##plugins.themes.bootstrap3.article.main##

Shareef Ahmad Sandeep Shukla Anand Mishra Deepak Kasherwani Veena P. Swami Sanjive Shukla

Abstract

Chromatophores, specialized pigment cells in poikilothermic animals, have shown great potential in their use as a cell-based biosensor in the detection of a broad range of environmental toxicants, as structure and number of chromatophores alters significantly under toxicant exposure. Skin coloration of Heteropneustes fossilis is due to melanin containing melanophores. Cadmium, the black listed and non essential heavy metal, is widely used that adversely affects vital activities of aquatic biota. H. fossilis, freshwater Indian stinging catfish, were subjected to exposure of 96 hour LC50 dose (392.92 mg/l) and 25% of 96 hour LC50 dose (98.23mg/l) of cadmium chloride (CdCl2) to evaluate toxic impact of cadmium on colouration and chromatophores. A significant decrease was observed in number of chromatophores after acute (highly significant (F = 70.50; P<0.001) and sub acute (significant (F = 0.29; P<0.05) exposure along with heavy nacrotic, lytic and degenerative changes. Chromatophore gradually changed from reticulate to punctate-stellate and punctuate type as they lost their dendritic processes and aggregation of melanin towards centre. Most of the chromatophores lost their cellular entity due to degenerative changes and melanin was found dispersed in surrounding matrix. Peeling and fading of skin was the common feature in all exposure durations. Fish chromatophores may serve as better biomarkers in reference to metallic pollution and will also be helpful in accessing the health status of economically important fishes as well as worsening status of aquatic bodies.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Cadmium chloride, Chromatophores, Heteropneustes fossilis, Histomorphology

