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INTRODUCTION 

It is assumed, for each sampling design, that the true 
values of the variables of interest could be made avail-
able for the elements of the population under consid-
eration. However, this may not be true particularly for 
large scale surveys. Errors can occur at almost every 
stage of planning and execution of a large scale survey. 
These errors may be attributed to various causes right 
from the beginning stage, when the survey is planned 
and designed, to the final stage when the data are col-
lected, processed and analyzed. For large or medium 
scale surveys we are often faced with the scenario that 
the sampling frame of ultimate stage units is not avail-
able and the cost of construction of the frame is very 
high. Sometimes the population elements are scattered 
over a wide area resulting in a widely scattered sample. 
Therefore, not only the cost of enumeration of units in 
such a sample may be very high, the supervision of 
field work may also be very difficult. For such situa-
tions, two-stage or multi-stage sampling designs are 
very effective. It is also the case that, in many human 
surveys, information is not obtained from all the units 
in surveys. 
Colombo (1992), Anido and Valdes (2000) and Biemer 
and Link (2006) proposed the call-back approach to 
reduce the nonresponse bias. The problem of non-
response persists even after call-backs. The estimates 
obtained from incomplete sample data become biased. 
Hansen and Hurwitz (1946) proposed a technique for 
adjusting for non-response to address the problem of 
bias. The technique consists of selecting a sub-sample 

of non-respondents and the data are collected through 
specialized efforts from the non-respondents so as to 
obtain an estimate of non-responding units in the popu-
lation. Tripathi and Khare (1997) extended the sub-
sampling of non-respondents approach to multivariate 
case. Okafor (2001, 2005) further extended the ap-
proach in the context of element sampling and two-
stage sampling respectively on two successive occa-
sions. Chhikara and Sud (2009) used the sub-sampling 
of non-respondents approach for estimation of popula-
tion and domain totals in the context of item non-
response. Various authors have used auxiliary informa-
tion to improve the estimate by developing ratio and 
regression type estimators in the presence of non-
response. Notably among them are Rao (1986), Khare 
and Srivastava (1993), Khare and Sinha (2009), So-
dipo (2010), Singh and Kumar (2011), Monika Devi et 
al (2014) etc. Okafor and Lee (2000), Kumar and 
Viswanathaiah (2014) and many others extended the 
approach to double sampling for ratio and regression 
estimation. Al Baghal and Lynn (2015), Anderson et. 
al. (2015), Burton et. al. (2015), Fahimi et. al. (2015) 
and Matei and Ranalli (2015) proposed different ap-
proaches to deal with the problem of non-response. 
Most of the work is however, dedicated to uni-stage 
sampling in the presence of non-response. The present 
work is therefore initiated to develop the methodology 
for estimation of population mean in two-stage sam-
pling under non-response with the following objec-
tives: 
To develop an efficient estimator of population mean 
in two-stage sampling under Deterministic Response 
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Mechanism. 
To carry out empirical study with real data to examine 
the performance of the estimators. 

MATERIALS AND METHODS  

The estimators for estimation of population mean in 
two-stage sampling in the presence of non-response 
have been developed under two non-response models. 
It is assumed that the non-response is deterministic. 
Consider that a finite population U consists of N pri-
mary stage units (psus) labeled 1 through N, and each 
psu comprises of  M second stage units (ssus). Let  yij  
be the value of study character y pertaining to j-th   ssu 
in the i - th  psu, i = 1,2,……,N, j = 1,2……, M,. 
The objective is to estimate the population mean 

  
 
 

We state the first non-response model referred to as 
Situation-1 as follows: 
Situation 1: It is assumed that the psu(s) are divided 
into two strata, i.e. (i) first stratum consisting of  N1 
psu(s) from where we do not get response at all, and 
(ii) second stratum consisting of N2 psu(s) from where 
we do get partial responses from ssu(s), such  that N = 
N1 + N2 . A random sample of n psus is drawn from N 
by simple random sampling without replacement 
(SRSWOR). From each selected psu a sample of m 
ssus from M  ssu(s) is drawn by SRSWOR. Let there 
be complete non-response from n1  psus. In the n2 psu 
(n1 + n2 = n) mi1 ssus respond while mi2 ssus do not 
respond, mi1 + mi1 = m . A sub-sample of hi2 units is 
selected by srswor from mi2 and data are collected 
through specialized efforts. Further, a sub-sample of  
h1  psus is drawn out of n1 psus and data are collected 
through specialized efforts on each of  m ssus in the 
selected h1  psus. Let n1 = f1h1  and mi2 = fi2hi2,  i = 1,2,
….n2. It is further assumed that in n2 psu(s) there are 
Mi1 responding and Mi2non-responding ssu units such 
that Mi1 + M i2 = M. 
First, we define the following: 

,  
sample mean in i - th psu  (i ϵ n1) 

, 
sample mean in  i - th psu (i ϵ n2) psu  corresponding to 
the responsing ssu(s). 

