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Abstract: Box and Jenkins’ Autoregressive Integrated Moving Average (ARIMA) models are widely used for analyz-
ing and forecasting the time-series data. In this approach, the underlying parameters are assumed to be constant 
however the data in agriculture are generally collected over time and thus have the time-dependency in parameters. 
Such data can be analyzed using state space (SS) procedures by the application of Kalman filtering technique. The 
purpose of this article is to illustrate the usefulness of state space models in sugarcane yield forecasting and to pro-
vide some empirical evidence for its superiority over the classical time-series analysis. ARIMA and state space mod-
els individually could provide the suitable relationship(s) to reliably forecast the sugarcane yield in Karnal, Ambala, 
Kurukshetra, Yamunanagar and Panipat districts of Haryana (India). However, the state space models with lower 
error metrics showed the superiority over ARIMA models for this empirical study. The sugarcane yield forecasts 
based on SS models in the districts under consideration showed good agreement with State Department of Agricul-
ture (DOA) yields by showing 3-6 percent average absolute deviations. 

Keywords:  Autocorrelation function, Kalman filtering technique, State space procedures, Akaike’s information  
criterion, Sugarcane yield forecast 

INTRODUCTION 

The importance of agriculture for Indian society can 

hardly be over emphasized, as its role in economy, 

employment, food security, self-reliance and general 

well-being does not need reiteration. India has a very 

well established system for collection of crop statistics 

at village level and aggregating it at different adminis-

trative levels. The official forecasts (advance esti-

mates) of major cereal and commercial crops are is-

sued by the Directorate of Economics and Statistics, 

Ministry of Agriculture, New Delhi. However, the 

final estimates are given a few months after the actual 

harvest of the crop. Thus, one of the limitations of con-

ventional methods is timeliness and quality of the sta-

tistics. Hence, there is a considerable scope of im-

provement in the conventional system. Timely and in-

season crop production forecasting entails judicious 

planning based on information related to various as-

pects of agriculture. Thus, information on crop acreage 

and production are important inputs for strategic plan-

ning.  

Time series models have advantages in certain situa-

tions. They can be used more easily for forecasting 

purposes because the historical sequences of observa-

tions upon study variables are readily available at 

equally spaced intervals over discrete point of time. 

These successive observations are statistically depend-

ent and time series modelling is concerned with tech-
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niques for the analysis of such dependence. ARIMA 

forecasts are based only on past values of the variable 

being forecast. They are not based on any other data 

series and especially suited to short-term forecasting. 

The stationarity requirement for the applicability of 

Box Jenkins’ (1976) ARIMA methodology seems to 

be quite restrictive. The Box-Jenkins procedure for 

finding a good forecasting model consists of three 

stages i.e. Identification, Estimation and Diagnostic 

checking stage(s). 

The methods used by the state space procedure also 

assume the input series to be stationary. Therefore, the 

first step is to examine the data and test the require-

ment of differencing. Expositions of the state space 

approach to multivariate forecasting were observed in 

the studies of Meinhold and Singpurwala (1983), Kita-

gawa and Gersh (1984) and Aoki (1987), Jong and 

Penzer (2004), Brockwell and Davis (2002), Durbin 

(2002), Bordoloi (2009), Saini and Mittal (2014) etc.  

At national level, not much work has been done on 

state space modelling in the field of agriculture. To cite 

a few more; Stevenson et al. (2001), Piepho and Ogutu 

(2007), Yusof and  Kane (2012), Verma et al. ( 2015), 

Yemitan and Shittu (2015), Omekara et al. (2016 ) 

have also given a good account on the application of 

state space models.  

India is one of the largest sugarcane producers in the 

world, producing around 300 million tonnes of cane 



 

per annum. Sugarcane ranks third in the list of most 

cultivated crops in India after paddy and wheat 

(Source: www.mapsofIndia.com/ indiaa-griculture/)

(Source: www.mapsofIndia.com/ india-agriculture). 

Broadly, there are two distinct agro-climatic regions of 

sugarcane cultivation in India viz., tropical and sub-

tropical. Around 55 per cent of total cane area in the 

country is in the sub-tropics; Uttar Pradesh, Bihar, 

Haryana and Punjab comes under this region and Har-

yana is the largest producer of sugarcane in subtropical 

region (Source:www.agricoop.nic.in/statistics). Indian 

planting season of sugarcane in subtropical region falls 

during September-October to February- March where-

as in tropical region, it is January- February to October

- November. Keeping in view the above subject matter, 

the sugarcane yield forecasts of Karnal, Ambala, Ku-

rukshetra, Yamunanagar and Panipat districts have 

been obtained with the emphasis to see  the forecasting 

performance of the developed models.  

