work, appli-

cation of the Akaike information criterion is demon-

strated to determine the order of two state Markov 

chain for studying the pattern of occurrence of wet and 

dry days during the rainy seasons in North-East India. 

In statistical inference situations, Akaike (1972) pro-

posed the use of the entropy B given by: 

.    (1)                                                         

Here,  is the vector of observations, and 

and  are the probability density functions of 

the true and fitted models, respectively. According to 

the entropy maximization principle, Akaike (1972), the 

objects of statistical inference are to estimate 

from the data and to try to find which 

maximizes the expected entropy: 
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Where E denotes the expectation operator and is 

the vector of observations. Akaike 1972) showed that 

for the number of observations : 
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 is a log-likelihood ratio test function given by: 
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with 

  L = number of parameters (dimension) of the true 

model,  

  k = number of parameters (dimension) of the fitted 

model, 

 and   are the estimated parameters of the 

fitted and true models respectively. 

Thus, from equation (3) and by ignoring the constant 

terms, Akaike derived a criterion which is now called 

the Akaike Information Criterion (AIC) given by: 
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Fig. 1. Geographical locations of the stations considered for 

this study. 
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several models, adopts the model that minimizes the 

AIC is called the minimum AIC estimate (MAICE). It 

is important to note that, since the AIC test is based on 

the maximum likelihood function, which is asymptoti-

cally effective and unbiased, the test yields fairly accu-

rate results for n  30, where n is the number of 

observations. However, the test has been used with 

considerable success for n  20 (Kitagawa, 1979). 

Denote the transition probability for a r-order chain by 

 s being the finite number of 

states of the chain and the suffix contain r+1 charac-

ters. Then the maximum likelihood estimates of 

 is given by  

.                                                   (7) 

Where  is the number of transition from the 

state i to the state  through the states j…k and 

. The hypothesis tested is 
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ent). The statistics constructed is  
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Again, under , Good (1953) has shown that 

i.e.,  has a variable with 

degrees of freedom  

 

 Here,  denotes the standard backward operator 

given by . 

If the statistical identification procedure is considered 

as a decision procedure, the most basic problem is the 

appropriate choice of the risk (expected loss) function. 

The loss functions considered in classical theory of 

hypothesis testing are defined by the probabilities of 

accepting the incorrect hypothesis or rejecting the cor-

rect hypothesis. Interested readers are referred to 

Medhi (1999) for more details elaboration on loss 

function and hypothesis testing.  

Tong (1975) proposes the choice of the loss function, 

based on AIC approach as  

R(k)=                      (8) 

Where M is the highest order model to be considered 

and k is the order of the fitting model. The minimum 

AIC estimate (MAICE) of the order of the Markov 
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Chain model can be fitted to daily rainfall occurrence 
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and Thapliyal (2000) for first order Markov chain 

model and Gates and Tong (1976), Katz (1981), Zhao 

et al. (2001), Sørup (2011), Dash (2012), Basak (2014) 

etc. for higher order Markov chain model.  

In this study we concentrate on higher order two states 

Markov chain model over a series of daily rainfall data 

of seven stations in North East India. The determina-

tion of the proper order that best describes the precipi-

tation over the region is carried out using Akaike In-

formation Criteria. Table 1 illustrates the estimates of 

likelihood ratio statistic for station North Bank. It is 

interesting to see that the columns corresponding to

, ,  are significant at 5% level of 

significance except for the years 1992 and 2001. 

Therefore, we may note that the chain is at least of 

order one. For the simplicity of the exposition other 

tables concerning likelihood ratio statistic for other 

stations are not included. Then R(k) values for each 

station over each year are calculated. The calculated 

10 20 30

values are displayed in Tables 2-8. Then according to 

MAICE procedure we adopt as the order that value of 

k which gives minimum R(k) and those values for k 

are illustrated in column 7 of the Tables 2-8. Finally, 

the performance of the best fitting order of the Markov 

chain is given in Table 9. The analysis clearly indi-

cates that Markov chain of order one is the best one for 

rainfall forecasting to the majority of the stations in 

comparison to the other order Markov chains. More 

precisely, first order Markov chain model is an ade-

quate model for the stations North Bank, Tocklai, Sil-

coorie, Mohanbari and Guwahati. This observation 

agrees with the findings of Dash (2012) and Basak 

S. Deka / J. Appl. & Nat. Sci. 10 (1):  80 - 87 (2018) 

Table 1. Likelihood statistic for North Bank. 

