Integrated nutrition management in pigeon pea intercropping systems for enhancing production and productivity in sustainable manner – A review

Narendra Kumawat1*, Rakesh Kumar2, Jagdeesh Morya3, I.S. Tomar1 and R.S. Meena4,

1Zonal Agricultural Research Station, Jh stuba 457 661 (MP) INDIA
2Division of Crop Research, ICAR RC for Eastern Region Patna -800014 (Bihar), INDIA
3Krishi Vigyan Kendra, Jh stuba 457 661 (MP), INDIA
4Agricultural Research Station, Sriganganagar, SKRAU, Bikaner (Rajasthan), INDIA

*Corresponding author. E-mail: kumawatandy@gmail.com

Received: January 31, 2017; Revised received: May 1, 2017; Accepted: October 3, 2017

Abstract: India is the largest producer and consumer of pulses in the world accounting for about 29 per cent of the world area and 19 per cent of the world's production. In order to achieve self-sufficiency in pulses, the projected requirement by the year 2025 is estimated at 27.5 MT. To meet this requirement, the productivity needs to be enhanced to 1000 kg/ha, and an additional area of about 3-4 Mha has to be brought under pulses besides reducing post-harvest losses. This uphill task has to be accomplished under more severe production constraints, especially abiotic stresses, abrupt climatic changes, emergence of new species/ strains of insect-pests and diseases, and increasing deficiency of secondary and micronutrients in the soil. This requires a two-pronged proactive strategy, i.e. improving per unit productivity and reducing cost of production. The yield levels of pulses have remained low and stagnant, also area and total production. Among the pulses pigeon pea is second most important grain-legumes and major constraints in pigeon pea production is mostly grown in grown on marginal lands under rainfed agriculture and without nutrient management, hence are prone to abiotic stresses. Therefore it is essential for higher production and productivity of pigeon pea, use of high yielding varieties which suitable for intercrop as well as sole cropping system with best nutrient management practices.

Keywords: Intercrop, Nutrient management practices, Pigeon pea, Productivity

INTRODUCTION

India being the largest producer 17.35 MT and processor of pulses in the world also imports 4.58 MT annually on an average to meet its ever increasing consumption needs of 22 MT. According to Indian Institute of Pul ses Research’s Vision document, India’s population is expected to touch 1.68 billion by 2030 and the pulse requirement for the year 2030 is projected at 32 million tons with anticipated required annual growth rate of 4.2%. Among the pulses pigeon pea (Cajanus cajan (L.) Millsp.) is the second most important khafir grain legume after chickpea in India grown predominan tly under rainfed conditions. It occupies an area of about 3.90 m ha with a total production of 3.17 MT with an average productivity of 813 kg/ha (Tiwari, 2016). Pigeon pea is a popular pulse crop with Indian farmers especially in view of their suitability under dryland conditions and their adoptability for pure as well as mixed/intercropping system. The low yield of pigeon pea is not only due to its cultivation on sub-marginal lands, but also because of inadequate and imbalance fertilization as well as continuous use of inorganic fertilizers which decreased the productivity,

sustainability, soil health and finally affecting environment (Singh, 2007). Intensive agriculture using exhaustive high yielding varieties of crops had led to heavy withdrawal of nutrients from the soil during past few years and fertilizer consumption remained much below in comparison to removal in India. This gap between nutrient removal and supply cannot be bridged by fertilizer alone. It can only be achieved by integrated nutrient approach. To avoid negative environmental effects by fertilizer application, eco-friendly management practices can be adopted at farm level. These practices include efficient recycling of nutrients involving crop residues and waste products on the farm and proper adjustment of fertilizer doses according to requirement. Development and application of such a system appears to be an alternative to maintain sustainable agricultural system (Dijk and Pal, 1995). Adequate manuring not only improves the crop yield but also sustains the soil health and productivity. Moreover, chemical fertilizers are becoming costlier input in agriculture. Therefore, it is right time to evaluate the feasibility and efficiency of organic waste not only for improving and build up of soil fertility but also to increase efficiency of chemical fertilizer.
Integration of chemical fertilizer with organic manures has been found to be quite promising not only in maintaining higher productivity but also in greater stability to crop production. Therefore, integration of inorganic, organic and biofertilizers are essential in realizing the higher yield and reducing cost of cultivation of pigeon pea. The work of many researchers done and discussed here in respect to integrated nutrient management practice may play significant role in enhancing production and productivity of pigeon pea in a sustainable manner as well as soil health.

Effect of integrated nutrient management on growth characters

Generally fertilizers are applied to a crop cultivar with a view to realize maximum yields within its potential. Like other field crops, pigeon pea also requires essential elements viz., nitrogen, phosphorus, potassium, sulphur and zinc with the integration of organic manures and biofertilizers just to provide balanced nutrient and enhancing the productivity and profitability of crop.

