Effect of rice husk biochar, carpet waste, farm yard manure and plant growth promoting rhizobium on the growth and yield of rice (*Oryza sativa*)

D. K. Singhal¹, Janardan Yadav², Shiv Singh Meena³*, Divyesh Chandra Kala⁴

¹,²,³Department of Soil Science and Agricultural Chemistry, Banaras Hindu University, Varanasi (U.P.), INDIA
⁴Department of Soil Science, College of Agriculture, GBPUA & T, Pantnagar, U. S. Nagar (Uttarakhand), INDIA

*Corresponding author. E-mail: meenashiva20@gmail.com

Received: November 22, 2016; Revised received: April 17, 2017; Accepted: September 20, 2017

Abstract: The present investigation was aimed for improving growth and yield of crop using waste products of different activities and also useful in ecological stability of soil environment. This objective is not only an economic option for poor farmer but also an effective strategy for increasing yield. The experiment was conducted in the organic farming plot of the Institute of Agricultural Sciences, BHU, Varanasi during kharif season of rice crop in 2014. The field experiment was laid out in randomized block design (RBD) with 10 treatments and three replications. Application of graded level of biochar, carpet waste farm yard manure (FYM) and plant growth promoting rhizobium (PGPR) was found to significantly enhance the grain and straw yield of rice by 57.70% and 56.08% over control, respectively.

Keywords: Carpet waste, FYM, PGPR, Rice, Rice husk biochar

INTRODUCTION

Rice is the staple food for over half the world’s population. Approximately 480 million metric tons of milled rice is produced annually. China and India alone account for approximately 50% of the rice grown and consumed (Muthayya et al., 2014). In India, it occupies 43.86 million ha of land and produces about 104.80 million tons of grain with the productivity of 2.39 tones ha⁻¹ (Anonymous, 2015). However, this is not enough to feed the ever-increasing population, and there is need to increase the production to keep pace with population growth.

Biochar is carbon rich solid product obtained after heating biomass, such as wood, manure or leaves under limited supply or absence of oxygen. Biochar application has received a growing interest as a sustainable technology to improve highly weathered or degraded tropical soils (Lehmann and Rondon, 2006). Biochar application can enhance plant growth by improving soil chemical characteristics (i.e. nutrient retention, nutrient availability), soil physical characteristics (i.e. bulk density, water holding capacity, permeability), and soil biological properties, all contributing to an increased crop productivity (Lehmann and Rondon, 2006; Yamato et al., 2006). In addition, biochar is highly recalcitrant to microbial decomposition and thus guarantees a long term benefit for soil fertility (Steiner et al., 2007). Biochar has a fantastic quality of absorbance and when applied in soil, it absorb moisture, plant nutrient, agricultural chemicals and thereby reduce loss of nutrients through leaching and surface runoff of water. Biochar is a relatively low density material that helps in lowering the bulk density in heavy texture soil along with increase in aeration and root penetration and thus the water holding capacity. These actual effects of biochar application, however, depend on various factors such as the soil fertility and the water balance at a given site, and possibly even the cultivated genotype.

Farmyard manure is easily available, cheap, proven source of nutrition and has been traditionally used by farmers (Nanda et al., 2016). PGPR consists of a diverse type of rhizobacteria known to stimulate plant growth directly either by synthesizing hormones such as indole acetic acid or by promoting nutrition, by phosphate solubilisation or generally by accelerating mineralization process. They can also stimulate growth indirectly by acting as bio control agent by protecting the plant against soil born fungal pathogens or deleterious bacteria. Some PGPR suppress pathogen by synthesizing antifungal metabolites (Vassilev et al., 2006). Application of FYM along with PGPR improved organic carbon, available N, P and K content in soil when applied in mung bean (Das and Singh, 2014). Positive interaction between biochar and PGPR resulted in improved growth attributes and biomass yield in switch grass (Shanta, 2012).