Year  
10

 
20

 
30

 
21

 
31

 
32

 
33

1986 16.7276 16.8175 19.8498 0.0899 3.1222 3.0323 0 
1987 17.7543 22.8454 28.7556 5.0911 11.0013 5.9102 0 
1988 41.1159 42.1816 50.9963 1.0657 9.8804 8.8147 0 
1989 19.1132 24.3546 32.6416 5.2414 13.5284 8.287 0 
1990 21.1622 21.2464 27.8429 0.0842 6.6807 6.5965 0 
1991 6.2446 12.6413 21.1247 6.3967 14.8801 8.4834 0 
1992 4.6952 9.8015 11.2007 5.1063 6.5055 1.3992 0 
1993 18.9827 23.6082 25.9841 4.6255 7.0014 2.3759 0 
1994 20.5584 23.2673 26.4903 2.7089 5.9319 3.223 0 
1995 28.3186 36.5763 44.1681 8.2577 15.8495 7.5918 0 
1996 23.5193 24.5876 27.8354 1.0683 4.3161 3.2478 0 
1997 17.4515 19.047 26.7143 1.5955 9.2628 7.6673 0 
1998 42.0208 45.0825 50.9531 3.0617 8.9323 5.8706 0 
1999 12.1565 16.5651 20.6124 4.4086 8.4559 4.0473 0 
2000 4.8409 8.9134 15.9362 4.0725 11.0953 7.0228 0 
2001 6.8661 7.3759 9.4704 0.5098 2.6043 2.0945 0 
2002 22.3583 22.542 26.9619 0.1837 4.6036 4.4199 0 
2003 17.034 19.485 23.7815 2.451 6.7475 4.2965 0 
2004 25.857 29.9857 30.2572 4.1287 4.4002 0.2715 0 
2005 12.9343 16.5079 20.4342 3.5736 7.4999 3.9263 0 
df 1 3 7 2 6 4 0 

Table 2. AIC values for the station Cherrapunji. 

Year R(0) R(1) R(2) R(3)  Min R(i) order 

2001 25.296 -5.5744 -4.7736 0 -5.5744 1 

2002 16.5769 1.8441 1.4442 0 0 3 
2003 16.7548 -0.0637 -1.2467 0 -1.2467 2 

2004 0.7354 -4.4915 -0.9573 0 -4.4915 1 

2005 21.1522 -2.5002 -3.3747 0 -3.3747 2 

Table 3. AIC values for the station Guwahati.  
Year R(0) R(1) R(2) R(3)  Min R(i) order 

2001 -1.0056 -5.0543 -4.2653 0 -5.0543 1 

2002 10.4165 -4.4754 -1.8223 0 -4.4754 1 
2003 17.846 11.4287 13.3948 0 0 3 

2004 -1.36577 -5.60417 -1.8506 0 -5.60417 1 
2005 18.7865 7.188 2.8948 0 0 3 

Table 4. AIC values for the station Imphal.  
Year R(0) R(1) R(2) R(3)  Min R(i) order 

2001 4.2847 -6.3741 -2.5225 0 -6.3741 1 

2002 32.9413 8.7132 -5.0412 0 -5.0412 2 

2003 16.9987 2.6758 0.1431 0 0 3 
2004 9.5471 1.3503 2.0861 0 0 3 

2005 12.7122 -4.5871 -2.0123 0 -4.5871 1 

Table 5. AIC values for the station Mohanbari. 