,  
sample mean in i - th psu (i ϵ n2)   corresponding to sub
-sample of non-responsing ssu(s). 
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We, now, state and prove the following theorem. 

Theorem 2.1: An unbiased estimator of  is given 
by 

…. (1)    
  

with variance of  as 

    … (2) 
 and unbiased variance estimator as 

 (3) 
Proof: By definition, 
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Where E4  represents conditional expectation of all 
possible samples of size hi2  drawn from a sample of 
size mi2 , E3  represents conditional expectation of all 
possible samples of size m drawn from M, E2   refers 
to conditional expectation arising out of selection of all 
possible samples of size h1  drawn from n1  while E1 
refers to expectation arising out of all possible samples 
of size n drawn from a population of size N. 
To obtain the variance, we proceed as follows: 
By definition, 

 

where , , ,  are defined similarly as 

, , , . 

where, 

 

 

 

 
Thus, by adding all the terms we obtain the required 
result. 

Taking the expectation and simplifying we get, 
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Where E7  represents conditional expectation of all 
possible samples of size hi2  drawn from a sample of 
size mi2, E6  represents conditional expectation of all 
possible samples of size mi1, mi2 respectively  drawn 
from Mi1, Mi2 , respectively by keeping mi1, mi2, fixed. 
Here Mi1, Mi2 denote the number of responding and non
-responding units in the population, E5 refers to condi-
tional expectation arising out of randomness mi1, mi2, 

Mi1, Mi1, Mi2 ,.  refers to conditional expectation of all 
possible samples of size m drawn from M, E3 refers to 
conditional expectation of all possible samples of size 
h1 drawn from n1, E2,  refers to expectation arising out 
of all possible samples of size n1, n2 ,drawn from N1,N2 
keeping n1, n2,fixed while E1  refers to expectation aris-
ing out of randomness of n1, n2. 
Let, 

,  
for ,  

for      

     and  

       
Substituting the estimated values in the variance ex-
pression (2.2) we get the required estimate of V(ӯ1). 
To determine the optimum values of n, m, and fi2 by 
minimizing the expected cost for a fixed variance, we 
use the relation mi2 = hi2 fi2, i=1,2,…., n2. To achieve 
this, consider the following cost function 

 
 

where, C: Total cost; C1: Per psu travel cost; C2: Cost 
per ssu for collecting the information on the study 
character in the first attempt; C3: Cost per ssu for col-
lecting the information by expensive method after the 
first attempt has failed for obtaining information 
It is envisaged that C3 will be higher than C1 and sub-
stantially higher than C2. 
The expected cost in this case is,                              

        
  
 
 

To minimize the expected cost subject to fixed vari-
ance consider the function. 
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During optimization we have substituted f2  in place of 
fi2  for simplicity in calculations. To overcome the 
problem arising due to simultaneous minimization of 
n, m, f1 and f2, we assume that n2 = f1h2 for making the 
calculations simple. Thus minimization gives the opti-
mum values as ,      
 
 
 
 
 

   ,    

 
where, 

 

 

,    

 

,    

 

 
Special case of Situation 1: Here we consider the case 
that a sample of n psus is drawn from N, within each 
selected psu a sample of m ssus is drawn by srswor 
design. This sample is divided into two parts n1 and n2. 
Let there be complete non-response in the n1 psus, n1 + 
n2 = n. Let there be no non-response in n2 psus, further 
a sub-sample of h1 psus is drawn out of n1 psus and 
data are collected through specialized efforts on each 
of m ssus in the selected h1 psus. Let n1 = f1h1. Assume 
N = N1 + N2 where N1 and N2 are the number of psus in 
the population representing the two non-response  
categories considered here. 
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In this context, we state and prove the following theo-
rem. 
Theorem 2.2: An unbiased estimator of Ῡis given by 

                   … (4) 
with variance 
 

               
… (5) 
 
 

 
An unbiased estimator of variance is, 
 

 

          … (6) 
where, 
 

,  
while rest of the terms are defined earlier. 
Proof:  

 

 

 

 
where,  E3 represents conditional expectation of all 
possible samples of size m drawn from M, E2 refers to 
conditional expectation arising out of selection of all 
possible samples of size h1 drawn from n1 while E1  
refers to expectation arising out of all possible samples 
of size n drawn from a population of size N. 
To obtain the variance we proceed as follows: 
By definition, 
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Thus, by adding all the terms we obtain the required 
result. 

