

Study on genetic diversity in chilli (*Capsicum annuum*) based on multivariate analysis and isozyme analysis

Chandan Kumar Mondal^{1,2*}, Pinaki Acharyya¹ and Uttam Saha^{1,3}

¹Department of Horticulture, Institute of Agricultural Science, University of Calcutta, Kolkata – 700019 (West Bengal), INDIA

²Present Address: Ramkrishna Ashram KVK, Nimpith, South 24 Parganas -743338 (W.B), INDIA

³Present Address: Department of Agriculture, Govt. of Tripura, Amarendranagar- 799103 (Tripura), INDIA

*Corresponding author. E-mail: drchandanmondal@gmail.com

Received: February 10, 2016; Revised received: July 28, 2016; Accepted: October 24, 2016

Abstract: Thirty seven diverse chilli (*Capsicum annuum*) genotypes were studied for 22 growth, yield and fruit quality traits. Multivariate analysis grouped the genotypes into 7 clusters. Cluster IV was largest containing 14 genotypes. Inter cluster distance was maximum between cluster V and VII (248.09), and minimum between cluster I and II (57.80). Cluster VII was most heterogeneous (intra-cluster divergence value 191.25) and Cluster II was most homogeneous (30.25). Genotypes were also analyzed for peroxidase enzyme polymorphism using gel electrophoresis which resulted seven electrophoretic bands (Rf 0.19 to 0.59) and grouped the genotypes into 6 zymotypes. Zymotype P_4 included maximum (13) number of genotypes. Number of clusters in peroxidase and multivariate analysis were almost same but distribution of genotypes varied. 73% of total genotypes showed similar pattern of grouping suggesting that the two methods are complementary to each other and should be carried out simultaneously to determine genetic diversity more effectively. Considering variability and diversity analysis of the genotypes, CUCH-4 from Cluster-II (& Zymotype-P₂) and CUCH-31, CUCH-34 and CUCH-35 from Cluster-VII (& Zymotype-P4) were identified as promising genotypes which can be used in further crop improvement programme.

Keywords: Capsicum, Chilli, Diversity, Multivariate analysis, Peroxidase analysis

INTRODUCTION

Chilli is an important commercial crop cultivated exclusively in tropical and temperate zones of the world and grown on more than 1.5 million hectares worldwide (Anonymous., 2007). Chilli finds its place as vegetable, spice and condiment. It is useful in pharmaceuticals also. India is the largest producer, consumer and exporter of chili, which contribute around 25% of total world production. After India, China is the major producer of Chili in the world (Anonymous, 2012). However, productivity of chilli in India is almost half than that of China (Ali, 2006). Identification of a genotype better suited for a particular region as well as it's improvement in all aspects is of immediate task. Genetic improvement of any crop depends on magnitude of genetic variability and the extent of heritability of economically important characters. Critical assessment of nature and magnitude of variability in the germplasm stock is one of the important prerequisites for formulating effective breeding methods. The higher genetic distance between parents, the higher heterosis in progeny can be observed (Lahbib et al., 2012). Traditionally, characterization and variability evaluation of a genetic stock is done by a combination of morphological and agronomic traits. However, this approach is prone to environmental influences (Peeraullee

& Ranghoo-Sanmukhiya, 2013). The isozyme markers have been useful in determining genetic relationships among closely related species and cultivars (Aniel Kumar et al., 2013). Although morphological traits and isozyme marker analysis have been used to distinguish cultivars, both systems have limitations, the first due to environmental effects (Bhat et al., 1992a,b) and the latter due to selection of markers. Isozyme electrophoresis is chosen for its relative simplicity because it provides direct visualization of gene products (Brewer and Sing, 1970) and potentially can provide a unique fingerprint for each genetically distinct clone (Lebot et al., 1991). In chili pepper such studies on isozymes are very limited (Gupta et al., 1997; Onus and Pickersgill, 2000; Barrera et al., 2005). Nitesh et al. (2010) reported varietal identification of chilli peppers by PPO isozyme profiles. However, in depth studies on polymorphism of isozyme for assessing intravarietal relationships in chilli peppers is very limited (Aniel Kumar, Subba Tata, 2013).

The present study was aimed at assessing 37 chilli genotypes based on 17 morphological and 5 biochemical traits, grouping of genetically similar genotypes and further verification of this diversity analysis using peroxidase isozyme polymorphism analysis through gel electrophoresis.

ISSN : 0974-9411 (Print), 2231-5209 (Online) All Rights Reserved © Applied and Natural Science Foundation www.ansfoundation.org

MATERIALS AND METHODS

Field trial: The 37 chilli genotypes were collected from different locations as mentioned in Table-2 and evaluated for three consecutive years (2007-08, 2008-09. 2009-10) following randomized block designs with three replications. Pre-soaked seeds of all the genotypes were sown in seedbed in the first week of November each year. 45 days old seedlings were transplanted in the main field in the individual plots with a spacing of 45cm × 45cm ensuring 40 plants in each plot. Transplanting was done by 2nd fortnight of December each year. Essential intercultural operations (weeding, staking, time bound irrigation, plant protection measures etc.) were carried out as and when required. Seventeen morphological and five biochemical traits were selected for study following descriptor of Capsicum (IPGRI, 1995).

Multivariate analysis: The genetic divergence was calculated following Mahalanobis D^2 statistics (Mahalanobis, 1936). Multivariate analysis or D^2 analysis is a method for grouping genetically similar germplasms. It has been observed that for varieties development programme, it is desirable to classify the germplasm on the basis of diversity of different characters and to make crosses between groups having maximum diversity (Narasimhayya and Venkatarao, 1974).

Peroxidase isozyme analysis: The analysis was conducted taking leaf extract of 2^{nd} or 3^{rd} leaf of 60 days old plant. 500 mg leaf sample was crushed in 2.5ml phosphate buffer (pH 6.8; K₂HPO₄ solution - 6.15 ml and KH₂PO₄ solution - 3.85 ml dissolved in 100 ml water) in a pre-chilled mortar & pestle. The crude homogenate was centrifuged at 14,000 rpm at 4°C for 20 minutes. The supernatant was transferred into fresh tubes and divided into two parts. One part was used for protein estimation.

Protein estimation: Dried test tubes, cleaned with distilled water and alcohol, were marked according to the sample accession numbers. One was marked as blank. In each test tube 10 μ l cold tissue extract, 990 μ l phosphate buffer and 5 ml G250 dye were added. In the blank, instead of tissue extract, 10 μ l distilled water was added. The mixtures turned deep blue in colour immediately. Sample and blank were taken in two different cuvates and absorbance was estimated using a spectrophotometer (Makeup Jasco, Model-V630) at 595 nm. Protein content in each sample was calculated as per absorbance values against standard curve prepared using standard protein (BSA).

Peroxidase analysis was conducted in polyacrylamide gel (PAGE) system. The tissue extracts were taken in required amount after calculating its protein content. Vertical electrophoresis unit was used to run the gel.