Kene et al. (1990) at Nagpur reported that application of 37.5 kg N + 75 kg P₂O₅ + 20 kg K₂O + 10 kg ZnSO₄/ha significantly increased the nodules/plant and N concentration in nodules of pigeon pea over no application or (control). Gupta and Rathore (1995) observed that growth attributes (plant height and dry matter/plant) significantly increased with the application of full recommended dose of fertilizer to both the component crops in pigeon pea + sesame intercropping system over the lower doses of recommended dose. Nameed and Gupta (1999) found that application of 100% RDF (20 kg N and 50 kg P₂O₅/ha) and seed inoculation with *Rhizobium* and PSB gave the higher number of nodules/plant, dry weight of nodules/plant and shoot dry weight (g/plant) of pigeon pea over the 100% RDF alone and other treatments. In an experiment conducted at New Delhi, it was reported that application of fertilizer up to 75 per cent recommended dose (18 N + 46 P₂O₅ + 20 K₂O kg/ha) significantly enhanced the growth parameters viz., plant height, branches/plant and LAI of pigeon pea over control (Shivran et al., 2000). Similarly, Saxena et al. (2001) recorded significant increase in growth parameters viz., plant height, leaf area index (LAI), dry matter accumulation, crop growth rate (CGR), relative growth rate (RGR) and net assimilation rate (NAR) of soybean with application of 20 kg N + 60 kg P₂O₅ + 40 K₂O kg/ha over control. Singh and Pal (2003) observed that application 100% RDF significantly increased the plant height, dry matter production and leaf area index of pigeon pea in comparison to 50% RDF and control. In a three year field experiment at Kanpur (UP) on pigeon pea, Verma et al. (2004) stated that application of zinc (folic spray of 0.5% ZnSO₄) significantly increased the plant height, number of leaves and branches/plant of pigeon pea over seed soaking (0.5% ZnSO₄) and seed soaking (0.5% ZnSO₄ + foliar spray) treatments. Ramesh et al. (2006) conducted a field experiment on growth of pigeon pea as influenced by different treatments of organic manures (cattle dung @ 4 t/ha, vermicompost @ 3 t/ha and poultry manure @ 2 t/ha) and found that among organic sources, cattle dung recorded the maximum crop growth in terms of plant height, number of branches/plant and biomass accumulation, vermicompost remained intermediate while poultry manure recorded the lowest values of above parameters but was superior to control.

Patil and Padmani (2007a) while working on pigeon pea at Junagadh (Gujarat) observed that application of 100% RDF (25 N + 50 P₂O₅ + K₂O 0.0 kg/ha) significantly increased the plant height, branches/plant and number of nodules/plant over 50% RDF and control, however it was at par with 75% RDF. Singh (2007) conducted a field experiment at BHU, Varanasi and found that significantly increased plant height, number of branches and dry matter/plant of pigeon pea with the application of 50% RDF + 5 t FYM/ha which was remained at par with 10 t FYM and 100% RDF. Singh and Singh (2012) results revealed that the application of phosphorus 75 kg ha⁻¹ gave the higher plant height, branches/plant, dry matter production/plant, chlorophyll content (SPAD), leaf area and LAI which were significantly superior over 25 kg P₂O₅/ha and control but remained at par with 50 kg P₂O₅/ha during both the years. A field experiment was carried out by Saritha et al. (2012) reported that application of 150% RDF + vermicompost @ 1 t/ha produced higher plant height, no. of branches/plant leaf area, leaf area index (LAI), dry matter production/plant as compared to 200% RDF + vermicompost @ 2 t/ha). While working on pigeon pea, Kumawat et al. (2013b) carried out a field study on pigeon pea results revealed that application of 100% RDF + 50% RDN + 5 kg Zn/ha significantly increased the plant height (216.7 cm) and branches/plant (21.6) which was at par with 50% RDF + 100% RDN + 5 kg Zn/ha and superior to remaining nutrient management treatments. Singh et al. (2014) carried out field experiment at Shamli (UP) results revealed that plant height, no. of branches/plant and dry matter production/plant of pigeon pea were higher significantly recorded with the application of 90 P₂O₅/ha and 40 S/ha significantly superior over control 30 and 60 kg P₂O₅ and 20 kg S/ha, respectively. Sahay et al. (2015) carried out a field experiment at Varanasi on pigeon pea and reported that application of 100% RDF + 5 t FYM + *Rhizobium* + PSB gave higher plant height, numbers of branches and dry matter accumulation /plant followed by 50% RDF + 5 t FYM + *Rhizobium* + PSB. Rathod et al. (2016) carried out an field experiment at Gulbarga found that application of RDF+ZnSO₄ @ 15 kg/ha increased the plant height, number of primary
branches and secondary branches of pigeon pea however, it was on par with RDF+ZnSO₄ @ 25 kg/ha and significantly superior to rest of the treatments. Pal et al. (2016) observed that among the nutrient management practices, application of 100% recommended dose of fertilizer + 2.5 t vermicompost recorded significantly higher growth characters i.e. plant height, no. of branches, dry matter accumulation/plant, LAI nodules/plant, dry weight of nodules/plant as compared to rest of the nutrient management practices. Singh et al. (2016a) conducted a field experiment at Ranchi (Jharkhand) reported that among the RDF (recommended dose of fertilizer) levels application of 200% RDF (30:60:30:30 kg NPKS/ha) gave significantly higher growth characters compared to plant height, no. of primary and secondary branches/plant, LAI, no. of nodules/plant and dry weight of nodules/plant, however it was at par with 150% RDF and superior to 100% RDF.