Waste products like biochar, carpet waste, etc. can be important for improving crop growth and yield and also in the waste management. Organic carbon pools in Indian soils is declining due to heavy and imbalanced incorporation of chemical fertilizers and ignorance or unavailability or inaccessibility
of the organic matter. Considering all these facts in Indian context there is a need to study the combined effect of Biochar, FYM, Carpet waste and PGPR as a source of organic material to soil.

MATERIALS AND METHODS

The experiment was carried out at the Organic farming plot of the Institute of Agricultural Sciences, BHU, Varanasi. Three replications of each treatment were maintained in the experiment. So there were 27 experimental plots along with three control plots (without any treatment). The experiment was conducted in Randomized Block Design. To determine the initial physico-chemical properties of soil representative soil samples were collected from five different places before conducting the experiment from the depth of 0-20 cm in sandy clay loam texture soil with pH value of 7.42, EC of 0.170 dSm⁻¹ and organic carbon 0.45%. The initial soil was low in available N (258.55 kg ha⁻¹), medium in available P (14.27 kg ha⁻¹) and medium in available K (223.45 kg ha⁻¹). Pre-Prepared Biochar was collected from Shree ram rice mill Jasaur, Chandauli, Uttar Pradesh in the month of June 2014.

RESULTS AND DISCUSSION

Effect of treatment on growth of rice

Effect on plant height of rice: The data pertaining to effect of biochar and PGPR on height of plant is presented in table 1. It is evident from the table that height of plant (30 DAT) varied from 77.5 to 98.6. It was higher in treatment T₁₀ (BC₂⁺ CW₁⁺ FYM₁ t ha⁻¹ + PGPR) 98.6cm followed by T₉ (BC₁⁺ CW₁⁺ FYM₁ t ha⁻¹ + PGPR) 98.1cm. Significant differences were found between the treatments after application of PGPR in the plot. The inoculation with PGPR showed significantly higher plant height (98.6cm) at 30 DAT than uninoculated treatment (control). The application of biochar and carpet waste in treatment T₁ (BC₁⁺ CW₁ t ha⁻¹) significantly increased the plant height over control. Almost similar trend was noticed with the application of biochar and carpet waste in treatment T₁₂ (BC₁⁺ CW₁⁺ FYM₁ t ha⁻¹ + PGPR) and T₁₃ (BC₁⁺ CW₁⁺ FYM₁ t ha⁻¹ + PGPR) increased 71.83% and T₁₀ (BC₂⁺ CW₁⁺ FYM₁ t ha⁻¹ + PGPR) increased 99.29%. However, the treatment T₁₅ (BC₂⁺ CW₁ t ha⁻¹) and T₁₁ (BC₁⁺ CW₁⁺ FYM₁ t ha⁻¹ + PGPR) were found statically at par to each other.

Effect on chlorophyll content: Data pertaining to the chlorophyll content (SPAD value) in leaf as influenced by biochar, carpet waste, FYM and PGPR application is given in table 1. There was a significant increase in chlorophyll content at 30 DAT with the application of biochar, carpet waste, FYM and PGPR. The maximum chlorophyll content (36.2) in leaf was found in treatment T₁₀ (BC₂⁺ CW₁⁺ FYM₁ t ha⁻¹ + PGPR) followed by T₉ (BC₁⁺ CW₁⁺ FYM₁ t ha⁻¹ + PGPR). The minimum chlorophyll content (26.5) was found in treatment T₁ (control). The application of biochar and carpet waste in treatment T₁₂ (BC₁⁺ CW₁⁺ FYM₁ t ha⁻¹ + PGPR) increased chlorophyll content 1.50% over the control, while T₆ (PGPR) increased 2.64%, and T₁₀ (BC₂⁺ CW₁⁺ FYM₁ t ha⁻¹ + PGPR) increased 36.60%. Decrease in chlorophyll content (leaf SPAD value) with biochar has been reported by Asai et al. (2009) in rice, possibly due to reduction in the availability of soil nitrogen to the plant because of its high C:N ratio. The inoculation with PGPR showed significantly higher chlorophyll content (36.2) than without its inoculation (27.5). The increase in chlorophyll content may be attributed to adequate supply of nitrogen by carpet waste and PGPR. Almost similar trend was observed in chlorophyll content recorded at 60 DAT.