Gel preparation: Gel was prepared in a dark conical flask having 12.2 ml water, 10 ml 30% Acrylamide mix, 7.5 ml Tris-HCl (pH 8.8), 300 µl 10% APS and 20 µl TEMED. It was 10% Tris-Glycine Polyacryla-

mide gel solution.

Electrophoresis: The gel was ready in 1 hr. The gel plate was placed in the tank after pouring the tank buffer (Tank buffer prepared with Tris (1.2 g) and glycine (5.8 g) dissolved in 100 ml distilled water and the volume was made upto 200 ml and diluted 10 times). Now, 32 μ l of sample extract and 8 μ l Bromophenol blue dye were mixed and added carefully at the comb places at top of the gel. Then electrophoresis was carried out at 15 Amp. & 150 volt, approximately for 5 hrs until bromophenol blue reached the gel end. The gel was stained for peroxidase.

Staining: Gel plates were taken out, the gel was separated carefully and it was dipped in staining solution (100 mg ortho-dianisidine dissolved in 1 ml of Acetic acid; 200 ml of water and 2 ml of H_2O_2 added to it) horizontally and kept in dark for 30 minutes with occasional shaking. The bands of peroxidase developed. After staining, the gel was washed with distilled water and photographed by a gel documentation system (Multidoc, UVP) for band identification and final calculation.

Band analysis: Isozyme banding patterns were analyzed on the basis of number and Relative front (Rf) values of the bands. The Rf value is the mobility of each band travelled from the origin divided by the migration of tracking dye (Powers *et al.*, 1988). Similarity coefficient values of electrophoretic pattern of each enzyme were subjected to cluster analysis employing the unweighted pair group method using arithmetic averages (UPGMA). For cluster analysis, value '1' was put for the presence and '0' for absence of the band for each genotype. Zymotypes were used for clustering and the Euclidean distance method (Nourish, 1993) was used for the dissimilarity.

RESULTS AND DISCUSSION

The present study aimed at determining the genetic divergence of the 37 genotypes employing 22 important characters pertaining to growth, fruit yield components, proximate compositions of leaf and fruit and per plant fruit yield (Table 1).

Multivariate analysis: Following D^2 statistics 37 genotypes were meaningfully grouped into 7 clusters (Table 2). It was found that the clustering pattern was, in general, not related to geographic origin of the genotypes which was in conformity with the earlier findings of Murty and Arunachalam (1966), Varalakshmi and Babu (1991), Pandey and Dobhal (1993) and Sreelathakumary and Rajamony (2004). However, some genotypes having similar place of origin were grouped in the same cluster like CUCH–22 and CUCH–23 in Cluster IV. Hence, implication of geographical origin on genetic diversity may not altogether be ignored.

Cluster-IV was the largest containing 14 genotypes followed by cluster VII and II having 8 and 7 genotypes in each respectively. Rest four clusters (cluster-I,

Ch22	135.810	118.442	124.573	168.460	140.826	155.473	139.824	113.990	134.702	132.903	150.167	105.329	102.193	109.464	151.616	154.386	75.436	110.266	113.736	80.396
Ch21	3.262	1.912	3.432	2.698	2.238	2.748	4.173	3.028	3.808	2.972	2.862	2.909	2.959	2.758	1.988	2.972	2.793	1.708	1.988	2.892
Ch20	3.153	3.339	3.728	3.553	4.436	3.448	6.851	4.951	6.745	3.458	3.753	3.973	3.649	4.648	4.288	7.257	3.555	3.754	3.349	2.539
Ch19	0.500	0.649	0.698	0.699	0.937	0.666	1.138	0.963	1.220	0.671	0.640	0.672	0.708	0.723	0.739	1.226	0.693	0.739	0.656	0.441
Ch18	0.667	0.349	0.727	0.552	0.446	0.566	606.0	0.614	0.817	0.600	0.578	0.583	0.599	0.554	0.383	0.602	0.678	0.321	0.383	0.922
Ch17	132.907	93.731	89.770	104.699	95.193	120.510	89.929	75.372	115.913	108.766	86.271	90.564	87.462	92.173	81.171	91.490	92.258	80.404	76.367	74.380
Ch16	580.333	504.111	524.556	591.222	511.556	541.889	578.667	518.556	587.889	536.445	567.778	568.333	574.333	570.556	579.778	591.333	495.333	508.111	541.556	581.222
Ch15	86.687	95.989	68.232	89.733	55.621	70.002	56.378	41.622	86.823	68.296	64.388	69.552	66.472	62.561	42.642	58.511	55.753	65.358	72.527	35.756
Ch14	0.736	0.724	0.597	0.788	0.908	0.736	0.714	0.733	0.979	0.734	0.694	0.894	0.771	0.802	0.912	0.908	0.577	0.839	0.886	0.534
Ch13	2.803	2.464	2.457	3.127	3.077	2.972	2.678	2.932	2.956	2.927	2.794	2.936	3.012	3.126	3.268	3.321	2.157	2.993	3.282	2.151
Ch12	49.604	49.310	50.432	54.444	46.290	52.974	53.024	40.363	46.328	45.889	56.013	37.141	36.102	36.190	48.163	47.806	36.887	38.210	36.094	38.651
Ch11	3.322	2.867	3.611	3.278	2.967	3.056	3.000	3.856	3.778	2.556	4.722	3.111	2.989	2.944	3.022	3.078	3.000	3.078	3.078	5.878
Ch10	7.722	8.889	9.778	8.644	9.944	8.222	12.167	16.056	10.222	7.833	10.389	11.944	11.500	10.889	6.167	8.889	8.333	7.333	10.333	5.644
Ch9	8.256	8.744	8.211	8.456	8.633	8.067	7.744	9.256	8.878	7.867	8.822	6.778	9.078	8.133	8.544	8.744	8.078	8.156	8.511	7.356
Ch8	36.462	36.623	37.112	39.508	39.507	39.000	42.469	28.511	36.172	38.073	38.136	36.524	41.504	30.488	35.318	32.702	27.420	41.349	28.691	35.444
Ch7	48.667	57.444	47.667	57.667	57.889	53.111	56.778	47.556	57.333	53.444	56.778	64.667	65.000	58.778	47.111	57.444	35.667	44.556	50.000	68.333
Ch6	2.556	2.622	2.289	3.311	2.322	3.700	2.533	2.589	3.178	3.667	3.367	3.600	2.567	2.444	2.589	2.878	2.144	2.067	2.811	4.278
Ch5	6.844	8.500	7.200	8.333	686.9	8.722	6.489	8.200	7.556	8.378	8.678	10.856	8.111	7.211	6.611	8.656	6.511	6.600	8.722	10.711
Ch4	6.344	6.789	7.522	6.067	6.400	9.589	8.567	6.678	6.611	7.522	5.711	6.189	8.189	6.078	5.944	7.422	7.889	5.244	7.333	6.233
Ch3	49.524	45.512	41.603	41.134	42.469	43.702	49.976	44.994	50.521	52.431	53.334	39.443	45.484	49.483	41.678	49.977	38.968	40.036	48.497	39.033
Ch2	49.954	50.771	50.131	60.241	50.127	56.581	57.610	52.778	57.717	48.168	53.661	51.109	53.430	52.500	46.299	55.520	51.090	49.790	56.840	59.348
Ch1	9.982	15.857	12.614	15.821	12.142	11.137	11.264	9.426	10.659	9.300	10.968	11.101	10.092	11.942	9.266	10.810	699.6	9.732	10.123	10.092
Geno- types	CUCH-1	CUCH-2	CUCH-3	CUCH-4	CUCH-5	CUCH-6	CUCH-7	CUCH-8	CUCH-9	CUCH-10	CUCH-11	CUCH-12	CUCH-13	CUCH-14	CUCH-15	CUCH-16	CUCH-17	CUCH-18	CUCH-19	CUCH-20
										1886										

