##plugins.themes.bootstrap3.article.main##

Ejiroghene Ruona Evivie Matthew Chidozie Ogwu Wei Cang Rui Xu Jing Li

Abstract

Plants are constantly defending themselves against an array of assaults by pathogenic organisms. This has led to the evolution of precise and elaborate chemical defense systems involving glucosinolates (GSLs) in cruciferous plants. These GSLs and their hydrolysis products are biologically active and are implicated as enabling formidable plant defense processes in certain economically important members of Brassicaceae like broccoli, cabbage and mustard seed. This review provides a comprehensive report of how indole and aliphatic GSLs mitigate incidents of plant pathogenesis. By evaluating the roles of GSLs in plant-pathogen interaction of some brassica plants, this review highlights the associated mechanism that culminates in disease suppression. Moreover, seven economically important brassica pathogens were reviewed in terms of their ability to disrupt proper plant functioning as well as the mechanisms by which GSLs and their hydrolysis products in Brassica lower the susceptibility to them. Future perspectives of the application of GSLs in plant pathogen resistance using advanced molecular techniques are also discussed.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Arabidopsis, Brassicaceae, Glucosinolates, Pathogens, Plant immunity, Secondary metabolites

References
Aires, A., Dias, C.S.P., Carvalho, R., Oliveira, M.H., Monteiro, A.A., Simoes, M.V., Rosa, E.A.S., Bennett, R.N. and Saavedra, M.J. (2011). Correlations between disease severity, glucosinolate profiles and total phenolics and Xanthomonas campestris pv. campestris inoculation of different Brassicaceae. Scientia Horticulturae, 129:503-510. DOI : 10.1016/j.scienta.2011.04.009.
Aires, A., Mota, V.R., Saavedra, M.R., Monteiro, A.A., Simones, M., Rosa, E.A.S. and Bennett, R.N. (2009). Initial in vitro evaluations of the antibacterial activities of glucosinolate enzymatic hydrolysis products against plant pathogenic bacteria. Journal of Applied Microbiology, 106: 2096–2105. DOI: 10.1111/j.1365-2672.2009.04181.x.
Aist, J.R., and Bushnell, W.R. (1991). Invasion of plants by powdery mildew fungi, and cellular mechanisms of resistance. In: Cole, G.T. and Hoch, H.C. (eds). The fungal spore and disease initiation in plants and animals. Plenum Press, New York, pp 321–345.
Andersson, M. X., Nilsson, A. K., Johansson, O. N., Bozta?, G., Adolfsson, L. E., Pinosa, F. and Hamberg, M. (2015). Involvement of the electrophilic isothiocyanate sulforaphane in Arabidopsis local defense responses. Plant Physiology, 167(1):251-261. DOI: 10.1104/pp.114.251892.
Ausubel, F. M. (2005). Are innate immune signaling pathways in plants and animals conserved? Nature Immunology, 6:973–979. DOI: 10.1038/ni1253.
Barbetti, M.J. and Khangura, R, (2000). Fungal Diseases of Canola in Western Australia. Bulletin 4406a. Western Australia, Australia: Department of Agriculture and Food.
Becker, M.G., Zhang, X., Walker, P.L., Wan, J.C., Millar, J.L., Khan, D., Granger, M.J., Cavers, J.D., Chan, A.C., Fernando, W.G.D. and Belmonte, M.F. (2017). Transcriptome analysis of the Brassica napus - Leptosphaeria maculans pathosystem identifies receptor, signalling and structural genes underlying plant resistance. The Plant Journal, 90(3):573-586. DOI: 10.1111/tpj.13514.
Bednarek, P. (2012). Chemical warfare or modulators of defence responses - the function of secondary metabolites in plant immunity. Current Opinions in Plant Biology, 15:407–414. DOI: 10.1016/j.pbi.2012.03.002
Bednarek, P., Pislewska-Bednarek, M., Svatos, A., Schneider, B., Doubsky, J., Mansurova, M., Humphry, M., Consonni, C., Panstruga, R., Sanchez-Vallet, A., Molina, A., and Schulze-Lefert, P. (2009). A glucosinolate metabolism pathway in living plant cells mediates broadspectrum antifungal defense. Science, 323:101–106. DOI: 10.1126/science. 1163732
Beekwilder J, van Leeuwen W, van Dam NM, Bertossi M, Grandi V, et al. (2008). The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis. PLoS ONE 3(4):e2068. DOI:10.1371/journal.pone.0002068.