 
Taking the expectation and simplifying we get, 

 

, 

, as defined earlier. 
Where E4 refers to conditional expectation of all possi-
ble samples of size m drawn from M, E3 refers to  
conditional expectation of all possible samples of size 
h1  drawn from n1,  E2 refers to expectation arising out 
of all possible samples of size n1, n2 ,drawn from N1, 
N2, keeping n1, n2 fixed while E1  refers to expectation 
arising out of randomness of n1,  n2. Let, 

  

   and 

   
      
Substituting the estimated values in the variance ex-

pression (2.5) we get the required estimate of . 
To determine the optimum values of n, m, and f1 we 
proceed as earlier, i.e. minimization of expected cost 
subject to fixed variance. The optimum values are  
determined in the same way as the previous estimator 
by minimizing the expected cost with respect to fixed 
variance. 
The relevant cost function in this case is, 
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The minimization gives the optimum values as 
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Control situation: The following estimator was also 
considered for efficiency comparison purpose. Here 
we assume that srswor sample of n psus is selected 
from N and within each selected psu a sample of m 
ssus is selected from M ssus. Data are collected 
through specialized efforts to obtain complete  
response, i.e. there is no non-response. Then we give 
the following Theorem 2.3 
Theorem 2.3 The estimator 
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is unbiased of Ῡ, ith variance,

 
…(8) 

where S2
b and S2

iM are already defined, and unbiased 
estimator of variance, 

 … (9) 
where 

  
 
 

 
 
 
 
 

Proof: The proof of unbiasedness of the given estima-
tor and its variance and unbiased variance estimator 
can be found in Cochran (1997), pp. 277-278. 
The cost function in this case is, C = C1n + C3nm 
where, C, C1, C3,   have been defined earlier.  
To obtain optimum values of n  and mwe minimize the 
cost by fixing the variance. The optimum values are as 
follows, 
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Simulation study: A limited simulation study has 
been conducted with real data to examine the relative 
merits of the proposed estimators ӯ1 and ӯ2  and  in 
comparison to the usual estimators ӯnm  (without non-
response) in two-stage sampling. A design based simu-
lation based on real data is carried out. The following 
criterion was used for assessing the relative perform-
ance of these estimators: 
The percent relative root mean square error (RRMSE), 
which is defined as, 
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 &  due to non-response as compared to stan-

dard error of   has been computed as follows: 
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where ,   and 

 are the empirical root MSE of the esti-
mator ӯnm(usual two-stage estimator without non-
response), ӯ1 & ӯ2   (our proposed estimators), respec-
tively.  

Here, 
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and ӯ2(i) are the values of our proposed estimators  ӯ1 
and ӯ2   in the simulation run i(i=1,….,L). 
In design based simulation study with real data, we 
used the data given in Appendix-B: The MU284 popu-
lation (Sarndal et al (1992)). From the Appendix-B, the 
1985 population (in thousands) with respect to munici-
palities has been considered as study variable. There 
are in all 284 municipalities. To form the psu(s), the 
first 15 municipalities constitute the first psu, and then 
next 15 municipalities form the second psu and so on. 
Therefore, we get in all 18 psu(s) each consisting of 15 
ssu(s). In our study we used 270 municipalities out of 
284 and remaining last 14 municipalities were left. 
1000 independent random samples of size 7 psu(s) out 
of 18 are drawn by using simple random sampling 
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random sampling without replacement. We also con-
sider that 18 psu(s) are divided into two classes, i.e. N1 