Year R(0) R(1) R(2) R(3)  Min R(i) order 

1993 6.3891 -3.1913 -3.0882 0 -3.1913 1 
1994 5.4926 -6.3 -5.2347 0 -6.3 1 

1995 7.322 -1.9796 -0.0287 0 -1.9796 1 

1996 13.724 -7.2275 -6.3125 0 -7.2275 1 
1997 7.6405 -5.1164 -1.9863 0 -5.1164 1 

1999 5.5773 2.508 -4.5951 0 -4.5951 2 
2001 -2.6165 -10.0504 -7.9391 0 -10.0504 1 

2002 7.6799 -10.6054 -6.9666 0 -10.6054 1 
2003 8.2287 -0.0316 -5.7523 0 -5.7523 2 

2004 15.5802 0.3969 1.9405 0 0 3 

2005 7.4747 1.6295 4.336 0 0 3 
2006 17.0646 -0.4816 -0.8071 0 -0.8071 2 
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(2014).  In the scientific work of Dash (2012), a sto-

chastic daily precipitation generation model was 

adapted for the state of Odisha. The model simulates 

the sequence of precipitation occurrence using the 

method of transitional probability matrices, while daily 

precipitation amount was generated using a two pa-

rameter Gamma distribution. Daily average precipita-

tion data from Odisha from the year 2001 to 2010 

were used for this model. The study reveals that first 

order Markov chains can adequately represent the pre-

cipitation occurrences in all the months. Markov chain 

models for monsoonal rainfall occurrence in different 

zones of West Bengal is considered in Basak (2014) 

and first order Markov chain model is found to be the 

best for rainfall forecasting. Further, it is observed that 

second order and third order Markov chains are com-

peting with first order in the stations Cherrapunji and 

Imphal, respectively.  For higher order best fitting 

Markov chain model, we refer to Sørup (2011) and, 

Gates and Tong (1076).  

A fore-knowledge of rainfall pattern is of immense 

help not only to farmers, but also to the authorities 

concerned with planning of irrigation schemes. The 

outcomes are useful for taking decisions well in ad-

vance for transplanting of rice as well as for other input 

management and farm activities during different stages 

of the crop growing season. 

Conclusion  

Precipitation is the unique source of fresh water which 

is necessary for living life. Thus, changes that take 

place precipitation pattern affect all ecosystems. In 

order to escape damages, with minimum loss, resulting 

from precipitation changes, making prudential plans in 

the light of several estimates is seen as the most ration-

alist way. In this context, demands for studies on pre-

cipitation model building increase at the present time. 
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Table 6. AIC values for the station Northbank. 

Year R(0) R(1) R(2) R(3)  Min R(i) order 

1986 5.8498 -8.8778 -4.9677 0 -8.8778 1 

1987 14.7556 -0.9987 -2.0898 0 -2.0898 2 
1988 36.9963 -2.1196 0.8147 0 -2.1196 1 

1989 18.6416 1.5284 0.287 0 0 3 
1990 13.8429 -5.3193 -1.4035 0 -5.3193 1 

1991 7.1247 2.8801 0.4834 0 0 3 
1992 -2.7993 -5.4945 -6.6008 0 -6.6008 2 

1993 11.9841 -4.9986 -5.6241 0 -5.6241 2 

1994 12.4903 -6.0681 -4.777 0 -6.0681 1 
1995 30.1681 3.8495 -0.4082 0 -0.4082 2 

1996 13.8354 -7.6839 -4.7522 0 -7.6839 1 
1997 12.7143 -2.7372 -0.3327 0 -2.7372 1 

1998 36.9531 -3.0677 -2.1294 0 -3.0677 1 
1999 6.6124 -3.5441 -3.9527 0 -3.9527 2 

2000 1.9362 -0.9047 -0.9772 0 -0.9772 2 

2001 -4.5296 -9.3957 -5.9055 0 -9.3957 1 
2002 12.9619 -7.3964 -3.5801 0 -7.3964 1 

2003 9.7815 -5.2525 -3.7035 0 -5.2525 1 
2004 16.2572 -7.5998 -7.7285 0 -7.7285 1 

2005 6.4342 -4.5001 -4.0737 0 -4.5001 1 

Table 7. AIC values for the station Silcoorie. 