Bennett, R. N., and Wallsgrove, R. M. (1994). Secondary metabolites in plant defence mechanisms. New Phytologist, 127:617–633.
Bhandari, S.R., Jo, J.S. and Lee, J.G. (2015). Comparison of glucosinolate profiles in different tissues of nine brassica crops. Molecules, 20: 15827-15841. DOI:10.3390/molecules200915827.
Bischoff, K.L. (2016). Chapter 40 - Glucosinolates, In: Nutraceuticals. Gupta, R.C. (ed). Academic Press. pp 551-554. DOI: https://doi.org/10.1016/B978-0-12-802147-7.00040-1.
Bolton, M. D., Thomma, B. P. and Nelson, B. D. (2006). Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Molecular Plant Pathology, 7(1):1-16. DOI: 10.1111/j.1364-3703.2005.00316.x.
Borges, A., Abreu, A.C., Ferreira, C., Saavedra, M.J., Simões, L.C. and Manuel Simões, M. (2015). Antibacterial activity and mode of action of selected glucosinolate hydrolysis products against bacterial pathogens. Journal of Food Science and Technology, 52(8):4737–4748, DOI: 10.1007/s13197-014-1533-1.
Brader, G., Mikkelsen, M.D., Halkier, B.A. and Palva, E.T. (2006). Altering glucosinolate pro?les modulates disease resistance in plants. The Plant Journal, 46:758–767. DOI: 10.1111/j.1365-313X.2006.02743.x.
Burow, M., and Wittstock, U. (2009). Regulation and function of specifier proteins in plants. Phytochemistry. Reviews, 8:87–99. DOI: https://doi.org/10.1007/s11101-008-9113-5.
Cao, J.Y., Xu, Y.P. and Cai, X.Z. (2016). TMT-based quantitative proteomics analyses reveal novel defense mechanisms of Brassica napus against the devastating necrotrophic pathogen Sclerotinia sclerotiorum. Journal of Proteomics, 143: 265–277. DOI: https://doi.org/10.1016/j.jprot.2016.03.006
Chisholm, S. T., Coaker, G., Day, B. & Staskawicz, B. J. (2006). Host–microbe interactions: shaping the evolution of the plant immune response. Cell, 124:803–814. DOI: 10.1016/j.cell.2006.02.008.
Clay, N.K., Adio, A.M., Denoux, C., Jander, G., and Ausubel, F.M. (2009). Glucosinolate metabolites required for an Arabidopsis innate immune response. Science, 323:95–101. DOI: 10.1126/science.1164627.
Cowan, M.M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12: 564–582.
Crossan, D.F, (1954). Cercosporella leafspot of crucifers. North Carolina Agricultural Experiment Station Technical Bulletin, 109: 23.
Dangl, J.L. & Jones, J.D.G. (2001). Plant pathogens and integrated defence responses to infection. Nature, 411:826–833. DOI: 10.1038/35081161.
Deighton, F.C. (1973). Studies on Cercospora and allied genera. Mycological Papers, 133:42–46.
Dias, J.S., Nogueira, P. and Corvo, L. (2010). Evaluation of a core collection of Brassica rapa vegetables for resistance to Xanthomonas campestris pv. campestris. African Journal of Agricultural Research, 5(21):2972–2980.
Dixon, G.R. (2009). Plasmodiophora brassicae in its environment. Journal of Plant Growth and Regulations, 28:212–228. DOI: http://dx.doi.org/10.1007/s00344-009-9098-3.
Fagertun, L. (1987). Lagringspatogener på hvitkål og kålrot. Utbredelse, patogenitet og bekjempelse (Post-harvest pathogens on cabbage and rutabaga). Agricultural University of Norway.