Chandan Kumar Mondal et al. / J. Appl. & Nat. Sci. 8(4): 1884-1892 (2016)

Table 1. Mean values of growth characters, yield components and yield over years (pooled).

					Chan	dan K	Cuma	r Moi	ndal e	et al. /	' J. Aj	opl. ð	k Nat.	Sci.	8(4)	1884	4-189	92 (20	016)
	129.178	119.897	87.918	89.523	107.376	112.651	99.556	72.346	170.148	109.809	238.351	105.532	106.958	195.476	202.801	89.089	85.184	1.404	3.891
	2.378	1.532	2.132	2.318	3.328	3.282	3.052	2.528	3.008	2.722	3.078	1.432	2.938	3.332	3.148	2.102	2.882	0.015	0.042
	3.539	2.948	3.148	3.651	3.149	7.657	5.749	4.242	4.185	3.316	7.751	2.938	5.146	3.851	3.855	2.752	4.765	0.128	0.217
	0.690	0.572	0.623	0.807	0.727	1.222	1.020	0.816	0.822	0.649	1.261	0.612	0.961	0.753	0.759	0.541	0.728	0.007	0.018
	0.457	0.211	0.606	0.346	0.681	0.671	0.620	0.619	0.619	0.547	0.546	0.256	0.594	0.682	0.581	0.969	0.813	0.003	0.009
	109.189	88.382	62.062	90.757	93.193	78.473	92.046	70.527	88.786	108.604	118.306	79.598	62.004	87.973	137.288	103.916	122.690	0.964	2.671
	569.333	570.556	501.111	521.333	514.111	514.889	550.222	517.000	604.333	492.889	611.333	551.333	602.556	589.445	513.000	517.667	557.445	1.561	4.325
	95.386	89.499	88.726	40.434	42.373	69.578	50.541	36.244	90.766	67.690	79.357	39.630	81.561	40.713	79.502	50.001	94.683	0.254	0.703
	0.784	0.646	0.823	0.510	0.504	0.611	0.626	0.573	1.033	0.678	0.963	0.740	0.853	1.074	0.689	0.706	0.527	0.005	0.013
	2.753	3.023	2.750	1.963	1.799	2.042	2.139	2.120	3.793	2.496	4.063	2.714	2.962	4.089	2.890	2.164	1.919	0.042	0.115
	48.238	40.554	33.784	47.880	61.523	57.389	48.971	34.498	45.456	45.726	60.553	40.591	37.610	48.636	70.901	43.082	46.370	1.004	2.783
	2.811	3.056	3.078	2.922	3.000	2.778	3.022	2.978	3.889	3.144	2.967	3.011	2.889	4.078	3.067	3.122	2.989	0.071	0.198
	10.500	10.611	11.833	17.111	12.611	14.389	13.889	12.278	8.000	7.056	11.411	8.033	15.800	16.389	10.889	8.167	6.556	0.164	0.454
	8.811	8.156	8.189	6.089	5.756	5.856	6.200	7.211	9.767	9.044	8.667	7.822	4.378	7.122	7.911	7.822	5.156	0.093	0.258
	26.934	37.992	28.874	27.350	29.541	26.184	36.204	28.537	40.094	35.367	37.153	38.262	35.270	30.117	36.376	30.473	41.440	0.169	0.469
	46.111	68.556	66.889	47.111	46.667	38.778	38.000	47.778	49.000	63.444	47.667	37.889	78.000	56.889	72.222	68.667	67.444	0.740	2.051
	2.533	3.456	3.267	2.333	2.111	2.033	1.789	2.233	2.378	1.911	4.533	2.322	5.511	2.867	3.167	3.122	3.033	0.049	0.136
	7.867	8.756	8.078	7.178	6.789	5.922	5.478	5.922	7.211	7.156	11.544	7.611	8.111	8.411	7.922	7.833	7.522	0.109	0.301
	6.644	8.656	9.667	7.400	6.956	5.289	6.033	5.267	5.633	5.344	6.989	6.733	8.789	6.633	6.378	8.544	6.378	0.198	0.548
	48.908	47.272	50.509	38.392	45.060	46.151	40.266	33.468	33.661	37.149	54.303	45.098	45.606	45.774	48.981	40.620	46.887	0.569	1.576
	52.179	39.901	50.941	39.687	48.129	35.899	37.400	40.524	46.610	50.050	50.497	50.442	49.621	51.213	51.463	49.898	50.591	0.800	2.217
:	14.834	12.159	12.583	9.692	12.114	10.108	10.114	10.711	16.748	12.093	13.002	12.271	10.324	12.659	13.481	9.558	10.237	0.139	0.386
Contd	CUCH-21	CUCH-22	CUCH-23	CUCH-24	CUCH-25	CUCH-26	CUCH-27	CUCH-28	CUCH-29	CUCH-30	cuch-31	CUCH-32	CUCH-33	CUCH-34	CUCH-35	CUCH-36	CUCH-37	SEm	CD (0.05)