MATERIALS AND METHODS 

The study dealt with modeling the time- series sugar-

cane yield data in Karnal, Kurukshetra, Panipat, Am-

bala and Yamunanagar districts of Haryana. The sugar-

cane yield data of State Department of Agriculture for 

the period 1960-61 to 2014-15 of  Karnal and Ambala 

districts, 1972-73 to 2014-15 of  Kurukshetra district 

and 1989-90  to 2014-15 of  Yamunanagar and Panipat 

districts were compiled from the Statistical Abstracts 

of Haryana/Punjab (Source: esaharyana.gov.in/ State 

Statistical Abstract/).  

Box-Jenkins’ ARIMA and state space modeling 

procedures: The ARIMA forecasts are based only on 

past values of the variable being forecast, however, the 

data should be available at equally spaced discrete time 

intervals. The data has to be made stationary before 

fitting an appropriate ARIMA model. One of the sim-

plest transformations called ‘differencing’ is applied 

when the mean of a series changes over time and log 

transformation is used when the variance of a series 

changes through time. The two important tools at the 

identification stage are the estimated autocorrelation 

function (acf) and partial autocorrelation function 

(pacf). The estimated acfs  i.e.  rk showed the correla-

tion between ordered pairs ( , +k) separated by 

various time spans (k = 1,2,3,…..). The estimated 

pacfs i.e. kk showed the correlation between ordered 

pairs ( , +k) separated by various time spans (k = 

1, 2, 3,…) with the effect of intervening observations (

+1, +2, … + k-1) being accounted for. The func-

tional form of ARIMA (p,d,q) used is expressed as: 

fp(B) Δd Yt = c'+ θq(B) et ,   where c' = 0 if Yt is adjusted 

for its mean                                     …. (i) 

where Y = Variable under forecasting , B = Lag opera-

tY tY

̂

tY tY

tY tY tY

tor , e = Error term (Y- , where  is the estimated 

value of Y), t = time subscript , fp(B) = non-seasonal 

AR process, (1-B)d = non-seasonal difference, θq(B) = 

non-seasonal MA process, f’s and θ’s are the parame-

ters to be estimated (Pankratz, 1991). 

At the estimation stage, the precise estimates of a 

small number of parameters of the model were ob-

tained. Linear least-squares can be used to estimate 

only pure AR models however non-linear least squares 

(NLS) method is used for all other models. Finally, the 

diagnostic tests were performed to check if the random 

shocks were independent or not. 

The state space model: represented a univariate time 

series through auxiliary variables, some of which may 

not be directly observable. These auxiliary variables, 

called the state vector summarized all the information 

from the present and past values of time series relevant 

to the prediction of future values of the series. The 

observed time series has been expressed as linear com-

binations of the state variables.  

Let yt be the r ×1 vector of observed variables after 

differencing if needed and subtracting the sample 

mean. Let zt be the state vector of dimension s, s ≥ r, 

where the first r components of zt consist of yt. Vari-

ous forms of the state space model have been in use 

but the model fitted with the help of STATESPACE 

procedure in SAS for this study is based on Akaike 

(1976). The state space model defined by the state 

transition equation is 

zt+1 = F zt + G et+1                              … (ii)                                                         

zt is a state vector of dimension s, whose first r ele-

ments are yt and whose last s-r elements are                    

conditional prediction of future yt. F is an s×s transi-

tion matrix. G is an s×r input matrix; for model identi-

fication, the first r rows and r columns of G are set to 

an r×r identity matrix. et is a sequence of independent 

normally distributed random vectors of dimension r 

with mean 0 and covariance matrix Σee. In addition to 

the state transition equation, state space models usually 

include a measurement equation or observation equa-

tion that gives the observed values yt as a function of 

the state vector zt. 