Effect of integrated nutrient application on yield attributes and yield

Ali (1981) concluded that application of 40 kg P₂O₅/ha significantly increased the grain yield of pigeon pea (9.66 q/ha) over the 20 kg P₂O₅/ha. Chauhan and Singh (1981) found that application of 80 kg P₂O₅/ha obtained the maximum yield of pigeon pea (69.5%) higher than control. Thakur et al. (1988) found that application of 20 kg N + 50 kg P₂O₅/ha significantly increased the seed yield of pigeon pea (from 1.28 to 1.70 t/ha) but further increase the rate of N, P rate gave no additional seed yield. Kene et al. (1990) reported that application of 37.5 kg N + 75 kg P₂O₅ + 20 kg K₂O + 10 kg ZnSO₄/ha significantly improve the grain yield of pigeon pea (861 kg/ha) over control (283 kg/ha). Billore et al. (1993) an experiment was conducted at Sehore (MP) and observed that maximum seed yield highest under application of 100 + 75% (20 N + 60 P₂O₅ kg/ha) fertility levels to pigeon pea + soybean intercropping over remaining fertility levels. Padmalatha and Rao (1993) reported that application of 30 kg N + 75 kg P₂O₅ + K₂O 0.0 kg/ha significantly increased the dry matter and seed yield of pigeon pea over 20 kg N + 20 kg P₂O₅ + K₂O 0.0 kg/ha. Singh et al. (1994) reported that maximum seed yield of pigeon pea (1.85 t/ha) with the application of 40 kg N + 80 kg P₂O₅ + 40 kg K₂O/ha which also gave highest benefit cost ratio (1.57). Arunachalam et al. (1996) observed that seed yield of pigeon pea was highest with application of 40 kg P₂O₅ + 20 kg K₂O/ha. Srinivas and Raju (1997) reported that yield and yield attributing charters viz., number of pods per plant, 100-grain weight and grain yield of pigeon pea significantly increased with application 60 kg P₂O₅/ha than the 0 and 30 kg P₂O₅/ha. Under rainfed conditions at Morena (M.P.), Yadav et al. (1997) found that pods/plant and test weight significantly superior under pigeon pea + blackgram (100% RF i.e. 20 kg N and 50 kg P₂O₅/ha) as compared to sole pigeon pea, whereas, seed yield/plant was higher in pure pigeon pea. In a two year investigation at New Delhi on sandy loam soil, application of 100% recommended dose of fertilizer (18 N + 46 P₂O₅ + 20 K₂O kg/ha) significantly increased pods/plant, seeds/pod and 1000-seed weight of pigeon pea during 1997-1998 and 1998-1999 over control (Shivyan and Ahlawat, 2000). Adhikary and Sarkar (2000) reported that pigeon pea + groundnut paired row system at 60 kg P₂O₅/ha gave the highest pigeon pea seed yield and monetary advantage.

Jat and Ahlawat (2003) reported that higher yield attributes (pods/plant and seeds/pod) and grain yield of pigeon pea and pigeon pea equivalent yield were recorded in pigeon pea+ groundnut intercropping system along with 40 kg P₂O₅/ha. In another experiment, conducted at Coimbatore (Tamil Nadu) Velayutham et al. (2003) opinion that growing of pigeon pea in paired row with full RDF (25 N + 50 P₂O₅, kg/ha) + greengram recorded more plant height, number of pods/plant, number of seeds/pod, 100-seed weight and seed yield which was at par with paired row pigeon pea full dose of RDF (20 N + 50 P₂O₅ kg/ha) + greengram (2.5 N + 5.0 P₂O₅ kg/ha). Singh and Pal (2003) from New Delhi reported that application of 100% RDF significantly increased branches/plant, number of pods/branch, pod length, weight/pod, number of grains/pod, weight of grains/pod, 1000-grain weight, grain and stalk yield of pigeon pea over 50% RDF and control. Verma et al. (2004) from Kanpur (UP) reported that application of zinc (foliar spray of 0.5% ZnSO₄) significantly increased the number of pods/plant number of seeds/plant, weight of seeds/plant, test weight and seed yield of pigeon pea over other treatments.