Cluster	No. of	Genotypes	Place of Collection
	genotypes		
CLUSTER I	2	CUCH-11	Horticultural Research Station, Lam, Guntur, A.P 522034
		CUCH-13	Horticultural Research Station, Lam, Guntur, A.P 522034
CLUSTER II	7	CUCH-1	AICRP-Vegetable Crops, Directorate of Research, B.C.K.V., Kalyani, WB
		CUCH-2	AICRP-Vegetable Crops, Directorate of Research, B.C.K.V., Kalyani, WB
		CUCH-3	AICRP-Vegetable Crops, Directorate of Research, B.C.K.V., Kalyani, WB
		CUCH-4	AICRP-Vegetable Crops, Directorate of Research, B.C.K.V., Kalyani, WB
		CUCH-5	AICRP-Vegetable Crops, Directorate of Research, B.C.K.V., Kalyani, WB
		CUCH-6	AICRP-Vegetable Crops, Directorate of Research, B.C.K.V., Kalyani, WB
		CUCH-10	AICRP-Vegetable Crops, Directorate of Research, B.C.K.V., Kalyani, WB
CLUSTER	2	CUCH-17	Local collection by KVK, Nimpith, South 24 PGS, W.B 743338
III		CUCH-24	Local collection from Dalkhola, Uttar Dinajpur, W.B
CLUSTER	14	CUCH-7	AICRP-Vegetable Crops, Directorate of Research, B.C.K.V., Kalyani, WB
IV		CUCH-8	AICRP-Vegetable Crops, Directorate of Research, B.C.K.V., Kalyani, WB
		CUCH-9	AICRP-Vegetable Crops, Directorate of Research, B.C.K.V., Kalyani, WB
		CUCH-12	Horticultural Research Station, Lam, Guntur, A.P 522034
		CUCH-14	Horticultural Research Station, Lam, Guntur, A.P 522034
		CUCH-15	IARI, Pusa, New Delhi - 110012
		CUCH-16	G. B. Pant University Of Agriculture & Technology, Pantnagar, Udham Singh
			Nagar, Uttarakhand - 263145
		CUCH-18	Local collection by KVK, Nimpith, South 24 PGS, W.B. – 743338
		CUCH-19	Local collection by KVK, Nimpith, South 24 PGS, W.B. – 743338
		CUCH-20	A.A.U., Jorhat, Assam
		CUCH-21	A.A.U., Jorhat, Assam
		CUCH-22	Local collection from Nagaland
		CUCH-23	Local collection from Morigaon, Assam
		CUCH-25	Local collection from Dalkhola, Uttar Dinajpur, W.B
CLUSTER V	2	CUCH-32	Amtala Seed Stores, Amtala, South 24 PGS, W.B.
		CUCH-36	Local collection from Kuyemuri island, South 24 Pgs
CLUSTER	2	CUCH-30	Amtala Seed Stores, Amtala, South 24 PGS, W.B.
VI		CUCH-37	Local collection from Mandirbazar, South 24 PGS, W.B.
CLUSTER	8	CUCH-26	Local collection from Dalkhola, Uttar Dinajpur, W.B
VII		CUCH-27	Local collection from Dalkhola, Uttar Dinajpur, W.B
		CUCH-28	Local collection from Aminpur, Hasnabad, North 24 PGS., W.B
		CUCH-29	Amtala Seed Stores, Amtala, South 24 PGS, W.B.
		CUCH-31	Amtala Seed Stores, Amtala, South 24 PGS, W.B.
		CUCH-33	Amtala Seed Stores, Amtala, South 24 PGS, W.B.
		CUCH-34	Local collection from Canning, 24 Pgs.(S) W.B.
		CUCH-35	Local collection from Damkal island, South 24 PGS

Table 2. Grouping of 37 genotypes in Clusters (Pooled analysis).

Table 3. Intra and Inter cluster distance among 37 genotypes.

Cluster	CLUSTER I	CLUSTER II	CLUSTER III	CLUSTER IV	CLUSTER V	CLUSTER VI	CLUSTER VII
CLUSTER I	66.578	57.800	82.870	148.928	99.142	59.537	198.739
CLUSTER II		30.250	72.308	135.492	97.659	59.747	181.388
CLUSTER III			39.625	154.189	81.146	74.105	205.731
CLUSTER IV				184.468	182.851	150.558	197.269
CLUSTER V					58.612	95.233	248.096
CLUSTER VI						66.408	201.711
CLUSTER VII							191.254

III, V and VI) had two genotypes in each (Table 2). The intra-cluster divergence was highly variable ranging from 30.25 in cluster II to 191.25 in cluster VII (Table 3). So, it may be said that cluster II, having 7 genotypes, is the most homogeneous group and cluster

-VII with 8 genotypes is the most heterogeneous group. High heterogeneity was also observed in cluster -IV showing high intra-cluster divergence (184.46). Inter-cluster distance was maximum (D^2 value 248.09) between cluster V and VII, suggesting wide diversity

Cluster	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22
CI LISTED I	10.53	53.54	49.40	6.95	8.39	2.96	60.88	39.82	8.95	10.94	3.85	46.05	2.90	0.73	65.43	571.0	86.86	0.58	0.67	3.70	2.91	126.18
CEUSIENT	0	9	6	0	5	7	6	0	0	5	9	8	ŝ	б	0	56	7	6	4	1	1	0
CLUSTER	12.40	52.28	45.19	7.17	7.85	2.92	53.69	38.04	8.31	0110	3.09	49.84	2.83	0.74	76.36	541.4	106.5	0.55	0.68	3.58	2.75	139.49
Π	8	7	9	9	0	4	~	1	6	0./19	4	6	0	9	9	45	11	8	6	8	6	8
CLUSTER	0.601	45.38	38.68	7.64	6.84	2.23	41.38	27.38	7.08	12.72	2.96	42.38	2.06	0.54	48.09	508.3	91.50	0.51	0.75	3.60	2.55	001 00
Ш	9.001	6	0	S	S	6	6	5	4	7	1	4	0	4	4	33	8	0	0	С	9	02.40N
CLUSTER	11.15	52.19	46.09	7.01	8.07	2.88	55.77	33.64	8.07	10.37	3.34	43.29	2.85	0.78	64.83	555.7	87.18	0.57	0.79	4.36	2.68	118.43
N	0	0	6	9	6	1	0	4	7	1	1	1	5	ς	7	94	5	5	5	7	5	4
CLUSTER	10.91	50.17	42.85	7.63	7.72	2.72	53.27	34.36	7.82	0 1 0 0	3.06	41.83	2.43	0.72	44.81	534.5	91.75	0.61	0.57	2.84	1.76	110 20
>	5	0	6	6	0	0	8	8	7	0.1100	7	7	6	ς	9	00	7	ς	7	5	7	110.16
CLUSTER	11.16	50.32	42.01	5.86	7.33	2.47	65.44	38.40	7.10	200 2	3.06	46.04	2.20	0.60	81.18	525.1	115.6	0.68	0.68	4.04	2.80	201 207
Ν	5	-	8	1	6	0	4	4	0	0.000	7	8	8	ς	7	67	47	0	6	1	0	1471
CLUSTER	12.14	45.40	43.52	6.37	7.56	3.06	53.54	33.74	7.13	12.88	3.20	50.50	3.01	0.80	66.03	562.8	91.92	0.61	0.95	5.30	3.04	149.78
VII	Э	Э	9	9	5	4	2	2	6	-	6	2	7	Э	3	47	5	7	7	5	9	9
Characters:																						
1. Days to 50%	6 germin	ation	2. Plant	height (cm)			3. Pla	nt canoj	by width	(cm)		4 V	lo. of pi	rimary bi	anches/p]	ant	5.Le	af lengt	th (cm)		
6. Leaf width ((cm)		7. Days	to 50 %	flower	ing		8. Day	vs from	fruit set	to fruit	maturity	9. F	ruit len	gth (cm)		10.Fru	it girth ((uuu			
11. Fruit pedic	el length	i (cm)	12.No. 6	of fruits	per plai	nt		13.Fr(esh frui	weight	(g)		14.I	Dry frui	t weight	(g)		15.N	lo. of se	seds/fru	t	
16.100 seed w	eight (m	g)	17.Vit C	C. conter	it (mg/l	(g00g)		18.Ca	psaicin	content	(mg/10((g (19.	Total cl	lorophy	ll content	in green	mature	Ìruit (μg	g/g of fr	uit)	
20. Total carot	enoid (µ	g/g of fr	uit)					21. Le	saf pher	iol (mg/g	s of leaf) 22.Fru	it yield	per plar	nt (g)							

Table 4. Cluster wise mean value for twenty two characters.