The measurement equation used by the STATESPACE 

procedure is 

 yt = H zt   , H= [Ir 0] and Ir is an r×r identity matrix                                

… (iii) 

The procedure first fitted a sequence of unrestricted 

vector autoregressive (VAR) models and computed 

Akaike’s information criterion (AIC) value for each 

model. The VAR models were estimated using the 

sample autocovariance matrices and Yule-Walker 

equations. The order of the VAR model producing the 

smallest AIC value was chosen as the order (number of 

lags into the past) to be used in the canonical correla-

tion analysis. The elements of the state vector were 

determined through a sequence of canonical correla-

Ŷ Ŷ
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tion analysis of the sample autocovariance matrices 

through the selected order. This analysis computed the 

sample canonical correlations of the past with an in-

creasing number of steps into the future. Then the state 

space model was assigned to the data using the Kal-

man filtering technique.  

RESULTS AND DISCUSSION 

The Box Jenkins’ methodology was applied in ob-

taining the suitable ARIMA models for district-level 

sugarcane yield forecasting in Haryana. Autocorrela-

tion functions of sugarcane yield shown in Figure1 

indicated that the data series were non-stationary for 

all the districts under consideration. Differencing of 

order one was sufficient for making an appropriate 

stationary series.  

The orders of AR and MA components were deter-

mined through acfs and pacfs of the stationary series. 

Marquardt algorithm (1963) was used to minimize the 

sum of squared residuals. Log Likelihood, AIC (1969), 

Schwarz’s Bayesian Criterion, SBC (1978) and residu-

al variance decided the criteria for the selection/

estimation of AR and MA coefficients in the model. 

The residual acfs along with the Chi-square test (Ljung 

and Box, 1978) were used to ascertain the random 

shocks as white noise. 

 After experimentation with different lags of  moving 

average and autoregressive processes, ARIMA (0,1,1) 

for Karnal and Ambala districts and ARIMA (1,1,0) 

for Kurukshetra, Yamunanagar and Panipat districts 

were fitted for achieving sugarcane yield forecasts. 

The fitted ARIMA (0,1,1) and ARIMA (1,1,0) models 

may be elaborated as below: 

 Yt = Yt-1 - θ1 et-1 + et                             ----- (iv)  

 Yt = (1+f1)Yt-1 - f1Yt-2  + et                  ------(v) 

The equations iv & v are the corresponding forecast 

equations. The presence of lagged values of dependent 

variable and random shocks in equation-iv indicates 

the presence of autoregressive and moving average 

components both. While in equation-v, the presence of 

lagged values of dependent variable indicates the pres-

ence of only autoregressive component. The parameter 

estimates of fitted ARIMA models are presented in 

Table 1. 

State space modeling: The state space model assumes 

that the time series are stationary. Hence, the data was 

checked for stationarity. Here, yt, the r ×1 vector of 

observed variables after differencing and subtracting 

the sample mean from Yt , can be expressed as follows: 

The selection of AR orders; five, three, four, five and 

one seemed reasonable for Karnal, Kurukshetra, Pani-

pat, Ambala and Yamunanagar districts respectively 

with the use of AIC statistics. Next, the Yule-Walker 

estimates of the selected AR models were obtained 

(Table 2). After the autoregressive order selection pro-

cess of determining the number of lags used in canoni-

cal correlation analysis, the state vector was selected. 

Information from the canonical correlation and prelim-

inary autoregression analyses were used to form the 

preliminary parameter estimates of state space models 

as shown in Table 3. 

The fitted state space models of all the districts can 

be elaborated as: 

Karnal  

 ……(vi) 

Kurukshetra 

 ……(vii) 

Panipat 

......(viii) 

Ambala 

 ……(ix) 

Yamunanagar 

                                                                                                                                                                                                                              
……(x) 

The forecasting performance(s) of the contending  

models were observed in terms of average absolute 

percent deviations of sugarcane yield forecasts in rela-

tion to the observed/DOA yield(s) and RMSEs as well.  

The sugarcane yield forecasts of the post sample peri-

od(s) i.e. 2010-11, 2011-12, 2012-13, 2013-14 and 

2014-15 based on ARIMA and SS models were ob-

tained to check the validity of the developed models.  

The forecast yield(s) along with percent relative devia-

tions of all the districts are presented in Tables 4 &5.  

However, the root mean square errors (RMSEs) of 

sugarcane yield forecasts based on both the models are 

depicted in Table 6.  

Conclusion 

ARIMA and state space models individually could 

provide the suitable relationship(s) to reliably estimate 

the sugarcane yield of the districts under consideration. 