Kumar and Kushwaha (2006) observed that pods/plant and seed and stalk yield of pigeon pea significantly improved with application of 80 kg P₂O₅/ha over (20 and 40 P₂O₅/ha), but it was remained at par with 60 kg P₂O₅/ha. The plant height, seeds/pod and 100-seed weight did not affected significantly by application of different levels of phosphorus (20, 40 and 80 P₂O₅/ha). Ramesh et al. (2006) carried out a field experiment at Bhopal, reported that among different sources, chemical fertilizers recorded the higher number of pods/plant in pigeon pea which were at par with cattle dung application. Application of vermicompost, phosphocompost and poultry manure resulted in similar number of pods/plant which were at par with each other but significantly superior to control. Seeds/pod and 100-seed weight did not differ significantly among sources. Seed yield/plant was the highest in chemical fertilizer and the lowest in control. Karwasra and Kumar (2007) in a four year study (2002-2005) on pigeon pea concluded that 40 kg N + 80 kg P₂O₅/ha significantly improved grain yield in all the
four years over control and other lower levels i.e. NPK tried in different combinations. The average increase in grain yield due to 40 kg N + 80 kg P$_2$O$_5$/ha over control was 62.5, 54.0, 89.3 and 68.2 per cent during 2002, 2003, 2004 and 2005, respectively. An experiment conducted during kharif season on pigeon pea + green-gram intercropping under rainfed condition, it was found that application of 40 kg P$_2$O$_5$ + 25 kg S + PSB significantly increased the seed and stalk yield of pigeon pea over control, however, it was at par with 40 kg P$_2$O$_5$ + 25 kg S/ha (Kumar and Rana, 2007). Patil and Padmani (2007b) reported that application of 100% RDF (25 N + 50 P$_2$O$_5$ + K$_2$O 0.0 kg/ha) significantly increased the yield and yield attributes viz., number of pods/plant, number of seeds/pod, test weight, grain yield/plant, grain and stover yield of pigeon pea over 50% RDF and control, but it was remained at par with 75% RDF.

Reddy et al. (2007) in a field experiment at Warangal (Andhra Pradesh) concluded that application 100% RDF (20 N + 50 P$_2$O$_5$ + 20 K$_2$O + 20 S kg/ha) + 30 kg sodium molybdate to pigeon pea significantly increased pods per plant and seed yield over 100% RDF and control and other treatments and being at par with each other, however, plant height and 100 seed weight were not influenced significantly by micronutrients along with RDF. Singh (2007) reported that maximum grain yield and stover yield of pigeon pea were observed with the application of 50% RDF + 5 t FYM/ha over the other treatments. Ghosh et al. (2009) carried out field experiment of soybean/sorghum intercropping and found that integrated use of organic and inorganic-fertilizer recorded significantly higher soybean equivalent yield (SEY) over control and sole inorganic fertilizer. The highest SEY was recorded with 75% NPK+4 t FYM/ha.

Deshbhrratar et al. (2010) at Nagpur reported that application of 50 kg P$_2$O$_5$/ha (through DAP) and 20 kg S/ha (though elemental sulphur) significantly increased the number of pods/plant, number of seeds/pod, grain, straw yield/plant, and grain, straw yield over control and 25 kg P$_2$O$_5$/ha. Sharma et al. (2010a) revealed that application of RDF + 15 kg ZnSO$_4$/ha significantly number of pods/plant, number of seeds/pod, 100-seed weight and seed yield of pigeon pea followed by RDF + 25 kg ZnSO$_4$ and RDF + seed treatment with sodium molybdenum @ 4 g/kg as compared to control. Reddy et al. (2011) reported that application of 50% RDF + seed treatment with Rhizobium @ 200 g/kg seeds recorded significantly higher number of branches/plant, pods, higher and greater grain yield of pigeon pea (16.3, 151.3 and 1358 kg/ha, respectively) as compared to seed treatment with Rhizobium @ 200 g/kg seeds + 100% RDF + FYM @ 5 t/ha (14, 142 and 1325 kg/ha, respectively).