Effect on number of tillers per hill: A critical perusal of the data presented in Table 1 revealed that a significant increase was found in number of tillers at 30 DAT with the application of BC, CW FYM & PGPR. Application of PGPR and different doses of biochar resulted significant increase in number of tillers (30 DAT). The maximum number of tillers (28.3) was noted in T₁₀ (BC₂⁺ CW₁⁺ FYM₁ t ha⁻¹ + PGPR) and minimum number of tillers (14.2) in T₁ (control) at 30 DAT. The application of biochar and carpet waste in treatment T₂ (BC₁⁺ CW₁ t ha⁻¹) increases number of tillers 13.38% over the control, while T₄ (PGPR) increased 69.01%, T₄ (BC₁⁺ CW₁⁺ FYM₁ t ha⁻¹) increased 71.83% and T₁₀ (BC₂⁺ CW₁⁺ FYM₁ t ha⁻¹ + PGPR) increased 99.29%. However, the treatment T₁₅ (BC₂⁺ CW₁ t ha⁻¹), T₁ (BC₁⁺ CW₁ t ha⁻¹) and T₁₁ (BC₁⁺ CW₁⁺ FYM₁ t ha⁻¹ + PGPR) were found statically at par to each other.

Table 1. Details of treatments followed in the plot.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Details of treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₁</td>
<td>Control</td>
</tr>
<tr>
<td>T₂</td>
<td>Biochar + carpet waste (1+1 t) ha⁻¹</td>
</tr>
<tr>
<td>T₃</td>
<td>Biochar + carpet waste (2+1 t) ha⁻¹</td>
</tr>
<tr>
<td>T₄</td>
<td>Biochar + carpet waste+ FYM (1+1+1 t) ha⁻¹</td>
</tr>
<tr>
<td>T₅</td>
<td>Biochar + carpet waste + FYM (2+1+1 t) ha⁻¹</td>
</tr>
<tr>
<td>T₆</td>
<td>PGPR</td>
</tr>
<tr>
<td>T₇</td>
<td>Biochar + carpet waste (1+1 t) ha⁻¹ + PGPR</td>
</tr>
<tr>
<td>T₈</td>
<td>Biochar + carpet waste (2+1 t) ha⁻¹ + PGPR</td>
</tr>
<tr>
<td>T₉</td>
<td>Biochar + carpet waste+ FYM (1+1+1 t) ha⁻¹ + PGPR</td>
</tr>
<tr>
<td>T₁₀</td>
<td>Biochar + carpet waste + FYM (2+1+1 t) ha⁻¹ + PGPR</td>
</tr>
</tbody>
</table>