References
Aspengren, S., Hedberg, D., Sköld, H.N. and Wallin, M. (2008). New insights into melanosome transport in vertebrate pigment cells. Inter. Review of Cell and Molecular Biology, 245–302.
Bagnara, J.T. and Hadley, M.E., (1973). Chromatophores and color change: the comparative physiology of animal pigmentation. Prentice-Hall Englewood Cliffs, NJ.
Baker, B. I. (1991). Melanin-concentrating hormone: A general vertebrate neuropeptide. Int. Rev. Cytol. 126:1-47.
Banerjee, T.K. and D. Mukherjee (1994). Melanophore indexing: a quick bio-assay technique for detection of heavy metal toxicity. Curr. Sci. 6: 177-182.
Chaudhary, U. S., Rathod, V. and Vankhede, G.N. (2001). Effects of water extract of the bark Buchanania lanzan Linn. on behaviour and chromatophores of a fresh water fish, Labeo rohita. J. Environ Biol. 22: 229-231.
Dane, H. and Sisman, T. (2017). A histopathological study on the freshwater fish species chub (Squalius cephalus) in the Karasu River, Turkey. Turk. J. Zool., 41: 1-11.
Dierksen, K.P., Mojovic, L., Caldwell, B.A., Preston, R.R., Upson, R. and Lawrence, J. (2004). Responses of fish chromatophore-based cytosensor to a broad range of biological agents. J. Appl. Toxicol., 24: 363-369.
Dukovcic SR. (2009). Ph.D. thesis. Oregon State University, Corvallis, OR. Chromatophores as cellbased biosensors for the detection of chemically and biologically toxic substances.
Dukovcic, S.R., Hutchison, J.R. and Trempy, J.E. (2010a). Conservation of the chromatophore pigment response. J. Appl. Toxicol., 30: 574-581.
Dukovcic, S.R., Hutchison, J.R. and Trempy, J.E. (2010b). Potential of the melanophore pigment response for detection of bacterial toxicity. Appl. Environ. Microbiol., 76: 8243-8246.
Dwivedi, B., Banerjee, S. and Vyas, R. (2017). Monitoring of sublethal effects of chromium on melanophores. Flora and Fauna, 23(2): 363-366.
Fujii, R. (1969a). Chromatophores and pigments. pp. 307-338. In Hoar WS, Randall DJ, (ed.), Fish Physiology, Volume III: Reproduction and Growth, Bioluminescence, Pigments, and Poisons. Academic Press, New York, NY.
Fujii, R. (1969b). Chromatophores and pigments. In Fish physiology (Eds: W. S. Hora and D. J. Rendall). Academic Press., 3: 307.
Fujii, R. (1993). Cytophysiology of fish chromatophores. Int. Rev. Cytol., 143: 191-255.
Fujii, R. (2000). The regulation of motile activity in fish chromatophores. Pigment Cell Res. 13: 300-319.
Fujii, R. and Oshima, N. (1986). Con- trol of chromatophore movements in teleost fishes. Zool. Sci., 3:13-47
Grandjean, P., White, R.F., Nielsen, A., Cleary, D. and de Oliveira Santos, E.C. (1999). Environ. Health Perspect. Methylmercury neurotoxicity in Amazonian children downstream from gold mining. 107: 587-591.
Gulzar R., Yaqoob, A. and Jain, A.K. (2014). Rate of color change in the skin of common carp, Cyprinus carpio As A Background Adaptation. New York Sci.J., 7(10): 91-96.
Gupta; K., Sachar, A. and Raina, S. (2013). Haematological Response of Freshwater Fish Puntius sophore (HAM.) to Copper Exposure. Int. J. Sci. Res. Pub., 3(5): 1-6.
Hassan, H. and Bakhiet, A. (2015). Bioaccumulation and histopathological alterations of heavy metals in the liver and kidney of Oreochromis niloticus fish collected from the blue Nile. Agricul. Biol. Sci. J. 1(5): 224-228.
Hemalatha, S. and T.K. Banerjee (1997). Estimation of sublethal toxicity of zinc chloride by histopathological analysis of fish (Heteropneustes fossilis, Bloch.) epidemis. Curr. Sci., 73: 614- 621.
Hutchison, J.R., Dukovcic, S.R., Dierksen, K.P., Carlyle, C.A., Caldwell, B.A. and Trempy J.E. (2008). Erythrophore cell response to food-associated pathogenic bacteria: implications for detection. Microb. Biotechnol., 1: 425-431.
Iwata, K.S. and Fukuda, H. (1973). Central control of colour changes in fish. In Chavin, W. (Ed) Responses of fish to Environmental changes. Spring field, Thomas. 316-341.
Kasherwani, D., Lodhi, H.S., Tiwari, K.J., Shukla, S. and Sharma, U.D. (2009). Cadmium Toxicity to Freshwater Catfish, Heteropneustes fossilis (Bloch). Asian J. Exp. Sci., 23(1): 149-156.
Madhulekha and Arya, S. (2017). Cadmium toxicity induced morphological alterations in indigenous fish, Heteropneustes fossilis (Bloch). Green chemis. and Techno. Lette., 3(1): 21-25.