Goud et al. (2012) reported that sowing at 90 x 30 cm with application of 30:60:30:20:15 kg N: P$_2$O$_5$: K$_2$O: S: ZnSO$_4$/ha obtained higher number of pods/plant (180 cm, 4.6 and 163, respectively) as compared to sowing at 75 x 25 cm with application of 20:45:20:20:15 kg N: P$_2$O$_5$: K$_2$O: S: ZnSO$_4$/ha recorded lower values (175 cm, 4.5 and 138, respectively) in pigeon pea. Meena et al. (2012) found that application of fertilizer (60:60:40 NPK kg/ha) at soil-test based recommended rates produced 1.44 t/ha of grain yield of pigeon pea which was significantly higher as compared to unfertilized control (0.94 t/ha). Singh and Singh (2012) carried out a field study on pigeon pea reported that application of phosphorus 75 kg/ha produced highest grain, stalk, biological yield and harvest index which was significantly superior to 25 kg P$_2$O$_5$/ha and control but remained at par with 50 kg P$_2$O$_5$/ha. Saritha et al. (2012) found that highest seed yield of pigeon pea was recorded in 150% RDF + vermicompost @ 1 t/ha which was comparable with 200% RDF + vermicompost @ 2 t/ha. Gangaiah et al. (2013) conducted two years field study on pigeon pea during kharif, results revealed that higher plant height, pods/plant 1000-seed weight, seeds/pod, seed yield, biological yield and harvest index were recorded with the application of RDF (recommended dose fertilizers N 20 and P 26.4 kg/ha) over the rest of the treatments. Umesh and Shankar (2013) carried out a field experiment at Bangalore on pigeon pea, results revealed significant increase in pods/plant, test weight, grain (1759 kg/ha) and stalk yield (6004 kg/ha) with application of N:P:K:S:ZnSO$_4$ @ 50:100:75:10:12.5 kg/ha as compared to other treatments. Pandey et al. (2013) reported that application of FYM @ 5.0 t/ha or vermicompost @ 2.5 t/ha with 100 % RDF proved equally effective for enhancing the grain yield of pigeon pea and both produced significantly higher grain yield than RDF alone. From Varanasi Kumawat et al. (2013b) observed that higher pods/plant and 1000-seed weight was recorded in the treatment of 100% RDF + 50% RDN + 5 kg Zn/ha which was statistically similar with 50% RDF + 100% RDN + 5 kg Zn/ha and significantly superior to rest of the treatments. Kumawat et al. (2013a) reported that significantly higher yield attributes viz., weight of pods/plant (122.22 and 115.78 g), no. of seeds/pod (3.34 and 3.3) seed yield/plant (125.6 and 120.0 g) seed yield (2.7 and 1.9 q/ha) and land equivalent ratio (1.6 and 1.5) were found the application of 100% RDF + 50% RDN + 5 kg Zn/ha and this treatment was found at par with 50% RDF + 100% RDN + 5 kg Zn/ha during 2008-09 and 2009-2010. From Shamli (UP) Singh et al. (2014) reported that higher yield attributes viz., pods/plant, pod weight/plant, grains weight/plant, 1000-grain weight and yields viz., seed, stover and biological yield and harvest index were recorded with the application of 90 P$_2$O$_5$/ha but it was statistically comparable with 60 kg.
P₃O₅/ha and significantly superior to control and 30 kg P₂O₅/ha. Zadode et al. (2014) field experiment was conducted on PKV-TARA pigeon pea at Akola, results reveal that fertilizer level of 25:50:20:20 kg NPKS/ha significantly increased the grain yield (25.70 q/ha) and harvest index (32.23%) than fertilizer level of 12.5:25:10:10 kg NPKS/ha. Similarly in regard to stover yield did not show significant difference. Aher et al. (2015) conducted a field study on pigeon pea and reported that yield attributes viz., number of pods/plant, weight of pods and weight of seeds/ plant and yields (seed, stover and biological yield) were increased due to application of 100 kg P₂O₅/ha but it was at par with 50 and 75 kg P₂O₅/ha and significantly higher than 25 kg P₂O₅/ha. From Varanasi (UP) Sahay et al. (2015) reported that no. of pods/plant test weight, grain yield stalk yield and harvest index of pigeon pea significantly increased with the application of 100% RDF + 5 t FYM + Rhizobium + PSB and it was at par with 50% RDF + 5 t FYM + Rhizobium + PSB. While working on pigeon pea Rathod et al. (2016) reported that application of ZnSO₄ @ 15 kg/ha along with RDF gave higher no. of pods/plant, pod weight/plant seed weight/plant 100-seed weight and grain yield of pigeon pea however, it was statistically similar with RDF+ZnSO₄ 25 kg/ha. Pal et al. (2016) working on pigeon pea found that yield attributes such as no. of pods/plant, no. of grain/pod weight of pods/plant, grain weight/plant and test weight and grain yield (1831.8 kg/ha) and stalk yield (8221.6 kg/ha) over the remaining treatments. Singh et al. (2016a) observed that among the RDF (recommended dose of fertilizer) levels application of 200% RDF (30:60:30:30 kg NPKS/ha) gave higher yield attributes like that no. of pods/plant, no. of seeds/pod, 100-seed weight, grain yield and stover yield of pigeon pea but it was statistically similar to 150% RDF and significantly superior to 100% RDF.