PGPR: Plant Growth Promoting Rhizobacteria (*Rhizobium* + *Azotobacterchroococcum* HUAZ-1) + *Pseudomonas fluorescens* BHUSPB-06 + *Paenibacilluspolymyxa* BHUSPB-
Effect on grain yield: A critical perusal of the data presented in table 2 revealed that the grain yield of rice was ranging from 22.7 qha\(^{-1}\) to 35.8 qha\(^{-1}\) and it has increased significantly with the application of graded levels of BC, CW, FYM & PGPR. The maximum grain yield (35.8 qha\(^{-1}\)) was recorded in the treatment T\(_1\) (BC\(_2\)+ CW\(_1\)+ FMY\(_1\) t ha\(^{-1}\)+PGPR) which were 14.74% higher than treatment T\(_5\) (BC\(_2\)+ CW\(_1\)+ FMY\(_1\) t ha\(^{-1}\)+PGPR) which was found 57.70% higher over the treatment T\(_1\) (control). The treatment T\(_7\) (BC\(_1\)+ CW\(_1\) t ha\(^{-1}\)+PGPR) gave 26.7 qha\(^{-1}\) grain yield which was 8.97% higher over the T\(_2\) (BC\(_1\)+ CW\(_1\) t ha\(^{-1}\)). Treatment T\(_9\) (PGPR) gave 70.04% higher grain yield over the T\(_1\) (control). However, the treatment T\(_2\) (BC\(_1\)+ CW\(_1\) t ha\(^{-1}\)+PGPR), T\(_3\) (BC\(_2\)+ CW\(_1\) t ha\(^{-1}\)+PGPR), T\(_4\) (BC\(_1\)+ CW\(_1\) t ha\(^{-1}\)+PGPR), T\(_5\) (BC\(_2\)+ CW\(_1\)+ FMY\(_1\) t ha\(^{-1}\)+PGPR), T\(_6\) (BC\(_2\)+ CW\(_1\)+ FMY\(_1\) t ha\(^{-1}\)+PGPR), T\(_8\) (BC\(_1\)+ CW\(_1\) t ha\(^{-1}\)+PGPR), T\(_9\) (BC\(_1\)+ CW\(_1\)+ FMY\(_1\) t ha\(^{-1}\)+PGPR) were found statically at par to each other.

Rondon et al., (2007) reported that bean yield increased by 46% and biomass production by 39% over the control at application of 60g biochar per kg soil. Thakuria et al. (2004) reported that inoculation of different PGPR can increase rice yield from 10 to 76% over control in which Pseudomonas aeruginosa and P. fluorescens can increase rice yield by 49.2% and 23.01% respectively, over control.

Effect on straw yield: A critical perusal of the data presented in table 2 revealed that the application of BC\(_2\)+ CW\(_1\)+ FMY\(_1\) t ha\(^{-1}\)+PGPR resulted in significantly higher straw yield by 56.08% than the straw yield obtained from the treatment T\(_1\) (control). The maximum straw yield (52.60 qha\(^{-1}\)) was recorded in the treatment T\(_10\) (BC\(_2\)+ CW\(_1\)+ FMY\(_1\) t ha\(^{-1}\)+PGPR) which were 17.67% higher than treatment T\(_3\) (BC\(_2\)+ CW\(_1\)+ FMY\(_1\) t ha\(^{-1}\)+PGPR) which gave 39.3 qha\(^{-1}\) straw yield which was 7.96% higher over the T\(_2\) (BC\(_1\)+ CW\(_1\) t ha\(^{-1}\)). Treatment T\(_9\) (PGPR) gave 9.19% higher over T\(_1\) (control). Increase in the chlorophyll content in leaf thus increased the photosynthesis rate and ultimately photosynthetic products increased the biomass of plant. Significant increase in straw yield was might be due to the availa-
bility of all essential elements to the rice crop in sufficient amount by the FYM, carpet waste and PGPR application. Das and Saha (2005) have found an increase in rice yield by 23.7% due to combined inoculation of Azotobacter strain DS9 + Azospirillum strain DM10.

Conclusion

Application of graded level of biochar, carpet waste FYM and PGPR was found to significantly effective to enhance the grain and straw yield of rice. Application of biochar + carpet waste + FYM (2+1+1t) ha⁻¹ & PGPR was found 57.70% higher over the treatment T₁ (control). Application of PGPR consortium (Azospirillum + Azotobacter chroococcum HUAZ-1 + Paenibacillus polymyxa BHUSB-16) (T₀) enhanced maximum grain yield 35.8 q ha⁻¹ which 7.04 % higher over the T₁ (control). Application of BC₂+ CW₁ + FYM₁ t ha⁻¹ + PGPR resulted in significantly higher straw yield (52.6 q ha⁻¹) which was 56.08% than the straw yield obtained from the treatment T₁ (control). Application of PGPR (T₀) was found 9.19% higher over the T₁ (control).

REFERENCES