However, the state space models with lower error met-

rics showed the superiority over ARIMA models in 

capturing the percent relative deviations pertaining to 

  Karnal Ku-

rukshe

tra 

Pani-

pat 

Amba-

la 

Yamu-

nanaga

r 

y

t 

= 

(1-B)Yt 

- 0.761 

(1-B)Yt 

- 0.933 

(1-B)Yt 

- 0.443 

(1-B)Yt 

- 0.775 

(1-B)Yt 

- 0.392 
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Table 1.  Parameter estimates of fitted ARIMA models. 

District/Model Estimate Standard error p-value 
Karnal                      Constant 
sug-ARIMA             Difference 
(0,1,1) 
                                 MA Lag 1 

0.67 
1 
0.85 

0.14 
  
0.09 

<0.01 
  
<0.01 

Ambala                    Constant 
sug- ARIMA            Difference 
(0,1,1) 
                                MA Lag 1 

0.93 
1 
0.74 

0.20 
  
0.10 

<0.01 
  
<0.01 

Kurukshetra            Constant 
sug- ARIMA           Difference 
(1,1,0) 
                                AR Lag 1 

0.63 
1 
-0.37 

0.91 
  
0.16 

0.49 
  
0.02 

Yamunanagar            Constant 
sug- ARIMA             Difference 
(1,1,0) 
                                 AR Lag 1 

0.79 
1 
-0.36 

1.03 
  
0.18 

0.44 
  
0.06 

Panipat                    Constant 
sug- ARIMA           Difference 
(1,1,0) 
                                AR Lag 1 

0.80 
1 
-0.48 

0.80 
  
0.17 

0.32 
  
0.01 

Table 2. Yule-Walker estimates of selected AR models. 

Districts 
Selected Autoregressive order 

Lag=1 Lag=2 Lag=3 Lag=4 Lag=5 
Karnal -0.806 -0.709 -0.535 -0.306 -0.284 

Kurukshetra -0.709 -0.604 -0.402 -0.252   

Panipat -0.601 -0.408 -0.336 -0.484   

Ambala -0.578 -0.293 -0.279 -0.457 -0.265 

Yamunanagar -0.359         

Table 3. Parameter estimates of the state space models. 

Districts Parameter Estimate Standard Error t-Value 

Karnal 

F(2,1) -0.125 0.180 -0.69 

F(2,2) -0.113 0.206 -0.55 

G(2,1) -0.82 0.141 -5.79 

Kurukshetra 

F(2,1) -0.087 0.173 -0.50 

F(2,2) -0.086 0.182 -0.47 

G(2,1) -0.771 0.153 -5.04 

Panipat 

F(2,1) -0.017 0.25 -0.07 

F(2,2) -0.081 0.292 -0.28 

G(2,1) -0.686 0.188 -3.63 

Ambala 

F(5,1) -0.439 0.164 -2.68 

F(5,2) -0.698 0.29 -2.41 

F(5,3) -0.255 0.339 -0.75 

F(5,4) -0.534 0.339 -1.58 

F(5,5) -0.915 0.365 -2.51 

G(2,1) -0.517 0.142 -3.62 

G(3,1) 0.035 0.161 0.22 

G(4,1) -0.174 0.16 -1.09 

G(5,1) -0.155 0.149 -1.04 

Yamunanagar F(1,1) -0.359 0.176 -2.04 
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Fig. 1. Autocorrelation and partial autocorrelation of sugarcane yield for all the districts. 
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district-level sugarcane yield forecasts in Haryana. The 

sugarcane yield forecasts based on state space models 

in the districts under consideration showed good agree-

ment with DOA yield estimates by showing 3-6 per-

cent average absolute deviations. On the basis of this 

empirical study, it is inferred that the state space mod-

eling may be effectively used pertaining to Indian agri-

culture data, as it can take into account the time de-

pendency of the underlying parameters which may 

further enhance the predictive accuracy of the forecast 

models.  
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Districts 
RMSEs 
ARIMA model SS model 

Karnal 8.09 4.93 
Ambala 4.06 3.69 
Kurukshetra 9.50 3.81 
Yamunanagar 3.19 3.10 
Panipat 4.04 4.12 

 Table 6. Root mean square errors of sugarcane yield fore-

casts based on alternative models.  
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