Effect of integrated nutrient application on nutrient content and uptake
Singh et al. (1988) observed that application of 10 and 20 kg ZnSO₄/ha significantly increased the Zn content and uptake by seed of pigeon pea. Kene et al. (1990) conducted an experiment at Nagpur and recorded that application of 37.5 kg N + 75 kg P₂O₅ + 20 kg K₂O + 10 kg ZnSO₄/ha significantly improve the N, P and K content in grain and stalk of pigeon pea over control. Srivastava and Srivastava (1993) reported that sulphur had a significant effect on uptake of sulphur by pigeon pea. Rao and Reddy (1997) reported that uptake of P increased upto 60 kg/ha and protein content also increased with increasing P rates. Kantwa et al. (2005) reported that the phosphorus uptake by pigeon pea sole and pigeon pea + urdbean intercropping system was significantly more in 40 kg P₂O₅/ha over unfertilized crop. Ramesh et al. (2006) conducted a field experiment at Bhopal applying different organic manures (cattle dung 4 t/ha, vermicompost 3 t/ha and poultry manure 2 t/ha) to pigeon pea and reported that the highest protein content in seed was recorded with the application of cattle dung (21.25%) followed by vermicompost (20.90%) and poultry manure (20.87%). Singh (2007) observed that application of 50% RDF + 5 t FYM/ha to pigeon pea significantly recorded higher uptake of N (150 kg/ha), P (31.9 kg/ha) and K (98.7 kg/ha) and remained at par with 10 t FYM/ha and 100% RDF treatment. While working on pigeon pea at Junagadh (Gujarat), Patil and Padmani (2007c) observed that 100% RDF (25 N : 50 P₂O₅ : K₂O 0 kg/ha) caused significant increase N, P, and K content in grain and stalk of pigeon pea, highest protein content and protein yield over the 50% RDF and control, whereas, it was at par with 75% RDF. From New Dehli, Kumar and Rana (2007) reported that application of 40 kg P₂O₅ + 25 kg S + PSB significantly improved the P and S uptake by pigeon pea over control and 40 P₂O₅/ha, however, it was remained at par with 40 kg P₂O₅ + 25 kg S/ha. Kumawat et al. (2012) carried out a field study for two years on pigeon pea reported that application of 100% RDF+50% RDN+5 kg Zn/ha significantly increased CEC of roots (68.73 and 66.14 meq 100 g/dry roots), root N content (3.03 and 2.80%) protein content (21.31 and 21.11%) and protein harvest (kg/ha) (534.49 and 364.01 kg/ha) which was at par with 50% RDF + 100% RDN + 5 kg Zn/ha and significantly superior to rest of the integrated nutrient treatments during both the years of study. Gangaiah et al. (2013) reported that significantly N and P content in grain and their uptake improved with the application of RDF (N 20 and P 26.4 kg/ha), whereas the Fe and Zn content in grain was higher noted with the application of RDF through FYM. Umesh and Shankar (2013) observed that application of N:P:K:S:ZnSO₄ @ 50:100:75:12.5:25 kg/ha significantly improved the NPK uptake by pigeon pea over rest of the nutrient levels. Working on pigeon pea Zadode et al. (2014) observed that application of 25:50:20:20 kg NPKS/ha significantly improved the N, P, K and S uptake by crop which was superior over 12.5:25:10:10 kg NPKS/ha. Aher et al. (2015) reported that quality protein content (20.52 %) was improved significantly by the application of higher levels of phosphorus @ 100 kg P₂O₅/ha which was at par with 50 and 75 kg P₂O₅/ha than 25 kg P₂O₅/ha. Sahay et al. (2015) observed that N, P, K content in grain and stalk were significantly more noted with the application of RDF through FYM + Rhizobium + PSB also improved significantly the protein content in grain and stalk of pigeon pea. However this treatment was statistically at par with 50% RDF + 5 t FYM +
Effect of integrated nutrient application on economics