Table 5. Distribution of peroxidase bands among the zymotypes of 37 genotypes.

Intransport of since o				KI VS	alue of	bands			No. of			
9 4 1 44 9 4 9 P1 \vee	types	0.1	0.2	0.4	0.	0.4	0.5	0.5	bands			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		9	4	1	44	9	4	9				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	\mathbf{P}_1	\checkmark	N	V		N	V	V	6			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P ₂		N	V	,	N	N	N	5			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P ₃	.1	N	N	N	N	N	N	6			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P ₄	N	N	N	N	N	N	N				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P ₅ D	N	N	N	N	N	N	2	0			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	г ₆ Band	N		v	62			v	3			
Total bands 35 30 .00 $\hat{6}$ 30 30 30 30 Total bands 33 Table 6. Similarity Matrix values of 6 peroxidase banding patterns Zymotypes P_1 P_2 P_3 P_4 P_5 P_2 0.833 P_3 0.714 0.857 0.714 0.857 P_3 0.714 0.571 0.714 0.857 0.286 Table 7. Distribution of genotypes in the zymotypes. Zymo- type Genotypes in the zymotypes. P_1 4 10.81 CUCH-1, CUCH-2, CUCH-3, CUCH-10 CUCH-4, CUCH-5, CUCH-4, CUCH-5, CUCH-6, CUCH-8, CUCH-26, CUCH-26, CUCH-26, CUCH-26, CUCH-26, CUCH-26, CUCH-27, CUCH-11, CUCH-	fre-	51.	97.	100	1	97.	97.	97.				
Total bands 33 Table 6. Similarity Matrix values of 6 peroxidase banding patterns Zymotypes P_1 P_2 P_3 P_4 P_5 P_2 0.833 P_3 0.714 0.833 P_4 P_5 P_3 0.714 0.857 0.714 0.857 P_6 0.286 Table 7. Distribution of genotypes in the zymotypes. 0.286 $CUCH-1, CUCH-2, CUCH-3, CUCH-10$ Type Total no. % Genotypes $CUCH-1, CUCH-2, CUCH-3, CUCH-10$ $CUCH-3, CUCH-10, CUCH-2, CUCH-3, CUCH-10$ P_1 4 10.81 $CUCH-1, CUCH-2, CUCH-3, CUCH-10$ $CUCH-6, CUCH-8, CUCH-5, CUCH-6, CUCH-8, CUCH-26, CUCH-26, CUCH-26, CUCH-26, CUCH-26, CUCH-26, CUCH-26, CUCH-27, CUCH-11, CUCH-11$	quency	35	30	.00	6	30	30	30				
33 Table 6. Similarity Matrix values of 6 peroxidase banding patterns Zymotypes P_1 P_2 P_3 P_4 P_5 P_2 0.833 P_3 0.714 0.833 P_4 P_5 P_3 0.714 0.857 0.714 0.857 P_6 0.50 0.333 0.429 0.286 Table 7. Distribution of genotypes in the zymotypes. Zymo-type Total no. % Geno-types Genotypes P1 4 10.81 CUCH-1, CUCH-2, CUCH-3, CUCH-10, CUCH-4, CUCH-5, CUCH-4, CUCH-5, CUCH-6, CUCH-8, CUCH-6, CUCH-8, CUCH-25, CUCH-26, CUCH-25, CUCH-26, CUCH-27, CUCH-24, CUCH-25, CUCH-26, CUCH-27, CUCH-24, CUCH-27, CUCH-11, CU	Total											
Table 6. Similarity Matrix values of 6 peroxidase banding patterns Zymotypes P1 P2 P3 P4 P5 P2 0.833 P3 0.714 0.833 P4 P5 P3 0.714 0.833 0.857 0.714 0.857 P5 0.714 0.571 0.714 0.857 P6 0.50 0.333 0.333 0.429 0.286 Table 7. Distribution of genotypes in the zymotypes. Zymo- of geno- type CUCH-1, CUCH-2, CUCH-3, CUCH-10, CUCH-4, CUCH-5, CUCH-3, CUCH-10, CUCH-3, CUCH-10, CUCH-4, CUCH-5, CUCH-4, CUCH-5, CUCH-6, CUCH-8, CUCH-6, CUCH-8, CUCH-6, CUCH-8, CUCH-26, CUCH-26, CUCH-26, CUCH-26, CUCH-26, CUCH-27, CUCH-24, CUCH-27, CUCH-11, CUCH-1	bands								33			
Table 7: Jumin's function of performance perfo	Table 6.	Simil	laritv	Matri	x valu	es of 6	perc	xidase l	banding			
$\begin{tabular}{ c c c c c } \hline P_1 & P_2 & P_3 & P_4 & P_5 \\ \hline P_2 & 0.833 & 0.714 & 0.833 & 0.714 & 0.857 & 0.857 & 0.714 & 0.857 & 0.857 & 0.714 & 0.857 & 0.857 & 0.857 & 0.714 & 0.857 & 0.857 & 0.857 & 0.714 & 0.857 & $0.$	patterns	51111	un reg				perc		ounum _B			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- Zymotyr	205	D.		D.	P .		D.	D_			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zymoty	Jes	11		12	13		14	15			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P ₂		0.83	33								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\mathbf{P}_2		0.71	14	0.833							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Р,		0.84	57	0.055	0.8	57					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Г 4 Р.		0.00	14	0.571	0.0	14	0.857				
0.50 0.50 0.50 0.50 0.200 Table 7. Distribution of genotypes in the zymotypes.Zymo- of geno- typesGenotypes in the zymotypes.Zymo- of geno- typesP14 0.505 0.200 Table 7. Distribution of genotypes in the zymotypes.Zymo- typesP1 0.505 0.505 0.200 Total no. $CUCH-1, CUCH-1, CUCH-2,CUCH-3, CUCH-10,CUCH-3, CUCH-10,CUCH-4, CUCH-3, CUCH-10,CUCH-4, CUCH-5,CUCH-6, CUCH-8,CUCH-26, CUCH-26,CUCH-27,CUCH-27,CUCH-11,CUCH-11,CUCH-11,CUCH-11,CUCH-11,$	г <u>5</u> Р.		0.71)	0.333	0.7	33	0.037	0.286			
$\begin{tabular}{ c c c c c c } \hline Table 7. Distribution of genotypes in the zymotypes. \\ \hline \hline Total no. of genotypes in the zymotypes in the zymotypes. \\ \hline \hline Total no. of genotypes in the zymotypes in the zymotypes in the zymotypes. \\ \hline \hline Total no. of genotypes in the zymotypes in the zymotypes. \\ \hline \hline Total no. of genotypes in the zymotypes in the zymotypes in the zymotypes. \\ \hline \hline Total no. of genotypes in the zymotypes in the zymotypes in the zymotypes. \\ \hline \hline Total no. of genotypes in the zymotypes in the zymotypes in the zymotypes. \\ \hline \hline Total no. of genotypes in the zymotypes in the zymotypes in the zymotypes. \\ \hline \hline Total no. of genotypes in the zymotypes in$	16		0.50	,	0.555	0.5		0.427	0.200			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Table 7.	Distr	ibutic	n of g	genoty	pes in	the z	ymotype	es.			
type of geno- types types P1 4 10.81 CUCH-1, CUCH-2, CUCH-3, CUCH-10 CUCH-4, CUCH-5, CUCH-6, CUCH-8, P2 9 24.32 CUCH-9, CUCH-24, CUCH-25, CUCH-26, CUCH-27, CUCH-11, CUCH-14, CUCH-14,	Zymo-	Tota	l no.	%	Geno-		G	Genotype	es			
types P1 4 10.81 CUCH-1, CUCH-2, CUCH-3, CUCH-10 CUCH-4, CUCH-5, CUCH-6, CUCH-8, P2 9 24.32 CUCH-9, CUCH-24, CUCH-25, CUCH-26, CUCH-27 CUCH-7, CUCH-11, CUCH 14, CUCH 14	type	of ge	eno-	ţ	ypes							
P1 4 10.81 CUCH-1, CUCH-2, CUCH-3, CUCH-10 CUCH-4, CUCH-5, CUCH-6, CUCH-8, P2 9 24.32 CUCH-9, CUCH-24, CUCH-25, CUCH-26, CUCH-27 CUCH-7, CUCH-11, CUCH-14, CUCH-14		typ	Des			~ ~ ~	~~~~	~~~~~				
P ₂ 9 24.32 CUCH-3, CUCH-10 CUCH-4, CUCH-5, CUCH-6, CUCH-8, CUCH-9, CUCH-24, CUCH-25, CUCH-26, CUCH-27 CUCH-7, CUCH-11, CUCH 14, CUCH 16	\mathbf{P}_1	4	1	1	0.81	CU	CUCH-1, CUCH CUCH-3, CUCH					
P ₂ 9 24.32 CUCH-4, CUCH-5, CUCH-6, CUCH-8, CUCH-9, CUCH-24, CUCH-25, CUCH-26, CUCH-27 CUCH-7, CUCH-11, CUCH-14, CUCH-14	- 1		-	-		CU	CH-	1-10				
P ₂ 9 24.32 CUCH-6, CUCH-8, CUCH-9, CUCH-24, CUCH-25, CUCH-26, CUCH-27 CUCH-7, CUCH-11, CUCH-14, CUCH-14						CU	CH-4	1-5,				
P ₂ 9 24.32 CUCH-9, CUCH-24, CUCH-25, CUCH-26, CUCH-27 CUCH-7, CUCH-11, CUCH 14, CUCH 14						CU	CH-6	5, CUCI	1-8,			
CUCH-25, CUCH-26, CUCH-27 CUCH-7, CUCH-11, CUCH 14, CUCH 14	P_2	9)	2	4.32	CU	CH-9	H-24,				
CUCH-27 CUCH-7, CUCH-11, CUCH-14, CUCH-14						CU	CH-2	25, CUC	СН-26,			
CUCH-7, CUCH-11, CUCH-14, CUCH-14						CU	CH-2	27				
						CU	CH-7	7, CUCI	H-11,			
CUCH-14, CUCH-16,						CU	CH-1	14, CUC	СН-16,			
P ₃ 9 24.32 CUCH-20, CUCH-29,	P ₃	9)	2	4.32	CU	CH-2	20, CUC	СН-29,			
CUCH-30, CUCH-32,						CU	CH-3	30, CUC	СН-32,			
CUCH-33						CU	CH-3	33				
CUCH-12, CUCH-13,						CU	CH-1	12, CUC	CH-13,			
CUCH-15, CUCH-17,						CU	CH-1	15, CUC	CH-17,			
CUCH-18, CUCH-19,						CU	CH-1	18, CUC	CH-19,			
\mathbf{P} 12 25 1A CUCH 21 CUCH 22	P_4	1	3	3	5.14	CU	CH-2	21, CUC	CH-22,			
1_4 15 55.14 CUCH-21, CUCH-22,						CU	CH-3	31, CUC	СН-34,			
¹ ₄ 15 55.14 CUCH-21, CUCH-22, CUCH-31, CUCH-34,						CU	CH-3	35, CUC	СН-36,			
CUCH-21, CUCH-22, CUCH-31, CUCH-34, CUCH-35, CUCH-36,						CU	CH-3	37				
CUCH-31, CUCH-34, CUCH-35, CUCH-36, CUCH-37	P_5	1		2	2.70	CU	CH-2	28				
P ₅ 1 2.70 CUCH-21, CUCH-22, CUCH-31, CUCH-34, CUCH-37 P ₅ 1 2.70 CUCH-28	P	1		2	2.70	CU	CH-2	3				

