U. Singh


In type 1 diabetes, there is a lack of insulin production and in type 2, diabetes resistances to the effects of insulin are predominant. Both type 1 and type 2 have the same long-term complications. Diabetes effects zinc homeostasis in many ways, although it is most probably the hyperglycemia which is responsible for the increased urinary loss and decreases in total body zinc. The role of Zn deficiency exacerbates the cytokine-induced damage in the autoimmune attack which destroys the islet cell in type 1 diabetes, is unclear. Since Zn plays a clear role in the synthesis, storage and secretion of insulin as well as conformational integrity of insulin in the hexameric form, the decreased Zn, which affects the ability of the islet cell to produce and secrete insulin in type 2 diabetes. Oxidative stress and cellular dysfunction in diabetes may be related to increased intracellular oxidants and free radicals associated with decrease in intracellular Zn and in Zn dependent antioxidant enzymes. There appears to be a complex interrelationship between Zn and both type 1 and type 2 diabetes. Zn plays a key role in the cellular antioxidative defense. Dysfunctional zinc signaling is associated with a number of chronic disease states including cancer, cardiovascular disease, Alzheimer’s disease, and diabetes. Cellular homeostasis requires mechanisms that tightly control the uptake, storage, and distribution of zinc. This is achieved through the coordinated actions of zinc transporters and metallothioneins.


Download data is not yet available.