Fagertun, L. and Semb, L. (1986). Sykdommer på kål og kålrot, Phytophthora- råte [Diseases on cabbage and rutabaga, Phytophthora-rot]. Norsk Landbruk, 105(8):16-17.
Fitt, B.D.L., Brun, H., Barbetti, M.J. and Rimmer, S.R. (2006). Worldwide importance of phoma stem canker (Leptosphaeria maculans and L. biglobosa) on oilseed rape (Brassica napus). European Journal of Plant Pathology, 114:3–15. DOI: https://doi.org/10.1007/s10658-005-2233-5.
Frerigmann H., Pislewska-Bednarek M., Sanchez-Vallet A., Molina A., Glawischnig E., Gigolashvili T., and Bednarek P. (2016). Regulation of pathogen-triggered tryptophan metabolism in Arabidopsis thaliana by MYB transcription factors and indole glucosinolate Conversion Products. Molecular Plant, 9:682–695. DOI: 10.1016/j.molp.2016.01.006.
Fukunaga, S., Sogame, M., Hata, M., Singkaravanit-Ogawa, S., Pislewska-Bednarek, M., Onozawa-Komori, M., Nishiuchi, T., Hiruma, K., Saitoh, H., Terauchi, R., Kitakura, S., Inoue1, Bednarek, Y.P., Schulze-Lefert, P. and Takano, Y. (2017). Dysfunction of Arabidopsis MACPF domain protein activates programmed cell death via tryptophan metabolism in MAMP-triggered immunity. The Plant Journal, 89:381–393. DOI:10.1111/tpj.13391.
Gaiteri, C., Ding, Y., French, B., Tseng, G. C. and Sibille, E. (2014). Beyond modules and hubs: the potential of gene coexpression networks for investigating molecular mechanisms of complex brain disorders. Genes, Brain and Behavior, 13:13–24.DOI: https://doi.org/10.1111/gbb.12106.
Giri, P., Taj, G., and Kumar, A. (2013). Comparison of artificial inoculation methods for studying pathogenesis of Alternaria brassicae (Berk.) Sacc on Brassica juncea (L.) Czern.(Indian mustard). African Journal of Biotechnology, 12(18): 2422-2426. DOI: 10.5897/AJB12.2803.
Gloss, A.D., Vassao, D.G., Hailey, A.L., Nelson Dittrich, A.C., Schramm, K., Reichelt, M., Rast, T.J.,Weichsel, A., Cravens,M.G., Gershenzhon,J.,Monfort, W.R. and Whiteman, N.K. (2014). Evolution in an ancient detoxi?cation pathway is coupled with a transition to herbivory in the Drosophilidae. Molecular Biology and. Evolution, 31: 2441–2456. DOI: 10.1093/molbev/msu201.
Goss, M., Mafongo, P., Gubba, A. and Sam, T. (2017). Black Rot (Xanthomonas campestris pv. campestris) control in field grown cabbage (Brassica oleracea var. Sugar Loaf) with Moringa oleifera extracts. International Journal of Plant & Soil Science, 18(2): 1-11. DOI: 10.9734/IJPSS/2017/29850.
Groen, S.C., Humphrey, P.T., Chevasco, D., Ausubel., F.M., Pierce, N.E. and Whiteman, N.K. (2015). Pseudomonas syringae enhances herbivory by suppressing the reactive oxygen burst in Arabidopsis. Journal of Insect Physiology, DOI: http://dx.doi.org/10.1016/j.jinsphys.2015.07.011
Groen, S.C., Whiteman, N.K., Bahrami, A.K., Wilczek, A.M., Cui, J., Russell, J.A., Cibrian-Jaramillo, A., Butler, I.A., Rana, J.D., Huang, G.H., Bush, J., Ausubel, F.M. and Pierce, N.E. (2013). Pathogen-triggered ethylene signaling mediates systemic induced susceptibility to herbivory in Arabidopsis. Plant Cell, 25(11):4755– 4766. DOI:10.1105/tpc.113.113415.