among the members of these clusters. Minimal distance was noted between cluster-I and II (57.80) VI (59.53), indicating proximate relationship among the genotypes included in these two clusters.

Cluster-VII emerged as unique because it had the highest mean values for maximum number of yield contributing characters viz., leaf width, fruit girth, number of fruits per plant, fresh fruit weight, dry fruit weight and total fruit yield per plant (Table 4). This cluster also showed highest mean values for physiological and fruit quality characters like total chlorophyll content in

Genotype	s	1	2	3	4	5	6	7	8	9	11	12	13	14
Rf														
values	0.10	n												
	0.15			-								-	-	
	0.24	4		-	-	-	-	-	-	-	-	-	-	-
				-	-	-	-	-	-	-	-	-	-	-
	0.4	1		_	_	_	_		_	_	_	_	_	
	0.4			-	-	-	-	-	-	-	-	-	-	-
	0.44	4						-			-	-	-	-
	0.49	9		-	-	-	-	-	-	-	-	-	-	-
	0.54	4		-	-	-	-	-	-	-	-	-	-	-
	0.50	'n		-	-	-	-	-	-	-	-	-	-	-
	0.55	9		-	-	-	-	-	-	-	-	-	-	-
Construct	9		20	20	2 7	2 7		1 1	0	10	19	17	16	15
Genotype	•		29	20) 2.	5 2		.1 2	.0	19	10	17	10	15
Rf value	s													
	0	.19			-	-	-	-		-	-	-		-
	0	.24	-		-	-	-	-	_	-	-	-	-	-
	Ū		-		-		-	-	-	-	-	-	-	-
	0	.41	-		-	-	-	-	-	-	-	-	-	-
	0	.44	-		-	-	-	-	-	-	-	-	-	-
	0	40	-	•	-		-	-	-	-	-	-	-	-
	0	.49	-		-		-	-	-	-	-	-	-	-
	0	.54	-		-		-	-	-	-	-	-	-	-
	0	.59	-			-	-	-	-	-	-	-	-	-
			-			-	-	-	-	-	-	-	-	-
Genotyp	es	10	30	31	33	34	35	36	37	24	25	26	27	32
Rf val- ues														
	0.19													
	0.24													
	0.41													
	0.41													
	0.44													
	0.49													
	0.54													
	0.59													
	,													

Fig. 1. Peroxidase electrophoretic banding and zymotypes.