Mason, C.F. (1996). Biology of fresh water pollution, third edition, Long Man U.K. PP : 1-4.
Mc Fadden P. (2002). Broadband Biodetection: Holmes on a Chip. Science. 297: 2075-2076.
Mishra, A., Shukla, S. and Chopra, A.K. (2016a). Acute toxicity of copper sulphate and potassium chromate to “tailless freshwater flea”, Simocephalus vetulus (Crustacea-Cladocera). Inter. J. Adv. Res., 4(6): 316-321.
Mishra, A., Shukla, S. and Chopra, A.K. (2016b). Physiological responses of heart of tailless fresh water flea Simocephalus vetulus (Crustacea-cladocera) under copper sulphate stress). CIBTech J. Zool., 5(3): 52-59.
Mizusawa, K., Kobayashi, Y., Sunuma, T., Asahida, T., Saito, Y., and Takahashi, A. (2011). Inhibiting roles of melanin-concentrating hormone for skin pigment dispersion in bar fin flounder, Veraspermoseri. Gen.Comp.Endocrinol., 171: 75–81.
Mojovic L, Dierksen KP, Upson RH, Caldwell BA, Lawernce JR, Trempy J.E. (2004). Blind and naïve classification of toxicity by fish chromatophores. J. Appl. Toxicol., 24: 355-361.
Mustafa S.A., Al-Faragi J.K., Salman N.M. and Al-Rudainy A.J. (2017). Histopathological alterations in gills, liver and kidney of common carp, Cyprinus carpio exposed to lead Acetate. Adv. Anim. Vet. Sci., 5(9): 371-376.
Nayar, B., Mukati, K. and Bhattacharya, L. (2017). Effect of Cadmium chloride on histoarchitecture of inter renal and chromaffin cells of fresh water fish Heteropneustes fossilis and recovery of damaged tissue by herbal compound Ashwagandha. Int. J. Life Sci. Scienti. Res., 3(4): 1190-1199.
Paul, V.I. and T.K. Banerjee (1996). Analysis of ammonium sulphate toxicity in the catfish Heteropneustes fossilis using mucocyte indexing. Pol. Arch. Hydrobiol., 43: 111-125.
Pradeep K, Sheikh, I A., Aherwar, M and Ovais, M (2007). Methyl parathion induced effects on the Oreochromis mossambica (Peters) Melanophores in vitro. J. of Herbal Medicine and Toxicology., 1(2): 49-54.
Radhakrishnan, M.V., Hemalatha S. and Paul V.I. (2000). Effect of cadmium chloride on the melanophores of Channa striatus (Bloch). Indian J. Fish., 47(2): 135-141.
Rajan, M.T. and T.K. Banerjee (1991). Histopathological changes induced by acute toxicity of mercuric chloride on the epidermis of freshwater catfish Heteropneustes fossilis (Bloch.). Ecotoxicol. Environ. Safe., 22: 139-152.
Sanders, M.J. (1997). A field evaluation of the freshwater river crab, Potamonan tes warren, as a bio accumulation indictor of metal pollution. Thesis, Ran Afrikaans University, South Affrica.
Singh M., Ansri, A.A., Muller, G. and Singh I.B. (1997). Heavy metal in freshly deposited sediments of the Gomti river (a tributary of the Ganga river): Effects on human activities. Environ. Geology. 29(3-4):252-264.
Singh, A. and Dutta Munsi, J.S. (1992). Effect of sublethal mercuric chloride exposure on melanophores of a catfish, Heteropneustes fossilis (Bloch). J. Environ. Biol., 13(4): 303-304.
Srivastava, A., Singh, S. and Tanuallen (2015). Comparative toxicity of arsenic and cadmium combined metal toxicity in fresh water fish with Yamuna water fish. Int. J. Pharm. Bio. Sci., 6(4): 1019-1032.
Sugimoto, M. (2002). Morphological color changes in fish: regulation of pigment cell density and morphology. Microsc. Res. Tech., 58: 496-503.
Takahashi, A., and Kawauchi, H. (2006a). Evolution of melanocortin systems in fish. Gen.Comp. Endocrinol., 148: 85-94.
Tripathi, M., Tripathi, A. and Gopal, K. (2005). Impact of fluoride on pigmentation of a fresh water fish, Channa punctatus. J. of Applied. Bio. Sci., 31(1): 35-38.
Trivedi. R.K. (2001). Aquatic Pollution and Toxicology, first edition A.B.D. Publisher.
Verma, D.R., Lodhi, H.S., Tiwari, K.J., Shukla, S. and Sharma, U.D. (2010). Copper sulphate induced changes in scaphognathite oscillations and oxygen consumption of fresh water prawn, Macrobrachium lamarrei (Crustacea Decapoda). J. of Appl. and Nat. Sci., 2(1): 34-37.
Section
Research Articles

How to Cite

Effect of cadmium chloride on general body colouration and chromatophores of stinging cat fish, Heteropneustes fossilis (Bloch). (2018). Journal of Applied and Natural Science, 10(2), 655-660. https://doi.org/10.31018/jans.v10i2.1758