Gunasinghe, N., You, M. P., Clode, P. L., and Barbetti, M. J. (2016). Mechanisms of resistance in Brassica carinata, B. napus and B. juncea to Pseudocercosporella capsellae. Plant Pathology, 65(6): 888-900. DOI: https://doi.org/10.1111/ppa.12484.
Hiruma, K., Fukunaga, S., Bednarek, P., Pi?lewska-Bednarek, M., Watanabe, S., Narusaka, Y., Shirasu, K. and Takano, Y. (2013). Glutathione and tryptophan metabolism are required for Arabidopsis immunity during the hypersensitive response to hemibiotrophs. Proceedings of the National Academy of Sciences of the United States of America, 110(23): 9589-9594. DOI: https://doi.org/10.1073/pnas.1305745110.
Hiruma, K., Onozawa-Komori, M., Takahashi, F., Asakura, M., Bednarek, P., Okuno, T., Schulze-Lefert, P. and Takano, Y. (2010). Entry mode–dependent function of an indole glucosinolate pathway in Arabidopsis for nonhost Resistance against anthracnose pathogens. The Plant Cell, 22:2429–2443. DOI:10.1105/tpc.110.074344.
Holmes, G. (2003). Club rot of crucifers (Plasmodiophora brassicae) Woronin. California Polytechnic State University at San Luis Obispo, USA. Available online: https://www.forestryimages.org/browse/detail.cfm?imgnum=5513019. Accessed on 16 March 2019.
Holmes, G. (2010). White spot Pseudocercosporella capsellae (Ellis and Everh.) Deighton. California Polytechnic State University at San Luis Obispo, USA. Available online: https://www.ipmimages.org/browse/detail.cfm?imgnum=1577988. Accessed on 16 March 2019
Holst, B. and Fenwick, G.R. (2003). Glucosinolates. In: Encyclopaedia of Food Sciences and Nutrition (Second Edition). Academic Press. Pp2922-2930.
Horbach, R., Navarro-Quesada, A. R., Knogge, W. and Deising, H. B. (2011). When and how to kill a plant cell: infection strategies of plant pathogenic fungi. Journal of Plant Physiology, 168(1), 51e62. DOI:10.1016/j.jplph.2010.06.014
Hossain, M.S., Ye, W., Hossain, M.A., Okuma, E., Uraji, M., Nakamura, Y., Imori, I.C. and Murata, Y. (2013). Glucosinolate degradation products, isothiocyanates, nitrites and thiocyanates induced stomatal closure accompanied by peroxidase-mediated reactive oxygen species production in Arabidopsis thaliana. Bioscience, Biotechnology and Biochemistry, 77(5):977-983. DOI: https://doi.org/10.1271/bbb.120928
Hsu, C.L., Juan, H.F. and Huang, H.C. (2015). Functional analysis and characterization of differential coexpression networks. Scientific Reports 5, 13295.
Huckelhoven, R. and Panstruga, R. (2011). Cell biology of the plant-powdery mildew interaction. Current Opinion in Plant Biology, 14(6):738e746. DOI: 10.1016/j.pbi.2011.08.002.
Islam, M.N. and Guest, D. (2010). Brassica root and shoot glucosinolate levels: Interaction with Clubroot disease cycle. MSc Thesis, Faculty of Agriculture, Food and Natural Resources, The University of Sydney, Australia. 89p
Jiang, Z., Dong, X.B., Li, Z.H., He, F. and Zhang, Z. (2016). Differential coexpression analysis reveals extensive rewiring of Arabidopsis gene coexpression in response to Pseudomonas syringae infection. Scientific Reports, DOI: 10.1038/srep35064.
Johansson, O. N., Fantozzi, E., Fahlberg, P., Nilsson, A. K., Buhot, N., Tor, M., and Andersson, M. X. (2014). Role of the penetration-resistance genes PEN1, PEN2 and PEN3 in the hypersensitive response and race-specific resistance in Arabidopsis thaliana. Plant Journal, 79: 466-476. DOI: 10.1111/tpj.12571.