Fig. 2. *Zymogram of electrophoretic pattern of peroxidase isozyme of 37 genotypes.*

green mature fruit, total carotenoid content in red ripe fruit and leaf phenol content. Cluster-I though showed highest mean value for the growth and yield related characters i.e. plant height, plant canopy width, leaf length, fruit length, fruit pedicel length and 100 seed weight, but registered as third highest for fruit yield per plant after cluster-II. High mean values for earliness with respect to seed germination, days to 50% flowering and days from fruit set to maturity were recorded in cluster-III, though this cluster failed to score substantially high mean values for other yield related traits and at the same time, recorded the lowest yield per plant. Moderate expression of all the characters were recorded in Cluster-IV and V. Cluster-VI recorded the highest mean value for two fruit quality traits i.e. ascorbic acid content and capsaicin content but mean fruit yield per plant of this cluster was very low.

Crosses involving parents belonging to most divergent clusters are expected to give maximum heterosis and create wide variability in genetic architecture. However, for a practical plant breeder, the objective is not only obtaining high heterosis but also to achieve high level of production within the shortest possible time. In the present study maximum distance exists between cluster-V & cluster-VII. However, considering intercluster distance and other agronomic performances, crosses between the members of cluster-II and cluster-VII might exhibit high heterosis and is also likely to produce new recombinants with desired traits.

Isozyme analysis (analysis through poly-morphic banding): Study on genetic diversity in terms of isozyme poly-morphism have been extensively utilized in different vegetable crops viz., brinjal (Ali *et al.*, 2011), tomato (Gunaseelan *et al.*, 2011; Evans and Allridge, 1965), potato (Beatriz *et al.*, 2001), radish (Ivy *et al.*, 2010), and field crops like cotton (Farooq and Sayyed, 1999), soybean (Buttery and Buzzel, 1968; Brim *et al.*, 1969) etc. but in chili pepper, such studies on isozymes are very limited (Onus & Pickersgill, 2000; Barrera *et al.*, 2005; Nitesh *et al.*, 2010).

In the present study, peroxidase electrophoretic banding, zymogram following electrophoretic banding pattern and zymotypes of the 37 genotypes have been presented in Figure 1& 2 and in Table 5. A total of seven bands of peroxidase were obtained ranging from Rf 0.19 to Rf 0.59. The number of bands varied with the genotypes. It is apparent from the Figure-2 and Table-5 that the band with Rf value 0.41 appeared in all the genotypes (100 % band frequency) while the band with Rf value 0.19 appeared in minimum (19) number of genotypes (51.25% band frequency). Only 23 genotypes showed the band with Rf value 0.44 (62.10% band frequency). Frequency of other 4 bands with Rf values 0.24, 0.49, 0.54 and 0.59 was 97.30%, however their appearance varied with the genotypes.

Similarity matrix values of 6 peroxidase banding pattern (Table 6) suggested that the Zymotypes P_1 and P_4 ; P_4 and P_3 ; P_4 and P_5 were close to each other in similar intensity

(Similarity index value 0.857). The Zymotype P_6 was farthest from P_5 (Similarity index 0.286) followed by P_3 and P_2 (Similarity index 0.333).

Distribution of the peroxidase bands grouped the 37 genotypes into 6 zymotypes (Table 7). The Zymotype P_4 was having all the 7 bands and also maximum number of thirteen genotypes in it. Three Zymotypes (P_1 , P_3 and P_5) were having 6 peroxidase bands, with variation in their banding pattern. Zymotype P_1 was devoid of band with Rf value 0.44 and contained 4 genotypes in it. Zymotype P_3 containing 9 genotypes had all bands except band with Rf value 0.19. Zymotype P_5 containing 1 genotype was lacking the last band with Rf value 0.59. Zymotype P_2 having 9 genotypes in it, had 5 bands excluding 2 bands with Rf 0.19 and 0.40. The last Zymotype P_6 containing only one genotype had only 3 bands i.e. Rf 0.19, Rf 0.41 and Rf 0.59.

Multivariate analysis and Isozyme analysis: It was clear from the present study that overall 7 clusters were formed with multivariate analysis employing 22 quantitative traits (Table 2) whereas 6 zymotypes were obtained with peroxidase isozyme analysis (Table 7). The number of clusters obtained by multivariate analysis and peroxidase isozyme analysis were almost same but the genotypes included in each individual cluster varied. Zymotype P_1 has been formed with 4 genotypes of Cluster II. Other members of Cluster II were grouped in Zymotype P₂, along with some members from Cluster III, IV, VI and VII. This phenomenon may be due to the environmental influence for the expression of quantitative traits. Almost similar result was recorded by Singh et al. (2010) in blackgram in which 8 clusters were formed with quantitative traits analysis whereas 9 clusters were obtained with SDS-PAGE analysis of total seed storage protein.

Conclusion

In the present study thirty seven genotypes of chilli were grouped into seven clusters and six zymotypes irrespective of their origin. From this study, it may be concluded that a wide range of variation for almost all the economically important traits are present in this crop. This implies a good possibility of breeding through hybridization programme or direct use of promosing genotypes as variety for successful chilli production. Distant parents are able to exert high heterosis. Considering this theme and variability and diversity analysis of the genotypes, CUCH-4 from Cluster-II (& Zymotype-P₂) and CUCH-31, CUCH-34 and CUCH-35 from Cluster-VII (& Zymotype-P4) were identified as promising genotypes. Further genetic studies may also be carried out using two or more promising genotypes, either through diallel or by line x tester analysis.

It also emerged that 72.97% of the total genotypes (i.e. 27 genotypes; 6 from C-IV to P_4 , 4 each from C-II to P_1 and C-IV to P_3 , 3 each from C-II to P_2 , C-IV to P_2 and C-VII to P_4 , 2 each from C-VII to P_2 and C-VII to P_3) grouped almost similarly under both multivariate analysis and isozyme polymorphism. So, it can be said that these two methods of determining diversity are complemen-

tary to each other and should be carried out simultaneously to determine genetic diversity in a more authentic manner. It is pertaining to say that isozyme polymorphism for chili cultivars could be used for cultivar registration which could be helpful for chili breeders.