Kumar and Ahlawat (1986) found that application of 50 kg N/ha to pigeon pea significantly increased the pigeon pea equivalent yield and net return over the 0 and 25 kg N/ha. Billore *et al.* (1991) conducted a field trial on pigeon pea intercropped with soybean and reported that in case of sulphur application, the improvement in net return was upto 40 kg S/ha. Gupta and Rathore (1995) found that the maximum pigeon pea equivalent yield, gross returns and net returns were recorded with application full dose of RDF to both components over remaining RDF doses. Yadav *et al.* (1997) reported that pigeon pea equivalent yield and benefit : cost ratio higher were recorded in the pigeon pea + sesame (100% RF) than the soybean and cluster-bean intercropping systems. Namedo and Gupta (1999) observed that maximum net return was obtained with 100% RDF (20 N and 50 P₂O₅ kg/ha) + Rhizobium + PSB followed by 100% RDF + Rhizobium and 100% RDF + PSB. Shivran *et al.* (2000) reported the maximum net return of Rs 22,675 from the cropping systems when pigeon pea was fertilized with 60 kg P₂O₅/ha. Kumar and Rana (2007) found that application of 40 kg P₂O₅ + 25 kg S/ha + PSB significantly higher net return and B:C ratio over 40 P₂O₅/ha and control, which was at par with 40 kg P₂O₅ + 25 kg S/ha. Patil and Padmani (2007b) reported that application of 100% RDF (25 N + 50 P₂O₅ + K₂O 0.0 kg/ha) gave the highest net returns, however, the highest net ICBR was obtained with 75% RDF over 50% RDF and control. Singh (2007) reported that net returns of pigeon pea were observed with the application of 50% RDF + 5 t FYM/ha over other treatments. In a study Pandey and Kushwaha (2009) reported that combined seed inoculation with *Rhizobium* + PSB plus 100% RDF recorded significantly higher net returns (Rs. 38,233/ha) followed by *Rhizobium* + PSB inoculation with 50 % RDF (Rs. 32,437/ha) of pigeon pea.

Sharma *et al.* (2010b) from Karnataka reported that application of 100% RDF + 15 kg ZnSO₄/ha significantly gave maximum gross return, net return and B:C ratio over control. Sharma *et al.* (2010a) reported that pigeon pea + green gram intercropping system with RDF + 2 % urea spray at 15 and 30 days after harvest of intercrops recorded significantly higher pigeon pea equivalent yield (19.53 and 18.99 q/ha), gross returns (Rs. 31,439 and 30,576/ha), net returns (Rs. 23,984 and 22,928/ha) and B: C ratio (3.81 and 3.63, respectively) over other intercropping systems. Tiwari *et al.* (2011) observed that pigeon pea + urdbean cropping with the application of PSB + FYM @ 2.5 t/ha recorded higher net returns (Rs. 27,911/ha) and B:C ratio (1.58) compared to pigeon pea + maize cropping system (Rs. 14,293/ha) with the B:C ratio of 0.70. Meena *et al.* (2012) revealed that adoption of induced defoliation in pigeon pea along with NPK + FYM gave the highest system productivity whereas significantly higher net returns (Rs. 32,400/ha) was found under NPK + induced defoliation over the other treatments. Vishwanatha *et al.* (2012) observed that maximum gross returns (Rs. 80,302 and Rs. 77,448/ha), net returns (Rs. 62,308 and 59,718/ha) and B: C ratio (3.46 and 3.37) were noted with the application of 100% RDF to pigeon pea + 100% RDPK and 50% RDN to sunflower as basal + 50% RDN as top dress at 45 DAS to sunflower based on population followed by 100% RDF to pigeon pea and 100% RDF to sunflower as basal dose based on population, respectively. Sharma *et al.* (2012) reported that 100 % RDF, FYM @ 5 t/ha and Rhizobium + PSB + PGPR gave significantly higher net returns, of Rs. 27,608, 29,764, and 27,330/ha, respectively. Similar, results were obtained in case of B:C ratio (1.49, 1.59 and 1.52, respectively). Gan-gaiah *et al.* (2013) observed that maximum gross return, net return and B:C ratio were recorded in RDF (N 20 and P 26.4 kg/ha) over the rest of the treatments. Umesh and Shankar (2013) reported that application of N:P:K:S:ZnSO₄ @ 50:100:75:10:12.5 kg/ha fetched maximum net return and B:C ratio as compared to rest of the nutrient levels. Kumawat *et al.* (2015) working on pigeon pea revealed that maximum gross return (130.74 ×10³ Rs/ha), net return (109.28 ×10³ Rs/ha), B:C ratio (5.11), production efficiency (8.90 kg/ha/day) and economic efficiency (401.07 Rs./ha/day) were observed under 100% RDF + 50% RDN + 5 kg Zn/ha and it was found similar with 50% RDF + 100% RDN + 5 kg Zn/ha. Rathod *et al.* (2016) reported that application of 15 kg ZnSO₄/ha along with RDF gave maximum gross return, net return and B:C ratio which was statistically at par with RDF + ZnSO₄ 25 kg/ha. Singh *et al.* (2016a) working on pigeon pea found that maximum gross return and net return was recorded in 200% RDF and it was at par with 150% RDF and significantly superior to 100% RDF.