= 6 and N2 = 6, where N1 constitutes the class of com-
plete non-responding psu(s) and N2  constitutes the 
partially responding class/complete response class of 
psu(s), i.e. (N1 + N2 = N). Again we assume that that 
the sample of size n=7 is also divided into two parts: 
i.e. n1 = 3 and n2 = 3 , which comes from complete non
-response and partially response classes, respectively. 
From n1 = 3, we further draw a subsample of size 2 (h1 
= 2)  and we make use of each of the values of m ssu
(s) in the selected h1 psu(s). In the n2 = 4  psu(s), mi1 = 
3  ssu(s) respond while mi2 = 3 ssu(s) do not respond. 
A subsample of h12 = 2 units is selected by SRSWOR 
from mi2. Here n1 = f1h1 = 3 and mi2=hi2fi2=3. We com-
puted the values of ӯnm, ӯ1, and  ӯ2  from one thousand 
samples. The true population mean Ῡ  has been com-
puted to be 29.90. The percent relative root mean 
square error (%RRMSE), the percent of relative loss in 
standard error (%RL) have been computed for our pro-
posed estimators ӯ1 and ӯ2. 
These computed values are presented in the Table 1. 
It is obvious that making bias adjustment in case of 
non-response in sample surveys, we loose efficiency of 
the estimators to some extent (Hansen & Hurwitz 
1946). It is evident from the results of the Table 1 that 
the %RRMSE of the ӯ1  & ӯ2  have increased to about 
24 percent in comparison to about 21 percent of ӯnm  
(without non-response). The percent relative loss in 
standard error has been found more (10.36%) in case 
of ӯ1  as compared to that of ӯ2 (7.80) which is on the 
expected line because more sampling error is expected 
in situation-I than situation-II. 
Empirical study: An empirical study using some real 
populations has also been carried out to examine the 
loss in standard error of the estimate due to non-
response. Four populations viz. (i) P75 (1975 popula-
tion (in thousands)), (ii) P85 (1985 population (in 
thousands)), (iii) RMT85 (Revenues from the 1985 
municipal taxation (in millions of kronor)) and (iv) 
REV84 (Real estate values according to 1984 assess-
ment (in millions of kronor)) have been considered 
from the Appendix-B of Sarndal et al. (1992). There 
are in all 284 municipalities. To form the psu(s), the 
first 15 municipalities constitute the first psu, and then 
next 15 municipalities form the second psu and so on. 
Therefore, we get in all 18 psu(s) each consisting of 15 
ssu(s). In our study, we used 270 municipalities out of 
284 and remaining last 14 municipalities were left. 
For each population, we have considered N =18, N1 
=6, N2 =12, M = 15, Mi1 = 9, Mi2 = 6,  n = 6, n1 = 3, n1 
= 3, m = 8, mi1= 4,5,  mi2= 4,3, hi2 = 2, 
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The different population parameters involved in the 
variances of the estimators have been computed and 
are presented in the Table 2. 
The variance of control estimator, i.e.  V(ӯnm) has been 
computed for each population. The variance of the 
proposed estimator ӯ1 for each population has been 
computed for fi2 = 1.5 and 2.00. Similarly, the variance 
of the proposed estimator ӯ2 for each population has 
been computed for f1 = 1.5 . 
The percent relative loss in standard error due to non-
response over complete response with respect to the 
proposed estimators has been computed as follows 

 
 
 
  
  

These results are summarized in the Table 3 to 5.  
It is obvious that making bias adjustment in case of 
non-response in sample surveys, we loose efficiency of 
the estimators to some extent (Hansen and Hurwitz 
1946). It is evident from the results of the Table 3 and 
4.3 that the percent relative loss in standard error has 
been found more in case of fi2 = 2 as compared to that 
of fi2 = 1.5 for each population for the proposed estima-
tor ӯ1  over ӯnm. Since fi2 is the reciprocal of fraction of 
sampled non-response ssu’s so in case of fi2 = 2 we 
have more loss in percent relative standard error. So as 
the fi2 increases percent relative loss in standard error 
also increases and it decrease with the decreasing value 
of fi2 for each population. 
The Table 5 shows the percent relative loss in standard 
error in case of proposed estimator ӯ2 over ӯnm for

.  
It is obvious that %RL will be less for proposed esti-
mator ӯ2  for each population as compared to that of %
RL of estimator  ӯ1 since estimator  ӯ1 consists two 
parts, one having complete non-response and, second 
of partial response whereas in case of estimator ӯ1 one 
part has complete non-response and other has 
complete response. 
It may also be noted that sampling rates and sub-
sampling rates of non-respondent ssu(s) from non-
respondents ssu(s) in selected psu(s) in the aforesaid 
simulation and empirical studies have already been 
at high side because of limitation of data. The de-
crease in these rates would certainly increase 
the loss in efficiency. 