Jones, J.D.G. and Dangl, J.L. (2006). The plant immune system. Nature, 444(16): 323-329. DOI:10.1038/nature05286
Khokon, M.D.A.R., Jahan, M.D.S., Rahman, T., Hossain, M.A., Muroyama, D., Minami, M., Munemasa, S., Mori, I.C., Nakamura, Y. and Murata, Y. (2011). Allyl isothiocyanate (AITC) induces stomatal closure in Arabidopsis. Plant, Cell and Environment, 34:1900–1906. DOI: 10.1111/j.1365-3040.2011.02385.x
Klein, A.P. and Sattely, E.S. (2017). Biosynthesis of cabbage phytoalexins from indole glucosinolate. Proceedings of the National Academy of Sciences of the United States of America (PJAS), 14(8):1910-1915. DOI: https://doi.org/10.1073/pnas.1615625114.
Koch, E. and Slusarenko, A. (1990). Arabidopsis is susceptible to infection by a downy mildew fungus. Plant Cell, 2(5):437-445.
Koike, S.T., Gladders, P, and Paulus, A.O. (2007). Vegetable Diseases: A Color Handbook. San Diego, CA, USA: Academic Press.
Ku, K.M., Becker, T.M. and Juvik, J.A. (2016). Transcriptome and metabolome analyses of glucosinolates in two broccoli cultivars following jasmonate treatment for the induction of glucosinolate defense to Trichoplusia ni (Hübner). International Journal of Molecular Science, 17,1135. DOI:10.3390/ijms17071135.
Kus´nierczyk, A., Winge, P., Midelfart, H., Armbruster, W.S., Rossiter, J.T. and Bones, A.M. (2007). Transcriptional responses of Arabidopsis thaliana ecotypes with different glucosinolate profiles after attack by polyphagous Myzus persicae and oligophagous Brevicoryne brassicae. Journal of Experimental Botany, 58(10):2537-2552. DOI: https://doi.org/10.1093/jxb/erm043
Lambrix, V., Reichelt, M., Mitchell-Olds, T., Kliebenstein, D. J. and Gershenzon, J. (2001). The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni herbivory. The Plant Cell, 13(12):2793-2807.  DOI: https://doi.org/10.1105/tpc.010261
Lazarev, A.M. (2009). Diseases: Pseudomonas syringae pv. maculicola (McCullock) Young et al – bacteria leaf spot of cauliflower. Interactive Agricultural Ecological Atlas of Russia and Neighbouring Countries. Economic plant and their diseases, pest and weeds. Available online: http://www.agroatlas.ru/en/content/diseases/Brassicae/Brassicae_Pseudomonas_syringae_pv_maculicola/index.html. Accessed on 16 March 2019.
Lehmann, S., Serrano, M., L’Haridon, F., Tjamos, S. E., and Metraux, J. P. (2015). Reactive oxygen species and plant resistance to fungal pathogens. Phytochemistry, 112:54-62.
Mathur, P., Sharma1, E., Singh, S.D., Bhatnagar1, A.K., Singh, V.P. and Kapoor, R. (2013). Effect of elevated C02 on infection of three foliar diseases in oilseed Brassica Juncea. Journal of Plant Pathology, 95(1):135-144. DOI: http://dx.doi.org/10.4454/JPP.V95I1.013.
Mauch F, Torche S, Schläppi K, Branciard L, Belhaj K, Parisy V, and Si-Ammour A. (2009). Phytophthora brassicae as a pathogen of Arabidopsis. In Oomycete Genetics and Genomic: Diversity, Interactions and Research Tools Edited by: Lamour K, Kamoun S. Wiley-Blackwell :333-345
Meena, P.D., Awasthi, R.P., Chattopadhyay, C., Kolte, S.J. and Kumar, A. (2010). Alternaria blight: a chronic disease in rapeseed-mustard. Journal of Oilseed Brassica, 1(1):1-11.