Effect of integrated nutrient application on soil fertility

Srinivasan and Ahlawat (1984) found that available P in sandy loam soil significantly improved by application of 90 kg P₂O₅/ha over the lower levels of phosphorus (0, 30 and 60 kg/ha), while N and K remained unaffected. Singh and Faroda (1986) observed that total N, available N and P status of soil increased with the application of 40 and 80 kg P₂O₅/ha in pigeon pea. Application of FYM alone or in combination with chemical fertilizers significantly increased the residual status of available nitrogen and phosphorus in soil (Dudhat *et al.* 1997). Ramesh *et al.* (2006) found significantly higher organic carbon (0.63%) due to application of 4 t/ha cattle dung manure (0.63%) as

Rhizobium + PSB. Singh *et al.* (2016b) while working on pigeon pea reported that improved N, P, K and S uptake by grain as well as stover increased with the increasing level of RDF 200% but it was at par with 150% and significantly higher over 100% RDF.
compared to either chemical fertilizer (0.54%) or unfertilized control (0.50%). Higher values of available N (178.7 kg/ha) and K (578.7 kg/ha) in soil were also observed in the plots manured with cattle dung than the control. Deshbhratar et al. (2010) reported that application of 20 kg S/ha (through elemental sulphur) significantly improved the available N, P and K over control. Whereas, maximum sulphur content (9.52 mg/kg) was recorded with the application of 50 kg S/ha. On other hand the application of 75 kg P₂O₅/ha (through DAP) significantly improved available soil N, P and S over control. However, the maximum potassium was found in control. Dubey and Vyas (2010) reported that application of 50 % RDF + FYM @ 5 t/ha + bio-fertilizers proved conducive to sustain the soil health by enhancing the organic carbon, available nutrient status by both crop (pigeon pea and soybean) by reducing the bulk density of soil. Reddy et al. (2011) reported that application of 50% RDF through inorganic fertilizer + seed treatment with *Rhizobium* culture and PSB improves nutrient status of soil. Saritha et al. (2012) observed that among the nutrient levels, significantly higher available N (201.90 kg/ha) and P₂O₅ (29.78 kg/ha) was recorded in the fertilized plot 150% RDF + vermicompost @ 1 t/ha as compared to 200% RDF + vermicompost @ 2 t/ha) but K₂O did not show any significant differences. Meena et al. (2012) reported that the soil-test based NPK resulted in conjunctive use of fertilizer NPK and FYM improved soil health as revealed by lower bulk density and higher water holding capacity over sole fertilizer treatment. Singh and Singh (2012) reported that application of 75 kg P₂O₅/ha gave higher total nitrogen, phosphorus, potassium and sulphur uptake and was significantly superior over 25 kg P₂O₅/ha and control. Gangaiah et al. (2013) found that application of RDF through FYM gave higher values of organic carbon, available N and P in soil, whereas the higher values of available K was in RDF thorough vermicompost and lowest in control. Pandey et al. (2013) reported that pigeon pea + urdbean intercropping system with application of FYM @ 5.0 t/ha or vermicompost @ 2.5 t/ha and RDF improved bulk density, organic carbon and increased available N, P and K content of the soil over initial soil value. Zadode et al. (2014) reported that significantly higher available N, P, K and S in soil were noted with the application of 25:50:20:20 kg NPKS/ha as compared to 12.5:25:10:10 kg NPKS/ha. Nagar et al. (2016) carried out field study on pigeonpea reported that among combined use of organic manure, application of FYM + phosphocompost and pigeon pea stalk + phosphocompost resulted in improvement of physical, chemical and biological properties of soil over recommended dose of fertilizer (RDF) application. Kumawat et al. (2015) reported that after harvest of crop of pigeon pea significantly improve the organic carbon, available N, P, K, S and Zn due to application of 100% RDF + 50% RDN +5 kg Zn/ha. From Ranchi Singh et al. (2016b) reported that application of 200% RDF improved the organic carbon, available N, P, K and S in soil after harvest of crop but it was at par with 150% and significantly higher over 100% RDF.

Conclusion

Good agronomic practices (GAP) and their different components shown potential to excel under change climate condition, there is need to adopt the all the component of advocated technology as a unit not to choose few of them at will, which were leading to several complication soil health hazards and poor response of technology. The using of high yielding varieties with optimum application of nutrient either organic or inorganic sources to pigeon pea increases the production, productivity, profitability and also improved the soil health which is manner of sustainable agro-ecosystem.

REFERENCES