RESULTS AND DISCUSSION 

In order to make effective use of available sources 
various sampling technique have been developed from 
time to time which provide estimators of population 
characteristics of interest with high precision, reduced 
cost and above all will have the operational feasibility 
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and practical applicability. Various authors have used 
auxiliary information to improve the estimate by de-
veloping ratio and regression type estimators in the 
presence of non-response.  It may lead to much im-
provement in precision of estimation if the information 

on the closely related variable (auxiliary information) 
is utilized judiciously in the estimation procedure. Rao 
(1986) suggested a ratio estimator for the population 
mean Ῡ , when the population mean of the auxiliary 
variable is known. Khare and Srivastava (1993) sug-
gested a ratio-product type exponential estimator for 
estimating the finite population mean in the presence 
of non-response in different situations viz. (i) popula-
tion mean  is known, and (ii) population mean  is un-
known. The expressions of biases and mean squared 

errors of the proposed estimators, up to the first order 
of approximation, have also been obtained. The results 
obtained were depicted with the help of numerical il-
lustration. Singh and Kumar (2011) provided a Combi-
nation of regression and ratio estimators in presence of 

Table 2. Values of the different population parameters 
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P75 246.5995 51645.0286 7406.514 44238.51  8519.5  90.2834  
P85 249.5263 48784.1048 7049.476 41734.63 71087.9 91.3898 
RMT85 2728.361 552067.9 257809.6 294258.3  137812 1038.076  

REV84 534705.4 65061004 25919883 39141121 22849808 519388.7 

Table 3.  Variance & standard error of the ӯnm and ӯ1  and % RL when fi2=1.5 

S.No. Description Population 

P75 P85 RMT85 REV84 
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S.No. Description Population 

P75 P85 RMT85 REV84 

1 

 
( )nmyV  

55.295
 

54.075
 

601.336
 

94552.685

2 

 
( )nmyV  
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24.522
 

307.494
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63.747
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1411.903
 

126558.733
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6.865
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34.739
 

13.565

Table 4. Variance and standard error of the ӯnm and ӯ1 and % RL when fi2=2. 

Table 1. Percent  Relative Root Mean Square Error (%
RRMSE) and percent Relative Loss in Standard Error  (%
RL) over ӯnm. 

Estimators %RRMSE  %RL  

 nmy 21.40 - 

 1y 24.39 10.40 

 2y 23.71 7.80 
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nonresponse. They addressed the problem of estimat-
ing the population mean of the study variable y using 
information on two auxiliary variables x and z in pres-
ence of nonresponse. Two classes of combined regres-
sion and ratio estimators were defined in two different 
situations along with their properties. Many others 
extended the approach to double sampling for ratio and 
regression estimation. 
Most of the work is however, dedicated to uni-stage 
sampling in the presence of non-response. Recently, 
Sud et al (2012) have made an attempt to develop the 
estimators of population mean in two-stage sampling 
in the presence of non-response. They have considered 
three types of non-response models. There are two 
more possible response models which they have not 
considered. 
In what follows, we have considered these two non-
response models for the development of the estimation 
of population mean in two-stage sampling design in 
the present paper. Here, we have considered the deter-
ministic response mechanism. In situation-1, it is as-
sumed that the psu(s) are divided into two strata, i.e. (i) 
first stratum consisting of N1 psu(s) from where we do 
not get response at all, and (ii) second stratum consist-
ing of N2  psu(s) from where we do get partial re-
sponses from ssu(s), such  that N = N1 + N2. And in an 
special case of situation-1, we assumed that the psu(s) 
are divided into two strata, i.e. (i) first stratum consist-
ing of  N1 psu(s) from where we do not get response at 
all, and (ii) second stratum consisting of N2  psu(s) 
from where we do get complete responses from ssu(s), 
such that N = N1 + N2. The expressions for the variances 
and estimates of variance of these estimators have been 
derived. The optimum values of sample sizes have 
been obtained by considering a suitable cost function 
for a fixed variance. 

Conclusion   

The study of two-stage estimators of population mean 
under non-response has been presented. The optimum 
values of sample sizes have been obtained by consider-
ing a suitable cost function for a fixed variance. It is 

evident from the results of the Table 1 that the %
RRMSE of the proposed estimators have increased to 
about 24 percent in comparison to about 21 percent of 
usual two-stage estimator (without non-response). The 
percent relative loss in standard error has been found 
more in situation-I as compared to that of situation-II 
which is on the expected line because more sampling 
error is expected in situation-I than situation-II. An 
empirical study using some real populations has also 
been carried out to examine the loss in standard error 
of the estimate due to non-response. It is also observed 
that the percentage relative efficiency decreases with 
increase in non-response. Since size of sub-sample is 
the reciprocal of fraction of sampled non-response 
ssu’s so the percent relative loss in standard error will 
be more in case of small size sub-sample size as com-
pared to that of a larger sub-sample and this has been 
supported by our empirical study results. 
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