Year R(0) R(1) R(2) R(3)  Min R(i) order 

1986 6.1958 -5.4116 -5.222 0 -5.4116 1 
1987 12.6532 -4.9303 -5.5398 0 -5.5398 2 

1988 3.3324 -7.0767 -4.8481 0 -7.0767 1 
1989 14.4774 -5.8251 -5.4369 0 -5.8251 1 

1990 5.8544 -8.6228 -4.7136 0 -8.6228 1 
1991 0.4625 -9.8248 -7.3887 0 -9.8248 2 

1992 13.3544 0.621 -7.6684 0 -7.6684 2 

1993 13.737 0.3297 -3.6292 0 -3.6292 2 
1994 14.1871 -4.5688 -2.558 0 -4.5688 1 

1995 -1.9577 -9.4869 -6.0686 0 -9.4869 1 
1996 27.6852 -1.9304 -5.0619 0 -5.0619 2 

1997 5.6338 -5.7394 -4.8588 0 -5.7394 1 
1999 24.1983 -3.3469 -2.7311 0 -3.3469 1 

2001 7.5898 -0.8134 -4.293 0 -4.293 2 

2002 11.6622 -5.0198 -7.2194 0 -7.2194 2 
2003 16.485 -0.6414 -3.548 0 -3.548 2 

2004 3.6647 -0.6573 1.2379 0 -0.6573 1 
2005 44.7494 6.1562 9.6934 0 0 3 

Table 8. AIC values for the station Tocklai.  

Year R(0) R(1) R(2) R(3)  Min R(i) order 

1986 -2.6125 -5.3556 -4.1269 0 -5.3556 1 
1987 1.5623 -6.9284 -6.0647 0 -6.9284 1 

1988 6.4774 -7.2628 -4.5987 0 -7.2628 1 
1989 0.8393 -10.9265 -7.5985 0 -10.9265 1 

1990 10.4431 6.0319 3.7292 0 0 3 

1991 -2.322 -3.1392 0.179 0 -3.1392 1 
1992 -4.6171 -5.4782 -3.4837 0 -5.4782 1 

1993 -0.3524 -2.3872 -4.0922 0 -4.0922 2 
1994 2.2017 -2.4974 -3.6537 0 -3.6537 2 

1995 1.1907 -6.3817 -5.8844 0 -6.3817 1 
1996 8.1645 1.0601 -4.7042 0 -4.7042 2 

1997 1.08526 -5.95314 -3.40004 0 -5.95314 1 

1998 4.8008 3.4529 0.8996 0 0 3 
1999 5.4214 2.0093 -3.656 0 -3.656 2 

2000 2.1448 -0.7117 1.128 0 -0.7117 1 
2001 -5.6387 -5.6057 -6.1419 0 -6.1419 2 

2002 3.7916 -4.6991 -1.9707 0 -4.6991 1 

2003 -0.3613 -7.6114 -4.3962 0 -7.6114 1 
2004 -5.4475 -6.7144 -7.4141 0 -7.4141 2 

2005 0.2872 -2.3047 -5.778 0 -5.778 2 

Table 9. Percentages of the best fitting orders of Markov Chain. 

Order of MC North Bank Tocklai Silcoorie Mohanbari Cherrapunji Guwahati Imphal 
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These studies have great important not only for data 

production purpose but also for water resources man-

agement, hydrology and agricultural sector. Because 

information about the probability of occurrence of the 

precipitation for future can be used to make decisions 

relating to agricultural production planning and man-

agement and water management, it can decrease risks 

originating weather condition uncertainty.The Markov 

chain models have few advantages: firstly, forecasts 

are available immediately after the observations be-

cause of the use of predictors only on the local infor-

mation on the weather. Secondly, the chain needs min-

imal computation after the climatologically data have 

been processed. It may also be revealed that if the rec-

ord length is short, lower order chain represents the 

appropriate fit.  Markov chains specify the state of 

each day as wet and dry and develop a relation be-

tween the state of the current day and the states of the 

preceding days. The order of the Markov chain is the 

number of preceding days taken into account.  When 

literature is investigated, the common observations of 

these studies suggest that the occurrence of weather 

state is best described by first order Markov chain. 

Consequently, in the present study, attempts have been 

made to study the weather state over the region of 

North East India during the rainy season.  The appro-

priate order Markov model proposed and can be used 

to obtain forecasts of the weather states (such as dry or 

wet day) at some future time using information given 

by current state. The present study leads to the conlu-

sions: i) Markov chain model can be fitted to daily 

rainfall occurrence of North East regions of India. ii) 

The first order Markov chain model that has been used 

extensively, is an adequate  model for most of the sta-

tions of North East regions of India to determine the 

daily precipitation. In the future, the outcomes of this 

work will be extended in the direction of Ghosh et. al. 

(2015) and Singh et al. (2014).  
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