REFERENCES

- Ali, M. (ed.). (2006). Chili (Capsicum spp.) Food Chain Analysis: Setting Research Priorities in Asia. Shanhua, Taiwan: AVRDC – The World Vegetable Center, Technical Bulletin No. 38, AVRDC Publication 06-678. pp 15. In http://www.avrdc.org/pdf/TB38.pdf
- Ali, Z., Xu, Z.L., Zhang, D.Y., He, X.L., Bahadur, S. and Yi, J.X. (2011). Molecular diversity analysis of eggplant (*Solanum melongena*) genetic resources. *Genet. Mol. Res.*, 10 (2): 1141-1155
- Aniel Kumar, O., Rupavathi, T. and Subba Tata, S. (2013). Genetic Variation of Isozyme Polyphenol Oxidase (PPO) Profiles in Different Varieties of *Capsicum annuum* L. *Notulae Scientia Biologicae*, 5(4):454-457
- Anonymous (2007). FAO Production Yearbook, p: 333. Rome, Italy
- Anonymous (2012). Crop report 2011/12, Oilseeds and Spices. P:6. http://www.agrocrops.com/ crop-report-2012.pdf
- Barrera, L.Q., Garcia, M.C., Giraldo, M.C. and Melgarejo, L.M. (2005). Isozyme characterization of *Capsicum* accessions from the Amazonian Colombian collections. *Revista Colombiana De Biotecnologia*, 1: 59-65
- Beatriz Helena Gomes Rocha, Eliane Augustin, João Baptista da Silva and Judith Viégas (2001). Isoenzymatic variability in wild potatoes. *Pesq. Agropec. Bras.*, 36 (5): 781-791
- Bhat, K.V., Bhat, S.R. and Chandel, K.P.S. (1992a). Survey of isozyme polymorphism for clonal identification in Musa I. Esterase, acid phosphatase, and catalase. J. *Horti. Sci.*, 67 (4): 501-508
- Bhat, K.V., Bhat, S.R. and Chandel, K.P.S. (1992b). Survey of isozyme polymorphism for clonal identification in Musa II. Peroxidase, superoxide dismutase, shikimate dehydrogenase, and malate dehydrogenase. J. Horti. Sci., 67(6): 737-743
- Brewer, G.J. and Sing, C.F. (1970). An Introduction to Isozyme Techniques, Academic Press, New York.
- Brim, C.A., Usanis, S.A. and Tester, C.F. (1969). Organ specificity and genotype differences in isoperoxidases of soybeans. *Crop Sci.*, 9: 843-845
- Buttery, B.R. and Buzzel, R.I. (1968). Peroxidase activity in seeds of soybean varieties. *Crop Sci.*, 8: 722-725
- Evans, J.J. and Allridge, N.A. (1965). The distribution of peroxidases in extreme dwarf and normal tomato (*Lycopersicon esculentum*). *Phytochemistry*, 8: 499-503
- Farooq, S. and Sayyed, H. (1999). Isozyme markers in cotton breeding-II: Inter and intra varietal variation in the activity of isozymes of the enzyme peroxidase as affected by area of cotton cultivation. *Pak. J. Bot.*, 31 (2): 347-359
- Gunaseelan, C., Suganyadevi, P., Rajasabapathy, R. and Ruban, P. (2011). Differentiation of Hybrid (COTH2) and wild (CO3) varieties of tomato (*Lycopersicon esculentum*) using protein and peroxidase isozyme profile. *Res. & Rev.*, 1 (2): 1-5
- Gupta, C.H.G., Lakshmi, N. and Srivalli, T. (1997). Analysis

of isozyme patterns (peroxidase) of *Capsicum hybrids* through PAGE. *Capsicum and Eggplant Newsletter*. 16: 64-67

- IPGRI, AVRDC and CATIE. (1995). Descriptors for Capsicum (Capsicum spp.). International Plant Genetic Resources Institute, Rome, Italy; the Asian Vegetable Research and Development Center, Taipei, Taiwan, and the Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba, Costa Rica.
- Ivy, N.A., Biswas, M.S., Rasul, G., Hossain, T. and Mian, M.A.K. (2010). Variations of genotypes of radish at molecular level using isozyme analysis for the identification of self-incompatible lines. *Global J. Biotech. Biochem*, 5 (1): 19-26
- Lahbib, K., Bnejdi, F. and Gazzah, E.I. (2012). Genetic diversity evaluation of pepper in Tunisia based on morphologic characters. *Afr. J. Agric. Res.*, 7 (23): 3413-3417
- Lebot, V., Aradhya, M.K. and Manshardt, R.M. (1991). Geographic survey of genetic variation in kava (*Piper methysticum* Forst. F. and *P. wichmanii* C. DC.). *Pacific Sci.*, 45 (2): 169-185
- Mahalanobis, P. (1936). On the generalized distance in statistics. *Proc. Nat. Inst. Sci.*, (India), 12: 49-55
- Murty, B.R. and Arunachalam, V. (1966). The nature of genetic divergence in relation to breeding system in crop plants. *Indian J. Genet*, 26A: 188-198
- Narasimhayya, G. and Venkatarao, C. (1974). Classification of the varieties of cigarette tobacco using D2 statistic. *Indian J. Agric. Sci.*, 44: 660 – 664
- Nitesh, L., Dilraj, K., Patel, N.J. and Talati, J.G. (2010). Varietal identification of chilli (*Capsicum annuum* L.) by electrophoretic technique. *Indian J. Agric. Biochem.* 23 (1): 36-40
- Nourish, M.J. (1993). SPSS for Windows-Professional Statistics; Release 6.0 SPSS Inc. 444N. Michigan Avenue, Chicago, Illinoise, 6061
- Onus, A.N. and Pickersgill, B. (2000). A study of selected isozymes in *Capsicum baccatum*, *Capsicum eximium*, *Capsicum cardenasii*, and two interspecific F1 hybrids in Capsicum species. *Turk. J. Bot*, 24: 311-318
- Pandey, G. and Dobhal, V. K. (1993). Multivariate analysis in chilli (*C. annuum* L.). *J. Spices Aromatic Crops*, 2 (1-2): 71-74
- Peeraullee, N. and Ranghoo-Sanmukhiya, V.M. (2013). Assessment of genetic diversity in local chilli (*Capsicum annuum*) varieties in mauritius. *International Journal of Agriculture and Biology*, 12: 387
- Powers, H.R., Lin, D. Jr. and Hubbes. (1988). Interspecific and intraspecific differentiation within the genus *Cronartium* by isozyme and protein pattern analysis. *Pl. Dis.*, 73: 691-694
- Singh, A.K., Mishra, A. and Shukla, A. (2010). Genetic evaluation and identification of genetic donors in blackgram (*Vigna mungo*) revealed by agromorphological traits and seed storage protein analysis. *World Appl. Sci., J.* 10 (4): 477-488
- Sreelathakumary, I. and Rajamony, L. (2004b). Genetic divergence in chilli (*Capsicum annuum L.*) Indian J. Hort., 62 (2):137-139
- Varalakshmi, B. and Babu, K. H. (1991). Genetic divergence, heritability and genetic advance in chilli (C. annuum L.). Indian J. Genet., 56(2): 174-178.