Antioxidants, Homeostasis, Hyperglycemia, Juvenile, Zinc

Andreini, C., Banci, L., Bertini, I. and Rosato, A. (2006). Counting the Zinc-proteins encoded in the human genome. Journal of Proteome Research, vol. 5, no. 1, 196–201.
Arthur, B. and Chausmer (1998). Zinc, Insulin and Diabetes. Journal of the American College of Nutrition, 17, 2: 109–115.
Arquilla, E.R. Packer, S. Tarmas, W. and Miyamoto, S. (1978). The effect of zinc on insulin metabolism. Endocrinology, 103: 1330–1449.
Arquilla, E.R. Thiene, P. Brugman, T. Ruess, T. and Sugiyama, R. (1978). Effects of zinc ion on the conformation of antigenic determinants on insulin. Biochem. J., 175: 289– 297.
Brader, M.L. and Dunn, M.F. (1991). Insulin hexamers: new conformations and applications. Trends Biochem. Sci., 16: 341–345.
Brange, J. and Langkjoer, L. (1993). Insulin structure and stability. Pharm. Biotechnol.,5: 315–350.
Cordova, A. (1999). Zn content in selected tissues in streptozotocin diabetic rats after maximal exercise. Biol. Trace El. Res., 42: 209–215.
Cunningham. J, Fu, A. Mearkle, P. and Brown, R. (1994). Hyperzincuria in individuals with insulin dependent diabetes mellitus: concurrent zinc status and the effect of high dose zinc supplementation. Metabolism, 43: 1558–1562.
Chasapis, C., Loutsidou, A., Spiliopoulou, C. and Stefan- idou, M. (2011). Zinc and human health: an update. Archives of Toxicology, vol. 86, 1–14.
El-Yazigi, A. Hannan, N. and Raines, D. (1993). Effect of diabetic state and related disorders on the urinary excretion of magnesium and zinc in patients. Diabetes Res., 22: 67–75.
Engelbart, K. and Kief, H. (1970). The functional behaviour of zinc and insulin contain in the pancreatic islet cells of rats. Virchows Archives, Cell Pathol., 4: 294–302.
Escobar, O. Sandoval, M. Vargas, A. and Hempe, J. (1995). Role of metallothi- oneien and cysteine rich intestinal protein in the regulation of Zn absorption by diabetic rats. Ped. Res., 37: 321–327.
Failla, M.L. and Gardil, C. (1985). Influence of spontaneous diabetes on tissue status of zinc, copper, and manganese in BB Wistar rats. PSEBM., 180: 317–322.
Garg, V. Gupta, R. and Goal, R. (1994). Hypozincemia in diabetes mellitus. J.A.P.I., 42: 720–721.
Golik, A. Cohen, N. Ramot, Y. Maor, J. Moses, R. Weissgarten, J. Leonov, Y. and Modai, P. (1993). Type II diabetes mellitus, congestive heart failure and zinc metabolism. Biol. Trace El. Res., 39: 171–175.
Fukada, T., Yamasaki, S., Nishida, K., Murakami, M. and Hirano, T. (2011). Zinc homeostasis and signaling in health and diseases—Zinc signaling. Journal of Biological Inorganic Chemistry, vol. 16, 1123–1134.
Hagay, Z. Weiss, Y. Zusman, I. Peled-Kamar, M. Reese, E. Erikson, U. and Groner, Y. ( 1 9 9 5 ) . Prevention of diabetes associated embryopathy by overexpression of the free radical scavenger copper zinc superoxide dismutase in transgenic mouse embryos. Am. J. Obstet. Gynecol., 173: 1036–1041.
Honnorat, J. Accominotti, M. Broussolle, C. Fleuret, A. Vallon, J. and Orgiazzi, J. (1992). Effects of diabetes type and treatment on zinc status in diabetes mellitus. Biol. Trace Elem. Res., 32: 311–316.
Isbir, T. Tamer, A. Taylor, A. and Isbir, M. (1994). Zinc, copper and magnesium status in insulin dependent diabetes. Diabetes Res., 26: 41–45.
Kinlaw, W.B. Levine, S. Morley, J. Silvis, S. and McClain, C. (1983). Abnormal Zn metabolism in type II diabetes mellitus. Am. J. Med., 75: 273–277.
Lau, A. and Failla, M. (1984). Urinary excretion of zinc, copper and iron in streptozotocin diabetic rat. J. Nutr., 114: 224.
Levine, A.S. McClain, C. Handwerger, B. Brown, D. and Morley, J. (1983). Tissue Zn status of genetically diabetic and streptozotocin induced dia- betic mice. Am. J. Clin. Nutr., 37: 382–386.
Little, P.J., Bhattacharya, R., Moreyra, A.E. and Korich- neva, I. L. (2010). Zinc and cardiovascular disease. Nutrition, vol. 26, no. 11-12, 1050-1057.
Lu, M. and Fu, D. (2007). Structure of the Zinc transporter YiiP. Science, vol. 317, no. 5845, 1746–1748.
Maret, W. (2011). Metals on the move: Zinc ions in cellular regulation and in the coordination dynamics of Zinc proteins. BioMetals, vol. 24, no. 3, 411–418.
Maret, W. (2011). New perspectives of Zinc coordination environments in proteins. Journal of Inorganic Biochemistry, 111: 110–116.
McNair, P. Kiilerich, S. Christiansen, C. Christiansen, M. Madsbad, S. and Transbol, I. (1981).Hyperzincuria in insulin treated diabetes mellitus-its relation to glucose homeostasis and insulin administration. Clinica. Chimica. Acta., 112: 343–348.
Quarterman, J. Mills, C. and Humphries, W. (1966). The reduced secretion of and sensitivity to insulin in Zn deficient rats. BBRC., 25: 354–358.
Rabinovitch, A. Suarez-Pinzon, W. Strynadka, K. Lakey, J. and Rajotte, R. (1996). Human pancreatic islet beta cell destruction by cytokines in- volves oxygen free radicals and aldehyde production. J. Clin. Endocrinol. Metab., 81: 3197–3202.
Raz, I. Adler, J.H. and Havivi, E. (1988). Altered tissue content of trace metals in diabetic hyperinsulinemic sand rats. Diabetologia, 31: 329–333.
Roza, A. Pieper, G. Johnson, C. and Adams, M. (1995) . Pancreatic antioxidant enzyme activity in normoglycemic diabetic prone BB rats. Pancreas, 10: 53–58.
Spreitsma, J. and Schuitemaker, G. (1994). Diabetes can be prevented by reducing insulin production. Medical Hypotheses, 42: 15–23.
Sumovski, W. Baquerizo, H. and Rabinovich, A. (1992). Oxygen free radical scavenger protect rat islet cells from damage by cytokines. Diabetologica, 32: 792–796.
Williams, N.R. Rajput-Williams, J. West, J. Nigdikar, S. Foote, J. and Howard, A. (1995). Plasma, granulocyte and mononuclear cell copper and zinc in patients with diabetes mellitus. Analyst, 120: 887–890.
Yang, J. and Cherian, G. (1994). Protective effects of metallothionein on streptozotocin induced diabetes in rats. Life Sciences, 55: 43–51.
Zalewski, P. Millard, S. Forbes, I. Kapaniris, O. Slavotinek, S. Betts, W. Ward, A. Lincoln, S. and Mahadevan, I. (1994). Video image analysis of labile Zn in viable pancreatic islet cells using specific fluorescent probe for Zn. J Histochem. Cytochem., 42: 877–884.
Zimny, S. Gogolin, F. Abel, J. and Gleichmann, H. (1993). Metallothionein in isolated pancreatic islet cells of mice: induction by zinc and streptozotocin, a naturally occurring diabetogen. Arch. Toxicol, 67: 61–65.
Citation Format
How to Cite
Singh, U. (2014). Zinc in relation to type 1 and type 2 diabetes: An overview. Journal of Applied and Natural Science, 6(2), 898-903. https://doi.org/10.31018/jans.v6i2.551
More Citation Formats:
Research Articles