Mikkelsen, M.D., Olsen, C.E. and Halkier B.A. 2010). Production of cancer-preventive glucoraphanin in tobacco. Molecular Plant, 3(4):751-759. DOI: https://doi.org/10.1093/mp/ssq020
Moussaieff, A., Rogachev, I., Brodsky, L., Malitsky, S., Toal, T.W., Belcher, H., Yativ, M., Brady, S.M., Benfey, P.N. and Aharoni, A. (2013). High-resolution metabolic mapping of cell types in plant roots. Proceedings of the National Academy of Sciences, 110 (13) E1232-E1241; DOI:10.1073/pnas.1302019110
Mullen, J. (2012). Black rot of crucifers Xanthomonas campestris pv. Campestris (Pammel 1895) Dowson 1939. Auburn University, Alabama, USA. Available online: https://www.forestryimages.org/browse/detail.cfm?imgnum=1568130. Accessed on 16 March 2019.
Osbourn, A. E. (1996). Preformed antimicrobial compounds and plant defense against fungal attack. The Plant Cell, 8(10):1821.
Pangesti, N., Reichelt, M., van de Mortel, J.E., Kapsomenou, E., Gershenzon, J., van Loon, J.J.A., Dicke, M. and Ana Pineda, A. (2016). Jasmonic acid and ethylene signaling pathways regulate glucosinolate levels in plants during rhizobacteria-induced systemic resistance against a leaf-chewing herbivore. Journal of Chemical Ecology, 42:1212–1225, DOI: 10.1007/s10886-016-0787-7.
Pétriacq, P., Ton, J., Patrit, O., Tcherkez, G. and Gakière, B. (2016). NAD acts as an integral regulator of multiple defense layers. Plant Physiology, DOI:10.1104/pp.16.00780.
Petrie, G.A., Mortensen, K. and Dueck, J. (1985). Blackleg and other diseases of rapeseed in Saskatchewan, 1978 to 1981. Canadian Plant Disease Survey, 65:35–41.
Pfalz, M., Mikkelsen, M.D., Benarek, P., Olsen, C.E., Halkier, B.A. and Kroymann, J. (2011). Molecular engineering in Nicotiana benthamiana reveals key enzyme functions in Arabidopsis indole glucosinolate modification. The Plant Cell, 23:716-729.  DOI: https://doi.org/10.1105/tpc.110.081711.Pscheidt, J.W., and Ocamb, C.M. (2019). Pacific Northwest Plant Disease Management Handbook. Available online: https://pnwhandbooks.org/node/3637/print. Accessed on 16 March 2019.
Rausher, M.D. (2001). Co-evolution and plant resistance to natural enemies. Nature, 411:857–864.
Redovnikovic, I.R., Glivetic, T., Delonga, K. and Vorkapic-Furac, J. (2008). Glucosinolates and their potential role in plant. Periodicum Biologorum, 110(4): 297-309.
Saavedra, M.J., Borges, A., Dias, C., Aires, A., Bennett, R.N. Rosa, E.S. and Simões, M. (2010). Antimicrobial activity of phenolics and glucosinolate hydrolysis products and their synergy with streptomycin against pathogenic bacteria. Medicinal Chemistry, 6:174-183. DOI : 10.2174/1573406411006030174
Schlaeppi, K., Abuo-Mansour, E., Buchala, A. and Mauch, F. (2010). Disease resistance of Arabidopsis to Phythophthora brassicae is established by the sequential action of indole glucosinolates and camalexin. The Plant Journal, 63:840-851. DOI: https://doi.org/10.1111/j.1365-313X.2010.04197.x
Schlaeppi, K., Bodenhausen, N., Buchala, A., Mauch, F., and Reymond, P. (2008). The glutathione?deficient mutant pad2?1 accumulates lower amounts of glucosinolates and is more susceptible to the insect herbivore Spodoptera littoralis. The Plant Journal, 55(5):774-786. DOI: https://doi.org/10.1111/j.1365-313X.2008.03545.xSemb, L. (1971). A rot of stored cabbage caused by a Phytophthora sp. Acta Horticulturae, 20:32-35.
Shlezinger, N., Minz, A., Gur, Y., Hatam, I., Dagdas, Y. F., Talbot, N. J., and Sharon, A. (2011). Anti-apoptotic machinery protects the necrotrophic fungus Botrytis cinerea from host-induced apoptotic-like cell death during plant infection. PLoS Pathogens, 7(8), e1002185. DOI: https://doi.org/10.1371/journal.ppat.1002185
Smith, J.D., Woldemariam, M.G., Mescher, M.C., Jander, G. and De Moraes, C.M. (2016). Glucosinolates from host plants influence growth of the parasitic plant Cuscuta gronovii and its susceptibility to herbivores. Plant Physiology, pp-00613. DOI: https://doi.org/10.1104/pp.16.00613
Song T, Chu M, Lahlali R, Yu F and Peng G (2016). Shotgun label-free proteomic analysis of clubroot (Plasmodiophora brassicae) resistance conferred by the gene Rcr1 in Brassica rapa. Frontiers in Plant Science, 7:1013. DOI: 10.3389/fpls.2016.01013
Sotelo, T., Lema, M., Soengas, P., Cartea, M.E. and Velasco, P. (2014). In vitro activity of glucosinolates and their degradation products against Brassica-pathogenic bacteria and fungi. Applied and Environmental Microbiology, 81(1):432– 440.DOI:10.1128/AEM.03142-14.
Stahl, E., Bellwon, P., Huber, S., Schlaeppib, K., Bernsdorff, F., Vallat-Michel, A., Mauchb, F. and Zeiera, J. (2016). Regulatory and functional aspects of indolic metabolism in plant systemic acquired resistance. Molecular Plant, DOI: 10.1016/j.molp.2016.1.005
Stotz, H.U., Sawada, Y., Shimada, Y., Hirai, M.Y., Sasaki, E., Krischke, M., Brown, P.D., Saito, K., and Kamiya, Y. (2011). Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum. The Plant Journal, 67:81–93. DOI: https://doi.org/10.1111/j.1365-313X.2011.04578.x
Szczyg?owska, M., Piekarska, A., Konieczka, P. and Namie?nik, J. (2011). Use of brassica plants in the phytoremediation and biofumigation processes. International Journal of Molecular Sciences, 12: 7760-7771. DOI:10.3390/ijms12117760
Tierens, K. F. J., Thomma, B. P., Brouwer, M., Schmidt, J., Kistner, K., Porzel, A., ... & Broekaert, W. F. (2001). Study of the role of antimicrobial glucosinolate-derived isothiocyanates in resistance of Arabidopsis to microbial pathogens. Plant Physiology, 125(4):1688-1699. DOI: 10.1104/pp.125.4.1688.
Ton, J., Flors, V., and Mauch-Mani B, (2009). The multifaceted role of ABA in disease resistance. Trends in Plant Science, 14:310–317. DOI: https://doi.org/10.1016/j.tplants.2009.03.006
Torres, M.A., Jones, J.D.G. and Dangl, J.L. (2006). Reactive oxygen species signaling in response to pathogens. Plant Physiology, 141:373–378. DOI: https://doi.org/10.1104/pp.106.079467
Ugolini, L., Martini, C., Lazzeri, L., D’Avino, L. and Mari, M. (2014). Control of postharvest grey mould (Botrytis cinerea Per.: Fr.) on strawberries by glucosinolate-derived allyl-isothiocyanate treatments. Postharvest Biology and Technology, 90:34-39. DOI: https://doi.org/10.1016/j.postharvbio.2013.12.002
Underwood, W. (2012). The plant cell wall: a dynamic barrier against pathogen invasion. Frontiers in Plant Science, 3, 85. DOI: 10.3389/fpls.2012.00085
Velasco, P., Lema, M., Francisco, M., Soengas, P. and Cartea, M.E. (2013). In vivo and in vitro effects of secondary metabolites against Xanthomonas campestris pv. Campestris. Molecules, 18:11132-11143. DOI:  https://doi.org/10.3390/molecules180911131
Vicente, J.G. and Holub, E.B. (2013) Xanthosoma campestris pv. Campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops. Molecular Plant Pathology, 14 (1): 2–18. DOI: 10.1111/j.1364-3703.2012.00833.x  
Voorrips, R.E. (1995). Plasmodiophora brassicae: aspects of pathogenesis and resistance in Brassica oleracea. Euphysica, 83:139-146.
Vwioko, D., Okoekhian, I. and Ogwu, M.C. (2018). Stress Analysis of Amaranthus hybridus L. and Lycopersicon esculentum Mill. Exposed to Sulphur and Nitrogen Dioxide. Pertanika Journal of Tropical Agricultural Science, 41(3):1169-1191
Wang, Y., Bouwmeester, K., Van De Mortel, J.E., Shan, W. and Govers, F. (2013a). A novel Arabidopsis–oomycete pathosystem: differential interactions with Phytophthora capsici reveal a role for camalexin, indole glucosinolates and salicylic acid in defence. Plant, Cell and Environment, 36:1192–1203. DOI: https://doi.org/10.1111/pce.12052
Wang, Y., Bouwmeester, K., Van De Mortel, J.E., Shan, W. and Govers, F. (2013b). Induced expression of defense-related genes in Arabidopsis upon infection with Phythophthora capsici. Plant Signaling and Behavior, 8:e24618. DOI: https://doi.org/10.4161/psb.24618
Wells, B.C. (2018). Disease notes: Alternaria leaf spot of Brassica crops. UF/IFAS University of Florida, USA. Available online: http://blogs.ifas.ufl.edu/stjohnsco/2018/03/21/disease-notes-alternaria-leaf-spot-brassica-crops/. Accessed on 16 March 2019.
Williamson, B., Tudzynski, B., Tudzynski, P. and van Kan, J. A. (2007). Botrytis cinerea: the cause of grey mould disease. Molecular Plant Pathology, 8(5):561-580. DOI: https://doi.org/10.1111/j.1364-3703.20 07.00417.xWittstock, U., and Burow, M. (2010). Glucosinolate breakdown in Arabidopsis: mechanism, regulation and biological significance. The Arabidopsis Book 8: e0134, doi/10.1199/tab.0134.
Xu, J., Meng, J., Meng, X., Zhao, Y., Liu, J., Sun, T. and Zhang, S. (2016). Pathogen-responsive MPK3 and MPK6 reprogram the biosynthesis of indole glucosinolates and their derivatives in Arabidopsis immunity. The Plant Cell, 28(5):1144-1162. DOI: https://doi.org/10.1105/tpc.15.00871
Young, J.M. (2010). Taxonomy of pseudomonas syringae. Journal of Plant Pathology, 92(1): S1.55-S1.14.
Zhang, W., Kwon, S.T., Chen, F. and Kliebenstein, D.J. (2016). Isolate dependency of Brassica rapa resistance QTLs to Botrytis cinerea. Frontiers in Plant Science, 7:161. DOI: 10.3389/fpls.2016.00161
Zhao Y, Bi K, Gao Z, Chen T, Liu H, Xie J, Cheng J, Fu Y and Jiang D (2017). Transcriptome analysis of Arabidopsis thaliana in response to Plasmodiophora brassicae during early infection. Frontiers in Microbiology, 8:673, DOI: 10.3389/fmicb.2017.00673
Zhao, Y.,  Hull, A.K.,  Gupta, N. R.,  Goss, K. A.,  Alonso, J.,  Ecker, J.R.,  Normanly, J.,  Chory, J., and Celenza, J.L. (2002). Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Development, 16:3100–3112. DOI:10.1101/gad.1035402
Zhou, X.J., Lu, S., Xu, Y.H, Wang, J.W. and Chen, X.Y. (2002). A cotton cDNA (GaPR10) encoding a pathogenesisrelated to protein with in vitro ribonuclease activity. Plant Science, 162: 629-636.DOI:https://doi.org/10.1016/S0168-9452(02)00002-X
Section
Research Articles

How to Cite

Progress and prospects of glucosinolate pathogen resistance in some brassica plants. (2019). Journal of Applied and Natural Science, 11(2), 556-567. https://doi.org/10.31018/jans.v11i2.2117